Photoacoustic Tomography Enhanced by Nanoparticles
Junjie Yao
Washington University in St. Louis, St. Louis, MO, USA
Search for more papers by this authorLihong V. Wang
Washington University in St. Louis, St. Louis, MO, USA
Search for more papers by this authorJunjie Yao
Washington University in St. Louis, St. Louis, MO, USA
Search for more papers by this authorLihong V. Wang
Washington University in St. Louis, St. Louis, MO, USA
Search for more papers by this authorAbstract
Photoacoustic tomography (PAT) is a multicontrast and omniscale imaging modality that can provide anatomical, functional, metabolic, and molecular images of biological tissue ranging from organelles to organs or small-animal organisms. PAT can provide up to submicrometer spatial resolution at shallow depths and hundreds of micrometer resolution at centimeters depths, employing either endogenous or exogenous contrasts. In particular, nanoparticles, as exogenous contrasts, absorb near-infrared light much more strongly than endogenous chromophores; thus, they can enhance PAT with significantly improved detection sensitivity, imaging contrasts, and specificity at depths. This article reviews the use of nanoparticles to enhance PAT in various biomedical applications. Taking advantage of nanoparticles engineered with different structures and functions, PAT can target specific molecules or cells. By manipulating nanoparticles with light or ultrasound, enhanced PAT can improve drug delivery efficiency and guide therapy. In summary, nanoparticle-enhanced PAT shows great potential for high-sensitivity, high-specificity deep tissue imaging, especially for cancer diagnosis and therapy, and for treatment monitoring.
Bibliography
- 1 R. A. Robb. Biomedical Imaging, Visualization, and Analysis. John Wiley & Sons, Inc.: New York, 1999.
- 2 B. Costas. Meas. Sci. Technol. 2009, 20, p 104020.
- 3 L. Cai, N. Friedman, and X. S. Xie. Nature 2006, 440, pp 358–362.
- 4 C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie. Science 2008, 322, pp 1857–1861.
- 5 T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren. Biomed. Opt. Express 2011, 2, pp 1576–1583.
- 6 L. V. Wang and S. Hu. Science 2012, 335, pp 1458–1462.
- 7 R. Yuste and W. Denk. Nature 1995, 375, pp 682–684.
- 8 E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth. Nat. Neurosci. 2005, 8, pp 1263–1268.
- 9 H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang. Nat. Biotechnol. 2006, 24, pp 848–851.
- 10 V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth. Science 2009, 324, pp 354–359.
- 11 H. P. Lu, L. Y. Xun, and X. S. Xie. Science 1998, 282, pp 1877–1882.
- 12 F. Zhang, L. P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, et al. Nature 2007, 446, pp 633–U634.
- 13 A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld. J. Cereb. Blood Flow Metab. 2012, 32, pp 1277–1309.
- 14 V. Lihong, and H.-I. W. Wang. Biomedical Optics: Principles and Imaging. John Wiley & Sons, Inc.: Hoboken, NJ, 2007.
- 15 X. Xu, H. Liu, and L. V. Wang. Nat. Photonics 2011, 5, pp 154–157.
- 16 C. Ma, X. Xu, Y. Liu, and L. V. Wang. Nat. Photonics 2014, 8, pp 931–936.
- 17 Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang. Proc. SPIE. 2014, 8943, p 894339.
- 18 V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder. Nat. Biotechnol. 2005, 23, pp 313–320.
- 19 P. Beard. Interface Focus 2011, 1, pp 602–631.
- 20 J. Xia, J. J. Yao, and L. H. V. Wang. Prog. Electromagn. Res. 2014, 147, p 22.
- 21 L. V. Wang. Med. Phys. 2008, 35, pp 5758–5767.
- 22 L. V. Wang. Nat. Photonics 2009, 3, pp 503–509.
- 23 J. Yao and L. V. Wang. J. Biomed. Opt. 2010, 15, p 021304.
- 24 J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang. J. Biomed. Opt. 2011, 16, p 076003.
- 25 J. J. Yao, J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang. Neuroimage 2013, 64, pp 257–266.
- 26 L. Li, C. H. Yeh, S. Hu, L. D. Wang, B. T. Soetikno, R. M. Chen, Q. F. Zhou, K. K. Shung, K. I. Maslov, and L. H. V. Wang. Opt. Lett. 2014, 39, pp 2117–2120.
- 27 Y. S. Zhang, J. Yao, C. Zhang, L. Li, L. V. Wang, and Y. Xia. Angew. Chem., Int. Ed. 2014, 53, pp 8099–8103.
- 28 L. Li, X. Jun, T. T. W. Wong, L. Lei, and L. V. Wang. J. Biomed. Opt. 2015, 20, p 016019
- 29 L. Guo, L. Lei, Z. Liren, X. Jun, and L. V. Wang. J. Biomed. Opt. 2015, 20, p 066010
- 30 L. R. Zhu, L. Li, L. Gao, and L. H. V. Wang. Optica 2014, 1, pp 217–222.
- 31 G. Luke, D. Yeager, and S. Emelianov. Ann. Biomed. Eng. 2012, 40, pp 422–437.
- 32 X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang. Wiley Interdiscip. Rev. Nanomed Nanobiotechnol. 2009, 1, pp 360–368.
- 33
L. V. Wang.
Scholarpedia
2014,
9(2),
p 10278.
10.4249/scholarpedia.10278 Google Scholar
- 34 J. Yao and L. V. Wang. Photoacoustics 2014, 2, pp 87–101.
- 35 Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp. J. Biomed. Opt. 2012, 17, p 036012.
- 36 A. Ray, J. R. Rajian, Y. E. Lee, X. Wang, and R. Kopelman. J. Biomed. Opt. 2012, 17, p 057004.
- 37 K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang. Opt. Lett. 2008, 33, pp 929–931.
- 38 S. E. Forest and J. D. Simon. Photochem. Photobiol. 1998, 68, pp 296–298.
- 39 J. A. Viator, J. Komadina, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson. J. Investig. Dermatol. 2004, 122, pp 1432–1439.
- 40 M. Szakall, H. Huszar, Z. Bozoki, and G. Szabo. Infrared Phys. Technol. 2006, 48, pp 192–201.
- 41 Z. Xu, C. Li, and L. V. Wang. J. Biomed. Opt. 2010, 15, p 036019.
- 42 Z. Xu, Q. Zhu, and L. V. Wang. J. Biomed. Opt. 2011, 16, p 066020.
- 43 T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard. J. Biomed. Opt. 2012, 17 p 061209.
- 44 B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov. Opt. Lett. 2012, 37, pp 1244–1246.
- 45 P. Wang, P. Wang, H.-W. Wang, and J.-X. Cheng. J. Biomed. Opt. 2012, 17, p 96010-1.
- 46 M. R. Bugs and M. L. Cornelio. Photochem. Photobiol. 2001, 74, pp 512–520.
- 47 M. R. Bugs and M. L. Cornelio. Eur. Biophys. J. 2002, 31, pp 232–240.
- 48 D. K. Yao K. Maslov, K. K. Shung, Q. F. Zhou, and L. V. Wang. Opt. Lett. 2010, 35, pp 4139–4141.
- 49 C. Di Primo, E. Deprez, S. G. Sligar, and G. H. B. Hoa. Biochemistry 1997, 36, pp 112–118.
- 50 C. Zhang, Y. S. Zhang, D. K. Yao, Y. Xia, and L. V. Wang. J Biomed. Opt. 2013, 18, p 20504.
- 51 R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky. IEEE J. Sel. Top. Quantum Electron. 1999, 5, pp 981–988.
- 52 G. Ku and L. V. Wang. Opt. Lett. 2005, 30, pp 507–509.
- 53 C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang. Biomed. Opt. Express 2010, 1, pp 278–284.
- 54 W. Xing, L. Wang, K. Maslov, and L. V. Wang. Opt. Lett. 2013, 38, pp 52–54.
- 55 K. H. Song and L. V. Wang. J. Biomed. Opt. 2007, 12, p 060503.
- 56 J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Y. Guo, L. V. Wang, and Q. Zhu. Opt. Express 2009, 17, pp 10489–10498.
- 57 J. Xia, Z. J. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. H. V. Wang. J. Biomed. Opt. 2011, 16, p 3.
- 58 J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang. J. Biomed. Opt. 2012, 17, p 050506.
- 59 X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang. Nat Biotechnol. 2003, 21, pp 803–806.
- 60 M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang. Proc. Natl. Acad. Sci. 2014, 111, pp 21–26.
- 61 J. J. Yao, L. D. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang. Nat. Methods 2015, 12, p 407.
- 62 H. Fang, K. Maslov, and L. V. Wang. Phys. Rev. Lett. 2007, 99, p 184501.
- 63 S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit. Proc. Natl. Acad. Sci. 2011, 108, pp 13264–13269.
- 64 S. S. Oladipupo, S. Hu, A. C. Santeford, J. Yao, J. R. Kovalski, R. V. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit. Blood 2011, 117, pp 4142–4153.
- 65 ANSI Z136. Safe Use of Lasers in Health Care. 2011.
- 66 J. Laufer, E. Zhang, and P. Beard. IEEE J. Sel. Top. Quantum Electron. 2010, 16, pp 600–607.
- 67 N. A. George, B. Aneeshkumar, P. Radhakrishnan, and C. Vallabhan. J. Phys. D Appl. Phys. 1999, 32, p 1745.
- 68 R. Azmat and F. Uddin. Can. J. Pure Appl. Sci. 2008, 2, pp 275–283.
- 69 A. Agarwal, X. Shao, J. R. Rajian, H. Zhang, D. L. Chamberland, N. A. Kotov, and X. Wang. J. Biomed. Opt. 2011, 16, 051307.
- 70 Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov. Opt. Express 2010, 18, pp 8867–8878.
- 71 J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang. Nat. Methods 2016, 13, 67.
- 72 A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, and T. Marafioti. Nat. Photonics 2015 9, p 239.
- 73 N. Lewinski, V. Colvin, and R. Drezek. Small 2008, 4, pp 26–49.
- 74 Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent. Small 2007, 3, pp 1941–1949.
- 75 H. L. Karlsson, P. Cronholm, J. Gustafsson, and L. Möller. Chem. Res. Toxicol. 2008, 21, pp 1726–1732.
- 76 M. Longmire, P. L. Choyke, and H. Kobayashi. Nanomedicine (Lond) 2008, 3, pp 703–717.
- 77 F. Alexis, E. Pridgen, L. K. Molnar, and O. C. Farokhzad. Mol. Pharm. 2008, 5, pp 505–515.
- 78 T. M. Allen and P. R. Cullis. Adv. Drug Deliv. Rev. 2013, 65, pp 36–48.
- 79 S. Mura, J. Nicolas, and P. Couvreur. Nat. Mater. 2013, 12, pp 991–1003.
- 80 A. C. Eifler and C. S. Thaxton. Biomed. Nanotechnol.: Methods Protocols 2011, pp 325–338.
- 81 R. A. Petros and J. M. DeSimone. Nat. Rev. Drug Discov. 2010, 9, pp 615–627.
- 82 K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum. Cancer Res. 2003, 63, pp 1999–2004.
- 83 F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad. Nano Today 2007, 2, pp 14–21.
- 84 S. Gioux, H. S. Choi, and J. V. Frangioni. Mol. Imaging 2010, 9, pp 237–255.
- 85 S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. van Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. van der Vorst, J. S. D. Mieog, et al. Mol. Imaging Biol. 2011, 13, pp 199–207.
- 86 D. Razansky, J. Baeten, and V. Ntziachristos Med. Phys. 2009, 36, pp 939–945.
- 87 J. Chen, F. Saeki, B. J Wiley, H Cang, M. J Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, et al. Nano Lett. 2005, 5, pp 473–477.
- 88 S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, L. M. Cobley, and Y. Xia. Acc. Chem. Res. 2008, 41, pp 1587–1595.
- 89 A. G. Cuenca, H. Jiang, S. N. Hochwald, M. Delano, W. G. Cance, and S. R. Grobmyer. Cancer 2006, 107, pp 459–466.
- 90 W. Lu, Q. Huang, G. Ku, X. Wen, M. Zhou, D. Guzatov, P. Brecht, R. Su, A. Oraevsky, L. V. Wang, et al. Biomaterials 2010, 31, p 2617.
- 91 X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang. Nano Lett. 2007, 7, pp 3798–3802.
- 92 K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang. Nano Lett. 2009, 9, pp 183–188.
- 93 M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang. J. Biomed. Opt. 2009, 14, p 010507
- 94 S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov. Opt. Express 2007, 15, pp 6583–6588.
- 95 A. de la Zerda, S. Bodapati, R. Teed, S. Y. May, S. M. Tabakman, Z. Liu, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir. ACS Nano 2012, 6, pp 4694–4701.
- 96 M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi. Nano Lett. 2007, 7, pp 1914–1918.
- 97 L.-S. Bouchard, M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen. Proc. Natl. Acad. Sci. USA. 2009, 106, pp 4085–4089.
- 98 A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, et al. Nat. Nanotechnol. 2008, 3, pp 557–562.
- 99 J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov. Nat. Nanotechnol. 2009, 4, pp 688–694.
- 100 A. Bianco, K. Kostarelos, and M. Prato. Curr. Opin. Chem. Biol. 2005, 9, pp 674–679.
- 101 E. Herzog, A. Taruttis, N. Beziere, A. A. Lutich, D. Razansky, and V. Ntziachristos. Radiology 2012, 263, pp 461–468.
- 102 C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, et al. ACS Nano 2010, 4, pp 4559–4564.
- 103 D. Hanahan and R. A. Weinberg Cell 144, pp 646–674.
- 104 E. I. Galanzha, E. V. Shashkov, P. Spring, J. Y. Suen, and V. P. Zharov. Cancer Res. 2009, 69, pp 7926–7934.
- 105 E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov. Nat. Nanotechnol. 2009, 4, pp 855–860.
- 106 Y. Jin, C. Jia, S.-W. Huang, M. O'Donnell, and X. Gao, Nat. Commun. 2010, 1, p 41.
- 107 M. Mehrmohammadi, J. Oh, S. Mallidi, and S. Y. Emelianov. Mol. Imaging 2011, 10, p 102.
- 108 C.w. Wei, J. Xia, I. Pelivanov, C. Jia, S. W. Huang, X. Hu, X. Gao, and M. O'Donnell. J. Biophotonics 2013, 6, pp 513–522.
- 109 M. K. Lingam, R. M. Mackie, and A. J. McKay. Br. J. Cancer 1997, 75, pp 1505–1508.
- 110 M. Nakajima, M. Takeda, M. Kobayashi, S. Suzuki, and N. Ohuchi. Cancer Sci. 2005, 96, pp 353–356.
- 111 D. Krag, D. Weaver, J. Alex, J. Fairbank, et al. Surg. Oncol. 1993, 2, pp 335–340.
- 112 X. Cai, W. Y. Li, C. H. Kim, Y. C. Yuan, L. H. V. Wang, and Y. N. Xia. ACS Nano 2011, 5, pp 9658–9667.
- 113 B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov. Nano Lett. 2009, 9, pp 2212–2217.
- 114 B. Wang, P. Joshi, V. Sapozhnikova, J. Amirian, S. H. Litovsky, R. Smalling, K. Sokolov, and S. Emelianov. Proc. SPIE 2010, 7564, p 75640A.
- 115 M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, et al. Nat. Med. 2012, 18, pp 829–834.
- 116 K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu. Adv. Mater. 2012, 24, pp 1868–1872.
- 117 H. Qin, T. Zhou, S. Yang, Q. Chen, and D. Xing, Nanomedicine (Lond) 2013 8, pp 1611–1624.
- 118 J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng. Nat. Mater. 2011, 10, pp 324–332.
- 119 Y. M. Zhang, M. Jeon, L. J. Rich, H. Hong, J. M. Geng, Y. Zhang, S. X. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, et al. Nat. Nanotechnol. 2014, 9, pp 631–638.
- 120 X. W. Lou, L. A. Archer, and Z. Yang. Adv. Mater. 2008, 20, pp 3987–4019.
- 121 M. S. Yavuz, Y. Y. Cheng, J. Y. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. W. Xie, C. Kim, K. H. Song, A. G. Schwartz, et al. Nat. Mater. 2009, 8, pp 935–939.
- 122 G. D. Moon, S.-W. Choi, X. Cai, W. Li, E. C. Cho, U. Jeong, L. V. Wang, Y. Xia, J. Am. Chem. Soc. 2011, 133, pp 4762–4765.
- 123 L. Weiyang, C. Xin, K. Chulhong, S. Guorong, Z. Yu, D. Rui, Y. Miaoxin, C. Jingyi, S. Achilefu, L. V. Wang, et al. Nanoscale 2011, 3, pp 1724–1730.
- 124 K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu. Adv. Mater. 2012, 24, pp 1868–1872.
- 125 K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov. J. Biomed. Opt. 2010 15, p 021316.
- 126 W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, et al. Cancer Res. 2011, 71, pp 6116–6121.
- 127 Z. Zha, S. Zhang, Z. Deng, Y. Li, C. Li, and Z. Dai. Chem. Commun. 2013, 49, pp 3455–3457.
- 128 J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang. Opt. Lett. 2012, 37, pp 659–661.
- 129 C. Zhang, K. Maslov, J. Yao, and L. V. Wang. J. Biomed. Opt. 2012, 17, pp 116016–116016.
- 130 C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang. J. Biomed. Opt. 2012, 17, pp 0205011–0205014.
- 131 C. Zhang, K. Maslov, and L. V. Wang. Opt. Lett. 2010, 35, pp 3195–3197.
- 132 D.-K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang. Opt. Lett. 2010, 35, pp 4139–4141.
- 133 J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang. Phys. Rev. Lett. 2014, 112, p 014302.
- 134 D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov. Small 2014, 10, pp 135–142.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: