Advanced Packaging of Optoelectronic Devices
Zirong Tang
Wuhan National Laboratory for Optoelectronics
School of Mechanical Science and Engineering, Huazhong University of Science and Technology
Search for more papers by this authorTielin Shi
Wuhan National Laboratory for Optoelectronics
School of Mechanical Science and Engineering, Huazhong University of Science and Technology
Search for more papers by this authorFrank G. Shi
Optoelectronics Packaging & Materials Labs, University of California
Search for more papers by this authorZirong Tang
Wuhan National Laboratory for Optoelectronics
School of Mechanical Science and Engineering, Huazhong University of Science and Technology
Search for more papers by this authorTielin Shi
Wuhan National Laboratory for Optoelectronics
School of Mechanical Science and Engineering, Huazhong University of Science and Technology
Search for more papers by this authorFrank G. Shi
Optoelectronics Packaging & Materials Labs, University of California
Search for more papers by this authorAbstract
In recent years, the packaging technologies of advanced optoelectronics devices and systems have evolved rapidly to meet the fast-growing industry of optoelectronics. However, packaging expense still accounts for a major portion of the overall cost of optoelectronics devices and systems. With the driving trend of higher power, smaller size, and higher reliability, many advanced packaging technologies are emerging. In this article, we present a comprehensive introduction of packaging design rules, advanced packaging materials, and packaging processes. Specific examples with state-of-art packaging methodologies are given for some typical devices, including high-power, light-emitting diodes; high-power semiconductor lasers; liquid crystal displays; and fiber-related optical devices. Insights on the technological development trend and philosophy are also discussed for advanced packaging of optoelectronic devices.
Bibliography
- 1 W. Jiang and M. S. Lebby. Packaging of Optical Components and Systems, in Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley: Hoboken, NJ, 1999, pp 499–516.
- 2 R. F. Carson. Optoelectronic Packaging: A Review, in Annual Winter Meeting of the American Society of Mechanical Engineers, New Orleans, LA, 1993.
- 3 R. Woelkel, K. J. Weible, and M. Eisner. Wafer-level Micro-optics: Trends in Manufacturing, Testing and Packaging. Proc. SPIE 2011, 8169, pp 81690C1–81690C12.
- 4 E. Wolak, C. Mitchell, et al. Advances in High Power Laser Diode Packaging. Proc. SPIE 2009, 7221, pp 72210U1–72210U.
- 5 W. K. Heung, S. H. Shin, et al. Silicon-based Multi-chip LED Package. ECTC 2007, pp 722–727.
- 6 M. Arik, C. Becker, S. Weaver, et al. Thermal Management of LEDs: Package to System. Proc. SPIE 2004, 5187, pp 64–75.
- 7 A. W. Norris, M. Bahadur, and M. Yoshitake. Novel Silicone Materials for LED Packaging. Proc. SPIE 2005, 5941, pp 594115-1–594115-7.
- 8 A. Yuen. Telecom Packaging Improves Reliability of High-Power Lasers. Laser Focus World 2007.
- 9 J. F. Seurin, G. Xu, et al. Progress in High-Power High-Efficiency VCSEL Arrays. Proc. SPIE 2009, 7229, pp 722903-1–722903-11.
- 10 C. Zweben. Advances in Photonics Thermal Management and Packaging Materials. Proc. SPIE 2008, 6899, pp 689918-1–689918-12.
- 11 M. J. Hodgin. Epoxies for Optoelectronic Packaging: Applications and Materials Properties, in Proceedings of the 36th Annual IMAPS Conference, Boston, MA, 2003, pp 26–30.
- 12
L. Zimmermann,
G. B. Preve, et al.
Packaging and Assembly for Integrated Photonics—A Review of the ePIXpack Photonics Packaging Platform.
IEEE J. Sel. Top. Quantum Electron.
2001,
17 (3),
pp 645–651.
10.1109/JSTQE.2010.2084992 Google Scholar
- 13
T. Tekin.
Review of Packaging of Optoelectronic, Photonic and MEMS Components.
IEEE J. Sel. Top. Quantum Electron.
2001,
17 (3),
pp 704–719.
10.1109/JSTQE.2011.2113171 Google Scholar
- 14 B. W. Hueners. Packaging Optoelectronic Components. Adv. Pack. 2004, 13 (11), pp 46–48.
- 15 S. M. Pietralunga, A. Pianciola, et al. The Art of Optoelectronic Packaging, in Proceedings of 10th Anniversary International Conference on Transparent Optical Networks, 2008, pp 120–122.
- 16 R. Irvin, Designing an Optoelectronic Package. Adv. Microelectron. 2002, 29 (1).
- 17 D. A. Schleuning, R. Dato, et al. Packaging Multiple Active and Passive Elements in a Hybrid Optical Platform. J. Lightwave Technol. 2004, 22 (5), pp 1320–1326.
- 18
S. h. Lee and
Y. C. Lee.
Optoelectronic Packaging for Optical Interconnects.
Opt. Photon. News
2006,
17 (1),
pp 40–45.
10.1364/OPN.17.1.000040 Google Scholar
- 19 M. P. Christensen, P. Milojkovic, et al. Multiscale Optical Design for Global Chip-to-Chip Optical Interconnections and Misalignment Tolerant Packaging. Adv. Electron. Pack. 2003, 1, pp 673–680.
- 20 J. Stafford. Packaging and Physical Design in the Bandwidth Era. Printed Circuit Fabrication 2001, 24 (5), pp 34–41.
- 21 S. Ou, G. Xu, Y. Xu, and K. N. Tu. Optical Fiber Packaging by Lead(Pb)-free Solder in V-grooves. Ceramics Int. 2004, 30, pp 1115–1119.
- 22 A. Mahapatra and R. Mansfield. Optoelectronic Packaging Using Passive Optical Coupling, in Optoelectronics Packaging and MOEMS Topical Workshop, IMAPS, Bethlehem, PA, 2002.
- 23 C. S. Eo, A. Chatterjee, and N. M. Jokerst. Physical Design of Optoelectronic System-on-Package Using Optical Waveguide Interconnects. ECTC 2004, 1, pp 29–34.
- 24 H. Ehler, M. Biletzke, et al. Optoelectronic Packaging of Arrayed-Waveguide Grating Modules and Their Environmental Stability Tests. Opt. Fiber Technol. 2000, 6 (4), pp 344–356.
- 25 J. Collins, M. Dagenais, and M. Itoh. Introduction to the Issue on Alignment Tolerant Structures for Ease of Optoelectronic Packaging. IEEE J. Sel. Top. Quantum Electron. 1997, 3 (6), pp 1306–1307.
- 26 A. A. Karim, P. A. Narayana, and K. N. Seetharamu. Thermal Design Optimization of Optoelectronic Package. Microelectron J. Electron. Pack. 2005, 2 (4), pp 232–239.
- 27 B. N. Gomatam. High Speed IC Design Trends and Optoelectronic Packaging: A Perspective on Cost Reduction. Proc. SPIE 2007, 6478.
- 28 H. Yang and H. L. Zhu. Silicon Bench for Passive Coupling and Packaging of High-frequency Optoelectronic Devices. IEEE Trans. Adv. Pack. 2007, 30 (1), pp 34–37.
- 29 M. K. Iyer, P. V. Ramana, et al. Design and Development of Optoelectronic Mixed Signal System-on-Package. IEEE Trans. Adv. Pack. 2004, 27 (2), pp 278–285.
- 30 M. Ayliffe, D. Kabal, et al. Electrical Thermal and Optomechanical Packaging of Large 2D Optoelectronic Device Arrays for Free-space Optical Interconnects. J. Opt. A: Pure Appl. Opt. 1999, 1 (2), pp 267–271.
- 31 S. H. Lin, J. Lin, et al. Synthesis of Ultraviolet Curable Encapsulating Adhesives and Their Package Applications for Organic Optoelectronic Devices. Solid State Sci. 2011, 13 (10), pp 1889–1895.
- 32 D. P. Hand, N. Lorenz, et al. Laser-based Joining for the Packaging of Miniature Optoelectronic Devices. Proc. SPIE 2010, 7585.
- 33 R. Eberhardt, E. Beckert, et al. Optoelectronic Packaging Based on Laser Joining. Proc. SPIE 2008, 6880.
- 34 B. Ting and V. Manno. Transient Thermomechanical Simulation of Laser Hammering in Optoelectronic Package Manufacturing, J. Electron. Pack. 2005, 127 (3), pp 299–305.
- 35 M. A. Occhionero, R. A. Hay, R. W. Adams, et al. Aluminum Silicon Carbide (AlSiC) for Cost-Effective Thermal Management and Functional Microelectronic Packaging Design Solutions, in 12th European Microelectronics and Packaging Conference, 1999, pp S10–S04.
- 36 M. A. Occhionero, R. W. Admas, and D. Saums. AlSiC for Optoelectronic Thermal Management and Packaging Designs. Proc. SPIE 2003, 5288, pp 495–499.
- 37 E. Bosman, J. Missinne, et al. Ultrathin Optoelectronic Device Packaging in Flexible Carriers. IEEE J. Sel. Top. Quantum Electron. 2011, 17 (3), pp 617–628.
- 38 A. S. Francomacaro, D. K. Wickenden, et al. Microelectronic Substrates for Optoelectronic Packages. Johns Hopkins APL Tech. Digest 2008, 28 (1), pp 40–46.
- 39 M. Willander, M. Friesel, et al. Silicon carbide and diamonds for high temperature device applications. J. Mater. Sci: Mater. In Electron. 2006, 17, pp 1–25.
- 40 V. H. Ozquz and J. Yamaquchi. Materials for 3D Packaging of Electronic and Optoelectronic Systems. MRS Bull. 2003, 28 (1), pp 35–40.
- 41 C. Zweben. Advanced Materials for Optoelectronic Packaging. Semicond. Int. 2003, 25 (10), pp 35–40.
- 42 S. Madduri, W. Infantolino, and B. G. Sammakia. An Experimental and Computational Study on Moisture Induced Epoxy Swelling in Nonhermetic Optoelectronic Packages. J. Electron. Pack. Trans. of the ASME 2012, 134 (1), p 011007.
- 43 R. D. Dupuis and M. R. Krames. History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes. J. Light. Technol. 2008, 26 (9), pp 1154–1171.
- 44 S. Nakamura, T. Mukai, and M. Senoh. High-power GaN P-N Junction Blue-Emitting Diodes. J. Jpn. Appl. Phys. 1991, 30 (12A), pp L1998–L2001.
- 45
P. Schlotter,
R. Schmidt, and
J. Schneider.
Luminescence Conversion of Blue Light Emitting Diodes.
Appl. Phys.
1997,
64,
pp 477–418.
10.1007/s003390050498 Google Scholar
- 46 Y. Lee, T. Lu, et al. High Brightness Gan-Based Light-Emitting Diodes. J. Display Technol., 2007, 3 (2), pp 118–125.
- 47 M. R. Krames, O. B. Shchekin, et al. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting. J. Display Technol. 2007, 3 (2), pp 160–175.
- 48 F. Wall. High Power LED Package Requirements. Proc. SPIE 2004, 5187, pp 85–92.
- 49 S. C. Allen and A. J. Steckl. EliXIR-Solid-State Luminaire with Enhanced Light-Extraction by Internal Reflection. J. Display Technol. 2007, 3 (2), pp 155–159.
- 50 A. Chi and N. George. Light-Emitting Diode Illumination Design with a Condensing Sphere. J. Opt. Soc. Am. A 2006, 23 (9), pp 2295–2298.
- 51 K. N. Hui, P. T. Lai, and H. W. Choi. Spectral Conversion with Fluorescent Microsphere for Light Emitting Diodes. Opt. Express 2007, 16 (1), pp 13–18.
- 52 J. Park, Y. Yoon, et al. Joint Structure in High Brightness Light Emitting Diode (HB LED) Packages. Mater. Sci. Eng. A, 2006, 441, pp 357–361.
- 53 H. Wang, K. Lee, J. Ryu, et al. Active Packaging Method for Light-Emitting Diode Lamps with Photosensitive Epoxy Resins. IEEE Photon. Technol. Lett. 2008, 20 (2), pp 87–89.
- 54 H. Wang, J. Ryu, et al. Active Packaging Method for Blue Light-Emitting Diodes with Photosensitive Polymerization: Formation of Self-Focusing Encapsulates. Opt. Express 2008, 16 (6), pp 3680–3685.
- 55 Y. Ding, X. Liu, et al. Freeform LED Lens for Uniform Illumination. Opt. Express 2008, 16 (17), pp 12958–12966.
- 56 M. W. Shin. Thermal Design of High Power Led Package and System. Proc. SPIE 2006, 6355, pp 635509-1–635509-13.
- 57 J. You, Y. He, and F. G. Shi. Thermal Management of High Power LEDs: Impact of Die Attach Materials, in Proceedings of the 2007 International Microsystems Pack. Assem. Circuits Technol., 2007, pp 239–242.
- 58 I. Moreno and C. Sun. LED Array: Where Does Far-Field Begin? Proc. SPIE 2008, p 7058.
- 59 D. Daniel and J. Evans. High Brightness Matrix LED Assembly Challenges and Solutions. ECTC 2008, pp 1704–1708.
- 60 I. Moreno, M. Avendano-Alejo, et al. Designing Light-Emitting Diode Arrays for Uniform Near-Field Irradiance. Appl. Opt. 2005, 45 (10), pp 2265–2272.
- 61 O. Kuckmann. High Power LED Arrays Special Requirements on Packaging Technology. Proc. SPIE, 2006, 6134, pp 613404-1–613404-8.
- 62 C. Lim, W. Jeung, and S. Choi. LED Packaging Using High Sag Rectangular Microlens Array. Proc. SPIE 2006, 6185, pp 618516-1–618516-7.
- 63 L. Trevisanello, M. Meneghini, et al. Accelerated Life Test of High Brightness Light Emitting Diodes. IEEE Trans. Devices Mater. Reliab. 2008, 8 (2), pp 304–311.
- 64 S. Buso, G. Spiazzi, et al. Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias. IEEE Trans. Devices. Mater. Reliab. 2008, 8(2), pp 312–322.
- 65 J. Hu, L. Yang, and M. W. Shin. Mechanism and Thermal Effect of Delamination in Light-Emitting Diode Packages. Microelectron J. 2007, 38, pp 157–163.
- 66 M. Meneghini, L. Trevisanello, et al. High Temperature Electro-Optical Degradation of InGaN/GaN HBLEDs. Microelectron J. 2007, 47, pp 1625–1629.
- 67 Y. Hsu, Y. Lin, et al. Failure Mechanisms Associated With Lens Shape of High-Power LED Modules in Aging Test. IEEE Trans. Electron. Dev. 2008, 55 (2), pp 689–694.
- 68 A. Christensen and S. Graham. Thermal Effects in Packaging High Power Light Emitting Diode Arrays. Appl. Thermal Eng. 2009, 29, pp 364–371.
- 69 Z. Z. Chen, P. Liu, et al. Junction Temperature and Reliability of High-Power Flip-Chip Light Emitting Diodes. Mater. Sci. Semicon. Process. 2007, 10, pp 206–210.
- 70 M. W. Shin and S. H. Jang. Thermal Analysis of High Power LED Packages Under the Alternating Current Operation. Solid-State Electron. 2012, 68, pp 48–55.
- 71 B. F. Fan, Y. Zhao, et al. Thermal Simulation Studies of High-Power Light Emitting Diodes, Advanced LEDs for Solid State Lighting. SPIE 2006, 6355, pp 63550D.
- 72 L. Kim, J. H. Choi, et al. Thermal Analysis of LED Array System with Heat Pipe. Thermochim. Acta 2007, 455, pp 21–25.
- 73 X. Luo and S. Liu. A Microjet Array Cooling System for Thermal Management of High-Brightness LEDs. IEEE Trans. Adv. Pack. 2007, 30 (3), pp 475–484.
- 74 X. Luo, W. Chen, et al. Experimental and Numerical Investigation of a Microjet-Based Cooling System for High Power LEDs. Heat Transfer Eng. 2008, 29 (9), pp 774–781.
- 75 S. Liu, J. Yang, et al. Structural Optimization of a Microjet Based Cooling System for High Power LEDs. Int. J. Therm. Sci. 2008, 47, pp 1086–1095.
- 76 C. Zweben. Advance in LED Packaging and Thermal Management Materials. Proc. SPIE 2008, 6910, pp 691018-1–691018-11.
- 77 C. Tsou and Y. S. Huang. Packaging Design with Thermal Analysis of LED on Silicon Substrate. NSTI-Nanotech 2005, 3, pp 512–516.
- 78 C. Tsou and Y. Huang. Silicon-Based Packaging Platform for Light-Emitting Diodes. IEEE Trans. Adv. Pack. 2006, 29 (3), pp 607–614.
- 79 J. Hu, L. Yang, and M. W. Shin. Thermal and Mechanical Analysis of High-Power LEDs with Ceramic Packages. IEEE Trans. Dev. Mater. Reliab. 2008, 8 (2), pp 297–303.
- 80 J. K. Park. H. D. Shin, et al. A Suggestion For High Power LED Package Based on LTCC. ECTC 2006, pp 1070–1075.
- 81 L. Yang, S. Jang, et al. Thermal Analysis of High Power GaN-based LEDs with Ceramic Package. Thermochim. Acta 2007, 455 (1–2), pp 95–99.
- 82 M. Arik, A. Setlur, et al. Chip to System Level Thermal Needs and Alternative Thermal Technologies for High Brightness LEDs. Trans. ASME 2007, 129, pp 328–338.
- 83 K. M. Kim, S. H. Shin, et al. Aluminium-Based Packaging Platform for LED Using Selectively Anodising Method. Electron. Lett. 2008, 44 (1).
- 84 N. Narendran, Y. Gu, et al. Solid-State Lighting: Failure Analysis of White LEDs. J. Cryst. Growth 2004, 268, pp 449–456.
- 85 H. Luo, J. K. Kim, et al. Analysis of High-Power Packages for Phosphor-Based White-Light-Emitting Diodes. Appl. Phys. Lett. 2005, 86, p 243505.
- 86 W. Mueller-Mach, G. O. Mueller, et al. High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides. IEEE J. Sel. Top. Quantum Electron. 2002, 8 (2), pp 339–345.
- 87 H. Wu, X. Zhang, et al. Three-Band White Light from Ingan-Based Blue LED Chip Precoated with Green/Red Phosphors. IEEE Photon. Technol. Lett. 2005, 17 (6), pp 1160–1162.
- 88 Z. Liu and S. Liu. Optical Analysis of Color Distribution in White LEDs with Various Packaging Methods. IEEE Photon. Technol. Lett. 2008, 20 (24), pp 2027–2029.
- 89
K. Yamada,
Y. Imai, and
K. Ishi.
Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor.
J. Light Vis. Env.
2003,
27 (2),
pp 70–14.
10.2150/jlve.27.70 Google Scholar
- 90 J. K. Kim, H. Luo, et al. Strongly Enhanced Phosphor Efficiency in Gainn White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup. J. Jpn. Appl. Phys. 2005, 44 (21), pp L649–L651.
- 91 N. Narendran and Y. Gu. Extracting Phosphor-Scattered Photons to Improve White LED Efficiency. Phys. Stat. Sol. (A) 2005, 202 (6), pp R60–R62.
- 92
S. Nayama and
K. Itoh.
Case Study on Combination of Fluorescent Materials for White LED to Obtain High Color Rendering Indexes.
J. Light Vis Env.
2006,
31 (1),
pp 39–42.
10.2150/jlve.30.39 Google Scholar
- 93 B. Fan, H. Wu, et al. Study of Phosphor Thermal-Isolated Packaging Technologies for High-Power White Light-Emitting Diodes. IEEE Photon. Technol. Lett. 2007, 19 (15), pp 1121–1123.
- 94
D. Lu and
C. P. Wong,
Materials for Advanced Packaging.
Springer:
New York, NY,
2009,
pp 629–680.
10.1007/978-0-387-78219-5 Google Scholar
- 95 Y. Zhou, N. Tran, Y. Lin, Y. He, and F. G. Shi. One-Component, Low-Temperature, and Fast Cure Epoxy Encapsulant with High Refractive Index for LED Applications. IEEE Trans. Adv. Pack. 2008, 31 (3), pp 484–489.
- 96 Y. Lin, J. You, Y. Lin, N. Tran, and F. G. Shi. Development of High Performance Optical Silicone for the Packaging of High Power LEDs. IEEE Trans. Components Pack. Technol. 2010, 33 (4), pp 761–766.
- 97 B. Yan, J. You, N. Tran, and F. G. Shi. Frank Influence of Die Attach Layer on Thermal Performance of High Power Light Emitting Diodes. IEEE Trans. Components Pack. Technol., 2010, 33 (4), pp 722–727.
- 98 N. Tran and F. G. Shi. Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes. J. Lightwave Technol. 2008, 26 (21–24), pp 3556–3559.
- 99 C. Guo, F. Gao, Y. Xu, et al. Efficient Red Phosphors Na(5)Ln(MoO4)(4): Eu3+ (Ln = La, Gd and Y) for White LEDs. J. Phys. D-Appl. Phys. 2009, 42 (9), p 095407.
- 100 C. Guo, L. Luan, F. G. Shi, et al. White-Emitting Phosphor Ca2BO3Cl:Ce3+, Eu2+ for UV Light-Emitting Diodes. J. Electrochem. Soc. 2009, 156, pp J125–J128.
- 101 C. Guo, L. Luan, X. Ding, et al. Luminescent Properties of Sr-5(PO4)(3) Cl:Eu2+, Mn2+ as a Potential Phosphor for UV-LED-Based White LEDs. Appl. Phys. B Lasers Opt. 2009, 95, pp 779–785.
- 102 J. You, N. Tran, Y. Lin, Y. He, and F. G. Shi. Phosphor-Concentration-Dependent Characteristics of White LEDs in Different Current Regulation Modes. J. Electron. Mater. 2009, 38, pp 761–766.
- 103 N. Tran, J. You, and F. G. Shi. Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED. J. Light. Technol. 2009, 27 (22), pp 5145–5150.
- 104 J. You, N. Tran, and F. G. Shi. Light Extraction Enhanced White Light-Emitting Diodes with Multi-Layered Phosphor Configuration. Opt. Express 2010, 18 (5), pp 5055–5060.
- 105 S. Yun, Y. He, N. Tran, and F. G. Shi. Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures. IEEE Photon. Technol. Lett. 2011, 23 (3), pp 137–139.
- 106 S. Yun, N. Tran, and F. G. Shi. Nonmonotonic Phosphor Size Dependence of Luminous Efficacy for Typical White LED Emitters. IEEE Photon. Technol. Lett. 2011, 23 (9), pp 552–554.
- 107 Y. Lin, J. You, N. Tran, and F. G. Shi. Packaging of Phosphor Based High Power White LEDs: Effects of Phosphor Concentration and Packaging Configuration. J. Electron. Pack., 2011, 133 (1), p 011009.
- 108 W. Feng and F. G. Shi. A New Switched-Capacitor Frequency Modulated Driver for Light Emitting Diodes. Rev. Sci. Instrum. 2007, 78 (11), pp 114701-1–114701-4.
- 109 W. Feng, F. G. Shi, Y. He, and B. Zhao. A Switched Supply Tunable Red-Green-Blue Light Emitting Diode Driver. Rev. Sci. Instrum. 2008, 79 (4), pp 044701-1–044701-5.
- 110
W. Feng,
F. G. Shi, and
Y. He.
Review of Recent Patents in AC LED Technology.
Recent Pat. Elect. Eng.
2010,
3 (3),
pp 186–192.
10.2174/1874476111003030186 Google Scholar
- 111 W. Feng, Y. He, and F. G. Shi. Investigation of LED Light Output Performance Characteristics under Different Alternating Current Regulation Modes. IEEE J. Sel. Top. Quantum Electron. 2011, 17 (3), pp 720–723.
- 112 B. Yan, N. Tran, J. You, and F. G. Shi. Can Junction Temperature Alone Characterize Thermal Performance of White LED Emitters? IEEE Photon. Technol. Lett. 2011, 23 (9), pp 555–557.
- 113 T. Taguchi. Present Status and Future Prospect of System and Design in White LED Lighting Technologies. Proc. SPIE 2004, 5530, pp 7–16.
- 114
Z. Liu,
S. Liu, et al.
Status and Prospects for Phosphor-Based White LED Packaging Front.
Optoelectron. China
2009,
2 (2),
pp 119–140.
10.1007/s12200-009-0011-2 Google Scholar
- 115 S. Pimputkar, J. S. Speck, et al. Prospects for LED Lighting. Nat. Photon. 2009, 3, pp 180–182.
- 116 J. Bell and S. Patterson. High Power Semiconductor Laser Sources for Defense and Security: A Review of Current Technology. Proc. SPIE 2007, 6738, pp 67380A-1–67380A-13.
- 117 D. F. Welch. A Brief History of High-Power Semiconductor Lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6 (6), pp 1470–1477.
- 118 R. W. Solarz, M. A. Emanuel, et al. Trends in Packaging of High Power Semiconductor Laser Bars. Laser Phys. 1998, 8 (3), pp 737–740.
- 119 X. Liu and W. Zhao. Technology Trend and Challenges in High Power Semiconductor Laser Packaging. ECTC 2009, pp 2106–2113.
- 120 C. Yan, G. Lu, and L. Qin. High-Power Vertical-Cavity Surface-Emitting Lasers Bonded with Efficient Packaging. Chinese Opt. Lett. 2010, 8 (6), pp 595–597.
- 121 Y. G. Soskind. Micro-Optics Packaging and Integration for High-Power Diode Laser Beam Combing. Proc. SPIE 2011, 7944, pp 79440T-1–79440T-7.
- 122 L. J. Missaggia, R. K. Juang, et al. High-Power Slab-Coupled Optical Waveguide Laser Array Packaging for Beam Combining. Proc. 2007, SPIE 6478, pp 647806-1–647806-12.
- 123 K. Boucke, J. Jandeleit, et al. Packaging and Characterization Equipment for High-Power Diode Laser Bars and VCSELs. Proc. SPIE 2001, 4285, pp 165–172.
- 124 S. Weib, E. Kaulfersch, et al. Design, Simulation and Technological Realization of a Reliable Packaging Concept for High Power Laser Bars. 1998, ECTC, pp 1395–1401.
- 125 M. Hempel, M. Ziegler, et al. Spectroscopic Analysis of Packaging Concepts for High-Power Diode Laser Bars. Appl. Phys. A 2012. 107, pp 371–377.
- 126 X. Wang, Z. Yuan, et al. Study of Mechanism of “Smile” in High Power Diode Laser Arrays and Strategies in Improving Near-Field Linearity. ECTC 2008, pp 837–842.
- 127 X. Liu, J. Wang, and P. Wei. Study of the Mechanism of Spectral Broadening in High Power Semiconductor Laser Arrays. ECTC 2008, pp 1005–1010.
- 128 A. R. Dhamdhere, A. P. Malshe, et al. Investigation of Reliability Issues in High Power Laser Diode Bar Packages. Microelectron. Reliab. 2003, 43, pp 287–295.
- 129 T. Q. Tien, A. Gerhardt, et al. Relaxation of Packaging-Induced Strains in Algaas-Based High-Power Diode Laser Arrays. Appl. Phys. Lett. 2005, 86, pp 101911-1–101911-13.
- 130 P. Martin, J. Landesman, et al. Packaging-Induced Stress Distribution in High Power Algaas Laser Diodes by Photoluminescence Mapping. Mater. Sci. Eng. B 2001, 80, pp 188–192.
- 131 B. Wu, Y. Li, et al. Packaging and Thermal Characteristics of Epi-Down Bonded Uncooled Pump Lasers. Proc. SPIE 2008, 7135, pp 71353A-1–71353A-9.
- 132 P. Loosen. Cooling and Packaging of High-Power Diode Lasers. Top. Appl. Phys. 2000, 78, pp 289–301.
- 133 X. Liu, M. H. Hu, et al. Thermal Management Strategies for High Power Semiconductor Pump Lasers. IEEE Trans. Components Pack. Technol. 2006, 29 (2), pp 268–276.
- 134 M. Leers and K. Boucke. Cooling Approaches for High Power Diode Laser Bars. ECTC 2008, pp 1011–1016.
- 135 D. Lorenzen, J. Bonhaus, et al. Micro Thermal Management of High Power Diode Laser Bars. IEEE Trans. Indus. Electron. 2001, 48 (2), pp 286–297.
- 136 L. J. Missaggia, R. K. Huang, et al. Packaging and Thermal Management of High-Power Slab-Coupled Optical Waveguide Laser Arrays for Beam Combining. ECTC 2008, pp 998–1004.
- 137 S. Weib, E. Zakel, and H. Reichl. Mounting of High Power Laser Diodes on Diamond Heatsinks. IEEE Trans. Component Pack. Manuf. Technol. A 1996, 19 (1), pp 46–53.
- 138 K. E. Goodson, K. Kurabayashi, et al. Improved Heat Sinking for Laser-Diode Arrays Using Microchannels in CVD Diamond. IEEE Trans. Components Pack. Manuf. Technol. B 1997, 20 (2), pp 104–109.
- 139 J. Wang, L. Kang, et al. High Power Semiconductor Laser Array Packaged on Micro Channel Cooler Using Gold-Tin Soldering Technology. Proc. SPIE 2012, 8241, pp 82410H-1–82410H-9.
- 140 W. Pittroff, G. Erbert, et al. Mounting of High Owier Laser Diodes on Boron Nitride Heat Sinks Using an Optimized Au/Sn Metallurgy. IEEE Trans. Adv. Pack. 2001, 24 (4), pp 434–441.
- 141 D. Schleuning, M. Griffin, et al. Robust Hard-Solder Packaging of Conduction Cooled Laser Diode Bars. Proc. SPIE 2007, 6456, pp 645604-1–645604-11.
- 142 M. Schroder, J. Meusel, et al. Comparative Performance Studies of Indium and Gold-Tin Packaged Diode Laser Bars. Proc. SPIE 2006, 6104, pp 610404-1–610404-12.
- 143
X. Liu,
R. W. Davis, et al.
A Study on the Reliability of Indium Solder Die Bonding of High Power Semiconductor Lasers.
J. Appl. Phys.
2006,
100,
pp 013104-1–013104-11.
10.1063/1.2209194 Google Scholar
- 144 X. Liu, K. Song, et al. A Metallization Scheme for Junction-Down Bonding of High-Power Semiconductor Lasers. IEEE Trans. Adv. Pack. 2006, 29 (3), pp 533–541.
- 145 A. Hodges, J. Wang, et al. A CTE Matched Hard Solder Passively Cooled Laser Diode Package Combined with Nxlt Facet Passivation Enables High Power High Reliability Operation. Proc. SPIE 2007, 6552, pp 65521E-1–65521E-9.
- 146 S. A. Merritt, P. Heim, et al. Controlled Solder Interdiffusion for High Power Semiconductor Laser Diode Die Bonding. IEEE Trans. Components Pack. Manuf. Technol. B 1997, 20 (2), pp 141–145.
- 147 Y. Lin, W. Liu, Y. Guo, and F. G. Shi. Reliability Issues of Low-Cost Overmolded Flip-Chip Packages. IEEE Trans. Adv. Pack. 2005, 28 (1), pp 79–88.
- 148 Y. Lin and F. G. Shi. Package Design and Materials Selection Optimization for Overmolded Flip Chip Packaging. IEEE Trans. Adv. Pack. 2006, 29 (3), pp 525–532.
- 149 S. Chungpaiboonpatana and F. G. Shi. Packaging of Copper/Low-K IC Devices: A Novel Direct Fine Pitch Gold Wirebond Ball Interconnects Onto Copper/Low-K Terminal Pads. IEEE Trans. Adv. Pack. 2004, 27 (3), pp 476–489.
- 150 S. Chungpaiboonpatana and F. G. Shi. Copper Trace Cracking of BGA Packages Under Die Perimeter: Combined Effect of Mold Compound and Die Attach Materials. IEEE Trans. Dev. Mater. Reliab. 2004, 4 (3), pp 467–481.
- 151 S. Chungpaiboonpatana and F. G. Shi. Process and Design Analysis for Ultrafine-Pitched Wiresweep Elimination in Advanced Copper Heat Spreader BGA Package. IEEE Trans. Adv. Pack. 2005, 28 (2), pp 278–287.
- 152 S. Chungpaiboonpatana and F. G. Shi. Copper Trace Cracking of BGA Packages Under Die Perimeter: Combined Effect of Mold Compound and Die Attach Materials. IEEE Trans. Dev. Mater. Reliab. 2004, 4 (3), pp 467–481.
- 153 S. Chungpaibnpatana and F. G. Shi. Advanced HiCTE Flip Chip Packaging of 90-Nm Cu/Low-K Chips: Underfill, Novel Terminal Pad Structures, and Processing Optimization. J. Electron. Mater. 2005, 34 (7), pp 977–993.
- 154 M. Yim and K. Paik. Design and Understanding of Anisotropic Conductive Films(ACF's) for LCD Packaging. IEEE Trans. Components Pack. Manuf. Technol. A 1998, 21 (2), pp 226–234.
- 155 I. Watanabe and Y. Gotoh. Invited Talk: Driver IC Packaging Technologies Using Anisotropic Conductive Films in Flat Panel Display. Dig. Techn. Papers SID Int. Symp. 2008, 39 (1), pp 240–243.
- 156 I. Watanble, Y. Gotoh, and K. Kobayashi. Packaging Technologies Using Anisotropic Conductive Films in FPDs, in SID Conference Record Int. Display Res. Conference, 2001, pp 553–556.
- 157
M. Takeichi.
Invited Paper: History of ACF Development and New Solutions.
Dig. Techn. Papers SID Int. Symp.
2008,
39 (1),
pp 244–248.
10.1889/1.3069635 Google Scholar
- 158 Y. Lin, T. Yang, et al. Fine Pitch Compliant Bump Interconnection for Flip Chip on Flexible Display Packaging by Anisotropic Conductive Film. ECTC 2007, pp 501–506.
- 159 Y. Yoshida, S. Imai, and M. Teragawa. Essential Technologies for Next Generation LCD-TVs, in Proceedings of the 15th International Display Workshop, 2008, 1, pp 71–74.
- 160 K. Bae, B. Seob, et al. Novel Bonding Technologies for Flexible LCDs with Mechanical Stability Under the Pressing and Bending Deformation. Proc. SPIE 2009, 7232.
- 161 Y. Yen and C. Lee. ACF Particle Distribution in COG Process. Microelectron. Reliab. 2011, 51 (3), pp 676–684.
- 162 H. Toshioka and M. Kobayashi. Development of Anisotropic Conductive Film with Straight-Chain-Like Nickel Nano Particles. SEI Techn. Rev. 2006, 62, pp 58–61.
- 163 G. Wang, Y. Lin, and G. Lin. A Novel Contact Resistance Model of Anisotropicconductive Film for FPD Packaging, Microsyst. Technol. 2007, 13, pp 1477–1482.
- 164 M. A. Uddin and H. P. Chan. Contact Resistance of Anisotropic Conductive Adhesive Film Based on Flip-Chip on Glass Packages. Rev. Adv. Mater. Sci. 2011, 27 (2), pp 151–157.
- 165 J. Yoon, I. Kim, and S. Lee. Measurement and Characterization of the Moisture-Induced Properties of ACF Package. J. Electron. Pack. 2009, 131, pp 021012-1–021012-8.
- 166 Y. B. Lee, C. Bailey, et al. Thermo-Mechanical Analysis of the Packaging Process for Micro-Electronic Displays, in 7th International Conference on Thermal Mechanical and Multiphysics Simulation and Experiments in Micro-eletronics and Micro-systems, EuroSime, 2006, pp 1–6.
- 167 T. Ikeda, W. Kim, and N. Miyazaki. Evaluation of the Delamination in a Flip Chip Using Anisotropic Conductive Adhesive Films Under Moisture/Reflow Sensitivity Test. IEEE Trans. Comp. Pack. Technol. 2006, 29 (3), pp 551–559.
- 168 Y. N. Cheng, S. Lee, and F. Y. Huang. Thermomechanical Response of Anisotropically Conductive Films. Int. J. Microcircuits Electron. Pack. 2001, 24 (4), pp 379–387.
- 169 K. Jang, J. Park, et al. A Study on Thermal Cycling (T/C) Reliability of Anisotropic Conductive Film (ACF) Flip Chip Assembly for Thin Chip-On-Board(COB) Packages. Microelectron. Reliab. 2012, 52 (6), pp 1174–1181.
- 170 J. Leu, C. Chang, et al. Effects of Localized Warpage and Stresss on Chip-On-Glass Packaging: Induced Light-Leakage Phenomenon in Mid-Sized TFT-LCD. J. Soc. Inform. Display 2012, 20 (1), pp 28–36.
- 171 C. Lin, T. Lin, et al. Failure Probability Estimation of Anisotropic Conductive Film Packages with Asymmetric Upper-To-Lower Pad Size and Misalignment Offsets. IEEE Trans. Dev. Mater. Reliab. 2011, 11 (3), pp 366–377.
- 172 B. Hu, C. Cai, et al. Failure Strength Study of Silicon Die and LCD Glass by FEA and Experiment. ICEPT-HDPT 2010, pp 217–219.
- 173 B. Xie, X. Shi, et al. Study of Several Key Reliability Problems of COG/ACF Interconnect in LCD Module. ECTC 2006, pp 330–337.
- 174
Y. Kuo and
T. Yang.
A Case Study on the Operator Allocation Decision for TFT-LCD Inspection and Packaging Process.
J. Manufact. Technol.
2006,
17 (3),
pp 363–375.
10.1108/17410380610648317 Google Scholar
- 175 Z. G. Chen and Y. Kim. A New COP Bonding Using Non-Conductive Adhesives for Lcds Driver IC Packaging. Displays 2006, 27, pp 130–135.
- 176 Y. Lin and J. Kang. A Novel Chip-On-Glass Method for Slim LCD Packaging. Microsystem Technol. 2011, 17 (4), pp 685–691.
- 177 U. Kang and Y. Kim. A New COG Technique Using Low Temperature Solder Bumps for LCD Driver IC Packaging Applications. IEEE Trans. Components Pack. Technol. 2004, 27 (2), pp 253–258.
- 178 R. Joshi. Chip on Glass-Interconnect For Row/Column Driver Packaging. Microelectron. J. 1998, 29, pp 343–349.
- 179 C. Jang, S. Han, et al. Issues in Assembly Process of Next-Generation Fine-Pitch Chip-On-Flex Packages for LCD Applications. IEEE Trans. Adv. Pack. 2007, 30 (1), pp 2–10.
- 180 G. A. Luiten and B. Ter Weeme. Thermal Management of LED-LCD TV Display. J. Soc. Inform. Display 2011, 19 (12), pp 931–942.
- 181 H. Lu, C. Bailey, et al. Optimisation of Heatsink Design for a Ruggedized LCD Display. ICEPT-HDP 2011, pp 492–496.
- 182 C. Tsai, A. H. Liu, et al. An Accommodative Approach Designed In Heat Dispersion of Fine-Pitch Chip-On-Film Package for LCD Applications, in 10th International Conference on Electron. Mater. Pack., 2008, pp 98–101.
- 183 R. G. Heideman, G. J. Veldhuis, et al. Fabrication and Packaging of Integrated Chemo-Optical Sensors. Sens. Actuat. B 1996, 35–36, pp 234–240.
- 184 C. G. Campbell, D. T. Laycak, W. Hoppes, N. T. Tran, and F. G. Shi. High Concentration Suspended Sediment Measurements Using a Continuous Fiber Optic In-Stream Transmissometer. J. Hydrology 2005, 311 (1–4), pp 244–253.
- 185 N. Tran, C. G. Campbell, and F. G. Shi. Study of Particle Size Effects on an Optical Fiber Sensor Response Examined with Monte Carlo Simulation. Appl. Opt. 2006, 45 (29), pp 7557–7566.
- 186 R. S. Fielder and K. L. Stinson-Bagby. High-Temperature Fiber Optics Sensors for Harsh Environment Applications. Proc. SPIE 2004, 5272, pp 190–196.
- 187 R. Li, W. Xiao, et al. Research on Packaging Technology for Fiber Optical Acoustic Sensor. Proc. SPIE 2009, 7381, p 73810U1-6.
- 188 V. P. Wnuk, A. Mendez, et al. Process for Mounting and Packaging of Fiber Bragg Grating Strain Sensors for Use in Harsh Environmental Applications, in SPIE Smart Structures Conference, 2005, 5758, pp 46–53.
- 189 L. N. Langley, M. D. Elkin, et al. Packaged Semiconductor Laser Optical Phase-Locked Loop for Photonic Generation, Processing and Transmission of Microwave Signals. IEEE Trans. Microw. Theor. Tech. 1999, 47 (7), pp 1257–1264.
- 190 F. Ho, V. Hung, et al. Ultralow-Cost Optical Transceiver Modules Based on Leadframe Plastic-Package Technology. ECTC 2005, pp 1032–1038.
- 191 D. Barrera, V. Finazzi, et al. Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications. IEEE Sensors J. 2012, 12 (1), pp 107–112.
- 192 H. K. Charles Jr. Technology Advances and Globalization in Electronic and Electro-Optical Packaging. Johns Hopkins APL Tech. Dig. 2008, 28 (1), pp 72–86.
- 193 M. W. Beranek. Fiber Optic Interconnect and Optoelectronic Packaging Challenges for Future Generation Avionics. Proc. SPIE 2007, 6478, pp 647809-1–647809-18.
- 194 C. Kopp, S. Bernabe, et al. Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling and Packaging. IEEE J. Sel. Top. Quantum Electron. 2011, 17 (3), pp 498–509.
- 195 J. Mirekes Jr., M. Comez, and M. A. Garcia. Packaging Investigation and Study for Optical Interfacing of Micro Components with Optical Fibers—Part I. Surperficies Y Vacio 2007, 20 (1), pp 21–33.
- 196 J. Mireles Jr., M. A. Garcia, et al. Optical Fiber Packaging for MEMS Interfacing. Proc. SPIE 2009, 7204.
- 197 Y. He, S. K. Mondal, and F. G. Shi. Design Optimization of Wedge-Shaped Lensed Fibers for Fiberlaser Coupling: Fresnel Reflection and Non-Gaussian Mode Effects. J. Light. Technol. 2003, 21 (10), pp 2271–2275.
- 198 Y. He and F. G. Shi. Improved Full-Vectorial Beam Propagation Method with High Accuracy for Arbitrary Optical Waveguides. IEEE Photon. Technol. Lett. 2003, 15, pp 1381–1383.
- 199 Y. He and F. G. Shi. Finite-Difference Imaginary-Distance Beam Propagation Method for Modeling of the Fundamental Mode of Photonic Crystal Fibers. Opt. Comm. 2003, 225 (1–3), pp 151–156.
- 200 Y. He and F. G. Shi. Ideal Microlens Design for Flatting the Equiphase Distribution of a Gaussian Laser Beam. IEEE Photon. Technol. Lett. 2004, 16 (1), pp 114–116.
- 201 Y. He and F. G. Shi. A Graded-Index Fiber Taper Design for Laser Diode to Single-Mode Fiber Coupling. Opt. Comm. 2006, 260 (1), pp 127–130.
- 202 F. Ho, W. Hung, et al. Small Size Fiber Optic Modules Based on Plastic Packaging Technology for Gibabit Speed Video Link Applications. ECTC 2006, pp 1101–1107.
- 203 G. Wu, A. R. Mirza, et al. Design and Use of Compact Lensed Fibers for Low-Cost Packaging of Optical MEMS Components. J. Micromech. Microeng. 2004, 14, pp 1367–1375.
- 204 J. H. Song, J. Zhang, et al. Si-Photonics Based Passive Devices Packaging and Module Performance. Opt. Express 2011, 19 (19), pp 18020–18028.
- 205 K. M. Nowark, H. J. Baker, et al. Low-Loss Passive Alignment of Single-Mode Fibers in Low-Temperature Cofired Ceramics Using CO2 Laser Fabricated U-Grooves. Appl. Opt. 2006, 45 (30), pp 9168–9175.
- 206 Y. C. Lin and W. C. Chuang. An Effective One-Axis Passive Packaging Method for a D Lens Fiber Collimator. Opt. Laser Technol. 2008, 40 (7), pp 978–981.
- 207 K. Ishikawa, J. Zhang, et al. An Integrated Micro-Optical System for Vcsel-To-Fiber Active Alignment. Sens. Actuat. A 2003, 103, pp 109–115.
- 208 J. Qiu and P. Zhong. Novel Packaging Method for Optical Fiber Collimator Based on Image Processing. Proc. SPIE 2009, 7511.
- 209 K. W. Cheng and M. A. Uddin. Optical Alignment Tolerances in Double-Side Irradiated Self-Written Waveguide-Induced Fiber Arrays Packages. Opt. Comm. 2010, 283 (13), pp 2669–2675.
- 210 J. Duan and Y. Zheng. Experimental Study of the Packaging Failure for Optical Fiber Arrays. Adv. Mater. Res. 2011, 295–297, pp 1594–1599.
- 211 J. H. Song, H. N. Fernando, et al. Practical Design of Lensed Fibers for Semiconductor Laser Packaging Using Laser Welding Technique. J. Light. Technol. 2009, 27 (11), pp 1533–1539.
- 212 Z. Tang, R. Zhang, and F. G. Shi. Effects of Angular Misalignment on Fiber-Optic Alignment Automation. Opt. Comm. 2001, 196, pp 173–180.
- 213 T. P. Kurzweg, A. Guez, and S. K. Bhat. Model-Based Optoelectronic Packaging Automation. IEEE J. Sel. Top. Quantum Electron. 2004, 10 (3), pp 445–454.
- 214 T. P. Kurzweq, A. Guez, and S. K. Bhat. Knowledge Based Design of Optoelectronic Packaging and Assembly Automation. Proc. SPIE 2003, 5264, pp 283–294.
- 215 C. Tseng and J. Wang. Automation of Multi-Degree-Of-Freedom Fiber-Optic Alignment Using a Modified Simplex Method. Int. J. Mach. Tools Manufact. 2005, 45, pp 1109–1119.
- 216 J. Chun, Y. Wu, et al. Fiber Optic Active Alignment Method Based on a Pattern Search Algorithm. Opt. Eng. 2006, 45 (4), pp 045005-1–045005-6.
- 217 M. Mizukami, M. Hirano, and K. Shinjo. Simultaneous Alignment of Multiple Optical Axes in a Multistage Optical System Using Hamiltonian Algorithm. Opt. Eng. 2001, 40 (3), pp 448–454.
- 218 R. Zhang and F. G. Shi. A Novel Algorithm for Fiber-Optic Alignment Automation. IEEE Trans. Adv. Pack. 2004, 27 (1), pp 173–178.
- 219 R. Zhang and F. G. Shi. Novel Fiber Optic Alignment Strategy Using Hamiltonian Algorithm and Matlab/Simulink. Opt. Eng. 2003, 43 (8), pp 2240–2245.
- 220 S. Mondal, J. Guo, Z. Tang, R. Zhang, and F.G. Shi. Novel Intelligent Automation Method for Out-Of-Plane Fiber-Laser Alignment in the Presence of Initial Non-Planar Misalignments: Three Point Approach. IEEE J. Light. Technol. 2003, 21 (9), pp 2061–2066.
- 221 R. Zhang and F. G. Shi. Manufacturing of Laser Diode Modules: Integration and Automation of Laser Diode-Fiber Alignment and RIN Characterization. IEEE Trans. Adv. Pack. 2003, 26, pp 128–132.
- 222 R. Zhang, J. Guo, and F. G. Shi. Fast Fiber-Laser Alignment: Beam Spot-Size Method. J. Light. Technol. 2005, 23 (3), pp 1083–1087.
- 223 Y. Lin, W. Liu, and F. G. Shi. Adhesive Joint Design for Minimizing Fiber Alignment Shift During UV Curing. IEEE Trans. Adv. Pack. 2006, 29 (3), pp 520–524.
- 224 Y. Lin, C. Eichele, and F. G. Shi. Effect of Welding Sequence on Welding-Induced-Alignment Distortion in Packaging of Butterfly Laser Diode Modules: Simulation and Experiment. J. Light. Technol. 2005, 23, pp 615–623.
- 225 Y. Lin and F. G. Shi. Minimization of Welding-Induced Alignment Distortion in Butterfly Laser Module Packages: A Study of Laser Pulse Shape. Opt. Eng. 2007, 46 (4), pp 44302-1–44302-5.
- 226 Y. Lin, J. Guo, A. Shapiro, and F. G. Shi. WIAD Minimization in Butterfly Laser Module Packages: Clip Design. IEEE Trans. Adv. Pack. 2007, 30 (3), pp 499–505.
- 227 K. I. Matthews, M. I. Shin, and N. Basavanhally. Introduction to the Issues on Optoelectronic Packaging. IEEE J. Sel. Top. Quantum Electron. 2006, 12 (5), p 921.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: