Abstract
The sections in this article are
- 1 Filtering
- 2 Design Methods
- 3 Finite Precision Effects and Filter Structures
- 4 Current Research and Practice
Bibliography
- 1
N. Wiener
R. E. A. C. Paley
Fourier Transforms in the Complex Domain,
Providence, RI:
American Mathematical Society,
1934.
10.1090/coll/019 Google Scholar
- 2 Y. H. Hu CORDIC-based VLSI architecture for digital signal processing, IEEE Signal Processing Magazine, 9 (3): 16–35, 1992.
- 3 J. Makhoul Linear prediction: a tutorial review, Proc. IEEE, 63: 561–580, 1975.
- 4 M. H. Hayes Statistical Digital Signal Processing and Modeling, New York: Wiley, 1996.
- 5 C. S. Burrus T. W. Parks Time domain design of recursive digital filters, IEEE Trans. Audio Electroacoust., 18: 137–141, 1970.
- 6 K. Steiglitz On the simultaneous estimation of poles and zeros in speech analysis. IEEE Trans. Acoust. Speech Signal Process., 25: 229–234, 1977.
- 7 K. Steiglitz L. E. McBride A technique for the identification of linear systems, IEEE Trans. Autom. Control, 10: 461–464, 1965.
- 8 A. I. Zverev Handbook of Filter Synthesis, New York: Wiley, 1967.
- 9 Digital signal processing committee, Programs for Digital Signal Processing, New York: IEEE Press, 1979.
- 10 MATLAB®, The Mathworks, Inc., User's Manual, Boston, 1997.
- 11
L. B. Jackson
Digital Filters and Signal Processing,
2nd ed.,
Boston:
Kluwer Academic Publishers,
1989.
10.1007/978-1-4615-3262-0 Google Scholar
- 12 L. R. Rabiner B. Gold Theory and Application of Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975.
- 13 A. G. Constantinides Spectral transformation for digital filters, Proc. IEE, 117: 1585–1590, 1970.
- 14 V. E. DeBrunner A. A. (Louis) Beex Sensitivity analysis of digital filter structures, Invited paper in SIAM J. Matrix Anal. Appl., 9: 106–125, 1988. This paper originally appeared in B. N. Datta, C. R. Johnson, M. A. Kaashoek, R. Plemmons, and E. Sontag (eds.) Linear Algebra in Signals, Systems, and Controls, Philadelphia, PA: SIAM, 1988.
- 15 A. V. Oppenheim A. S. Willsky I. T. Young Signals and Systems, Englewood Cliffs, NJ: Prentice-Hall, 1983.
- 16 A. V. Oppenheim R. W. Schafer Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
- 17 A. Fettweiss Wave digital filters: theory and practice, Proc. IEEE, 74: 270–327, 1986.
- 18 L. Gazsi Explicit formulas for lattice wave digital filters, IEEE Trans. Circuits Syst., 32: 68–88, 1985.
- 19 C. T. Mullis R. A. Roberts Synthesis of minimum roundoff noise fixed point digital filters, IEEE Trans. Circuits Syst., 23: 551–562, 1976.
- 20 C. T. Mullis R. A. Roberts Roundoff noise in digital filters: Frequency transformations and invariants, IEEE Trans. Acoust. Speech Signal Process., 24: 538–550, 1976.
- 21 S. Y. Hwang Minimum uncorrelated unit noise in state-space digital filtering, IEEE Trans. Acoust. Speech Signal Process., 25: 273–281, 1977.
- 22 L. B. Jackson A. G. Lindgren Y. Kim Optimal synthesis of second-order state-space structures for digital filters, IEEE Trans. Circuits Syst., 26: 149–153, 1979.
- 23 A. Antoniou Improved minimax optimisation algorithms and their application in the design of recursive digital filters. IEE Proc. G, Circuits, Devices and Syst., 138: 724–730, 1991.
- 24 R. Fletcher Practical Methods of Optimization, 2nd ed., New York: Wiley, 1987.
- 25 D. G. Luenberger Linear and Nonlinear Programming, 2nd ed., Reading, MA: Addison-Wesley, 1984.
- 26 C. Charalambous Design of 2-dimensional circularly-symmetric digital filters, IEE Proc. G. Electron. Circuits Syst., 129: 47–54, 1982.
- 27 C. Charalambous Acceleration of the least pth algorithm for minimax optimization with engineering applications, Math. Programming, 17: 270–297, 1979.
- 28 S.-C. Pei J.-J. Shyu Design of 1-D and 2-D IIR eigenfilters, IEEE Trans. Signal Process., 42: 962–966, 1996.
- 29 J.-H. Lee C.-K. Chen Recursive digital filter design in the complex domain using an efficient method, Proc. IEEE Conf. Custom Integrated Circuits, 5: 2429–2432, 1992.
- 30 S. Ellacott J. Williams Rational Chebyshev approximation in the complex plane, SIAM J. Numerical Anal., 13: 310–323, 1976.
- 31 Y. C. Lim J. H. Lee C. K. Chen R. H. Yang A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design, IEEE Trans. Signal Process., 40: 551–558, 1992.
- 32 J.-H. Lee S.-Y. Ku Minimax design of recursive digital filters with a lattice denominator, IEE Proc. Vision, Image and Signal Process., 143: 377–382, 1996.
- 33 Z. Hui D. Wang The application of neural nets: The design of recursive digital filters, In Proceedings of the China 1991 International Conference on Circuits Systems, 1991, pp. 549–551.
- 34 P. Thajchayapong K. Yammun A. Khunkitti Recursive digital filters with predetermined group delay and Chebyshev stopband attenuation, Electron. Lett., 24: 1547–1549, 1988.
- 35 P. Thajchayapong P. Lomtong A maximally flat group delay recursive digital filter with Chebyshev stopband attenuation, Proc. IEEE, 66: 255–257, 1978.
- 36 R. Unbehauen Recursive digital low-pass filters with predetermined phase or group and Chebyshev stopband attenuation, IEEE Trans. Circuits Syst., 28: 905–912, 1981.
- 37 S. N. Hazra Linear phase IIR filter with equiripple stopband, IEEE Trans. Acoust. Speech Signal Process., 31: 1047–1049, 1983.
- 38 R. Unbehauen IIR digital filters with equiripple stopband transmission, IEEE Trans. Acoust., Speech Signal Process., 33: 744–746, 1985.
- 39 A. Fettweis A simple design of maximally flat delay filters, IEEE Trans. Audio Electroacoust., 20: 112–114, 1972.
- 40 A. G. Deczky Recursive digital filters having equiripple group delay, IEEE Trans. Circuit Theory, 18: 664–669, 1971.
- 41 T. Trisuwannawat K. Dejhan F. Cheevasuvit A design technique of linear phase recursive digital filter with controllable magnitude at an arbitrary specified frequency, IEEE Int. Symp. Circuits Syst., 5: 2435–2438, 1991.
- 42 G. Gu B. A. Shenoi A novel approach to the synthesis of recursive digital filters with linear phase, IEEE Trans. Circuits Syst., 38: 602–612, 1992.
- 43
B. Jaworski
T. Saramaki
Linear phase IIR filters composed of two parallel allpass sections,
Proc. IEEE Int. Symp. Circuits Syst.,
2:
537–540,
1994.
10.1109/ISCAS.1994.409044 Google Scholar
- 44 S. Lawson A new direct design technique for ALP recursive digital filters, Proc. IEEE Int. Symp. Circuits Syst., 1: 499–502, 1993.
- 45 H. Song G. Gu Phase approximation via Remez algorithm. In Proceedings of the 27th Southeastern Symposium on System Theory, 1995, pp. 441–444.
- 46
D. Braess
Nonlinear Approximation Theory,
Amsterdam:
Springer-Verlag,
1986.
10.1007/978-3-642-61609-9 Google Scholar
- 47 V. S. Stojanovic S. V. Nikolic Direct design of transition Butterworth–Chebyshev recursive digital filters, Electron. Lett., 29: 286–287, 1993.
- 48 C. M. Rader B. Gold Digital filter design techniques in the frequency domain, Proc. IEEE, 55: 149–171, 1967.
- 49 J. J. Soltis M. A. Sid-Ahmed Direct design of Chebyshev-type recursive digital filters, Int. J. Electron., 70: 413–419, 1991.
- 50 S. Lawson Direct approach to design of PCAS filters with combined gain and phase specification, IEE Proc. Vis. Image Signal Process., 141: 161–167, 1994.
- 51 S. Lawson A. Wicks Design of efficient digital filters satisfying arbitrary loss and delay specifications, IEE Proc.-Circuits Dev. and Syst., 139: 611–620, 1992.
- 52 R. Gregorian G. C. Temes Design techniques for digital and analog all-pass circuits, IEEE Trans. Circuits Syst., 25: 981–988, 1978.
- 53 S. Erfani M. Ahmadi B. Khasnabish M. Shridhar Designing recursive digital filters by inverse Simpson's transform. In Proceedings of the 35th MWSCAS, 1992, pp. 942–944.
- 54 S. Torres Design and analysis of an adaptive digital notch filter, M.S. Thesis, Norman, OK: The University of Oklahoma, 1997.
- 55 M. Musa H. Al-Ahmad Optimisation of complex recursive digital filters operating in transient mode. In Proceedings of the IEE 15th SARAGA Colloquium Digital and Analogue Filters and Filtering Systems, 1995, pp. 16/1–5.
- 56 V. Tavsonoglu L. Thiele Optimal design of state-space digital filters by simultaneous minimization of sensitivity and roundoff noise. IEEE Trans. Circuits Syst., 31: 884–888, 1984.
- 57 D. V. B. Rao Analysis of coefficient quantization errors in state-space digital filters. IEEE Trans. Acoust. Speech Signal Process., 34: 131–139, 1986.
- 58 R. M. Godall A practical method for determining coefficient word length in digital filters, IEEE Trans. Signal Process., 40: 981–985, 1992.
- 59 J. B. Farison S. R. Kolla Relationship of singular value stability robustness bounds to spectral radius for discrete systems with application to digital filters, IEE Proc-G, 138: pp. 5–8, 1991.
- 60
D. Baez-Lopez
C. Cabanas-Villa
M. Hernandez-Apam
Design considerations for very low sensitivity and very low round-off noise recursive digital filters,
Proc. IEEE Pac. Rim Conf. Commun. Comput. Signal Process.,
2:
415–418,
1993.
10.1109/PACRIM.1993.407333 Google Scholar
- 61 S. Worthington L. E. Turner A method of evaluating the effects of signal quantization at arbitrary locations in recursive digital filters, IEEE Int. Symp. Circuits Syst., 1: 615–618, 1993.
- 62 G. Mollova Variance of quantization error at the output of recursive digital filter. In Proceedings of URSI International Symposium on Signal System Electronics, 1995, pp. 439–442.
- 63 T. C. Macedo, Jr. T. Laakso P. S. R. Diniz I. Hartimo Reformulation of Chang's criterion for the absence of limit cycles using bilinear transform, IEEE Int. Symp. Circuits Syst., 1: 388–391, 1991.
- 64 M. Price M. B. Sandler Performance of novel structures for high order recursive digital filters, IEE Col. Dig. & Anal. Filters Filtering Syst., 1993, 4/1–4.
- 65 M. B. Sandler Implementation of high order recursive filters as sub-filters, IEEE Int. Symp. Circuits Syst., 1: 599–602, 1993.
- 66 P. P. Vaidyanathan S. K. Mitra Y. Neuvo A new approach to the realization of low-sensitivity IIR digital filters, IEEE Trans. Acoust. Speech Signal Process., 34: 350–361, 1986.
- 67 X. Nie D. Raghuramireddy R. Unbehauen Allpass expansions of digital transfer functions, Electron. Lett., 27: 1438–1440, 1991.
- 68 T. Saramaki Generalizations of classical recursive digital filters and their design with the aid of a Remez-type algorithm, IEEE Int. Symp. Circuits Syst., 2: 549–552, 1994.
- 69 X. Nie D. Raghuramireddy R. Unbehauen Orthonormal expansion of stable rational transfer functions, Electron. Lett., 27: 1492–1494, 1991.
- 70 B. W. Bomar J. C. Hung Minimum roundoff noise digital filters with some power-of-two coefficients, IEEE Trans. Circuits Syst., 31: 833–840, 1984.
- 71 B. W. Bomar New second-order state-space structures for realizing low roundoff noise digital filters, IEEE Trans. Acoust. Speech Signal Process., 33: 106–110, 1985.
- 72 B. W. Bomar Computationally efficient low roundoff noise second-order state-space structures, IEEE Trans. Circuits Syst., 33: 35–41, 1986.
- 73 M. F. Fahmy G. A. Raheem Synthesis of fixed-point low roundoff noise digital filters with no limit cycle, IEEE Int. Symp. Circuits Syst., 2: 485–488, 1994.
- 74 L. B. Jackson An improved Martinet/Parks algorithm for IIR design with unequal numbers of poles and zeros, IEEE Trans. Signal Process., 42: 1234–1238, 1994.
- 75 A. A. (Louis) Beex V. E. DeBrunner Reducing sensitivities of direct form digital (sub) filter structures by increasing system order, IEEE Trans. Circuits Syst., 36: 438–442, 1989.
- 76 V. E. DeBrunner T. A. Tutunji A. R. Corzine Methods to design low sensitivity canonical digital filters using impulse response data, Proc. IEEE Int. Conf. Circuits Syst., 3: 445–448, 1996.
- 77 S.-H. Leung A realization of narrow-band recursive digital low-pass filter using highly quantized coefficients, IEEE Trans. Circuits Syst., 36: 618–622, 1989.
- 78 T. I. Laakso I. O. Hartimo Noise reduction in recursive digital filters using high-order error feedback, IEEE Trans. Signal Process., 40: 1096–1107, 1992.
- 79 B. Nowrouzian N. R. Bartley L. T. Bruton Design and DSP-chip implementation of a novel bilinear-LDI digital Jaumann Filter. IEEE Trans. Circuits Syst., 37: 695–706, 1990.
- 80 H. K. Kwan New form of delayed N-part recursive digital filters. Electron. Lett., 29: 736–738, 1993.
- 81 K. K. Dhar Very high speed real-time IIR digital filter structures: Suitable for VLSI implementation. Proc. IEEE Int. Symp. Circuits Syst., 1: 623–626, 1993.
Additional Reading
- C. B. Rorabaugh Digital Filter Designer's Handbook (Featuring C Routines), New York: McGraw-Hill, 1993.
- J. G. Proakis D. G. Manolakis Digital Signal Processing: Principles, Algorithms, and Applications, 3rd ed., Upper Saddle River, NJ: Prentice-Hall, 1996.
- S. J. Orfanidis Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1996.
- S. K. Mitra J. F. Kaiser (eds.) Handbook for Digital Signal Processing, New York: Wiley, 1993.
In addition to the references used and listed above, the author has found the following material to be useful in the design of recursive digital filters. The references are listed in no particular order.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: