Mis, Mim, and Msm Structures
Durgamadhab Misra,
Durgamadhab Misra
New Jersey Institute of Technology, Newark, NJ
Search for more papers by this authorDurgamadhab Misra,
Durgamadhab Misra
New Jersey Institute of Technology, Newark, NJ
Search for more papers by this authorFirst published: 27 December 1999
Abstract
The sections in this article are
- 1 Device Characterization
- 2 Device Fabrication
- 3 Polarity Dependence
- 4 Immunity from Plasma Damage
- 5 Summary
- 6 Acknowledgment
Bibliography
- 1 C. Gabriel J. McVittie How plasma etching damages thin gate oxides, Solid State Technol., 35: 81–87, 1992.
- 2 H. Shin et al. Plasma etching charge-up damage to thin oxides, Solid State Technol., 36: 29–30, 1993.
- 3 W. Greene J. Kruger G. Kooi Magnetron etching of polysilicon: Electrical damage J. Vac. Sci. Technol. B, 9: 366–369, 1991.
- 4 S. Krishnan et al. Inductively coupled plasma (ICP) metal etch damage to 35–60 Å gate oxide, IEDM Tech Dig., 731–734, 1996.
- 5 H. C. Shin C. Hu Thin gate oxide damage due to plasma processing, Semicond. Sci. Technol., 11: 463–473, 1996.
- 6 S. Fang J. McVittie Thin-oxide damage from gate charging during plasma processing, IEEE Electron Device Lett., 13: 288–290, 1992.
- 7 K. P. Cheung C -P. Chang Plasma-charging damage: A physical model, J. Appl. Phys., 75 (9): 4415–4426, 1994.
- 8 K. P. Cheung A new method to monitor gate-oxide reliability degradation, 1995, Tech. Digest, IEEE Symp. VLSI Technol., pp. 83–84, 1995.
- 9 T. B. Hook et al. A comparison of hot-electron and Fowler-Nordheim characterization of charging events in a 0.5 μm CMOS technology, Proc. IEEE 1st Int. Symp. Plasma Process-Induced Damage, 1996, pp. 164–167, 1996, North California Chapter of American Vacuum Society, Sunnyvale, CA.
- 10 K. R. Mistry B. J. Fishbein B. S. Doyle Effect of plasma-induced charging damage on n-channel and p-channel MOSFET hot carrier reliability, 1994 IEEE/IRPS, pp. 42–47, 1994.
- 11 K. Noguchi K. Okumura The effect of plasma-induced oxide and interface degradation on hot carrier reliability, 1994 IEEE/IRPS, pp. 232–237, 1994.
- 12 D. Park C. Hu Plasma charging damage on ultrathin gate oxides, IEEE Electron Device Lett., 19 (1): 1–3, 1998.
- 13 K. K. Hung et al. A physics-based MOSFET noise model for for circuit simulators, IEEE Trans. Electron Devices, 37: 1323–1333, 1990.
- 14 K. P. Cheung An efficient method for plasma-charging damage measurement, IEEE Electron Dev. Lett., 15 (11): 460–462, 1994.
- 15 H. Shin et al. Plasma etching charge-up damage to thin oxides, Solid State Technol., 29–30, August 1993.
- 16 Y. Kawamoto MOS gate insulator breakdown caused by exposure to plasma, Proceedings of the Dry Process Symposium, pp. 132–xxx, 1985.
- 17 Y. Nissan-Cohen et al. High field current induced-positive charge transients in SiO2, J. Appl. Phys., 54: 5793–5800, 1983.
- 18 D. A. Buchanan D. J. DiMaria Interface and bulk trap generation in metal-oxide-semiconductor capacitors, J. Appl. Phys., 67 (12): 7439–7452, 1990.
- 19 D. J. DiMaria D. Arnold E. Cartier Degradation and breakdown of silicon dioxide films on silicon, Appl. Phys. Lett., 61 (19): 2329–2331, 1992.
- 20 D. J. Dumin et al. High field emission related thin oxide wearout and breakdown, 1994 IEEE/IRPS, pp.143–153, 1994.
- 21 W. K. Meyer D. L. Cook Model for oxide wear out due to charge trapping, 1983 IEEE/IRPS, pp. 242–247, 1983.
- 22 J. T. Hsu X. Li C. R. Viswanathan Microelectron. Eng., 22: 285, 1993.
- 23 Z. J. Ma H. Shin P. K. Ko C. Hu Effects of plasma charging damage on the noise performance of thin-oxide MOSFET's, IEEE Electron Dev. Lett., 15: 224–226, 1994.
- 24 P. M. Lenahan P. V. Dressendorfer An electron spin resonance study of radiation-induced electrically active paramagnetic centers at the Si/SiO2 interface, J. Appl. Phys., 54: 1457–1460, 1983.
- 25 E. Cartier J. H. Stathis A. A. Buchanan Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen, Appl. Phys. Lett., 63 (11): 1510–1512, 1993.
- 26 J. H. Stathis E. Cartier Atomic hydrogen reactions with Pb centers at the (100) Si/SiO2 interface, Phys. Rev. Lett., 72 (17): 2745–2748, 1994.
- 27 F. Shone et al. Gate oxide charging and its elimination for metal antenna capacitor and transistor in VLSI CMOS double layer metal technology, Tech. Digest, IEEE Symposium on VLSI Technology, pp. 73–74, 1989.
- 28 W. Lukaszek M. J. Rendon D. E. Dyer Device effects and charging damage: Correlations between SPIDER-MEM and CHARM-2 Proceedings of the 4th International Symposium on Plasma Process-Induced Damage (Northern California Chapter of the American Vacuum Society), Monterey, CA, 1999, pp. 200–203.
- 29 P. K. Aum et al. Controlling plasma charge damage in advanced semiconductor manufacturing: Challenge of small feature size device, large chip size, and large wafer size, IEEE Trans. Electron Devices, 45: 722–730, 1998.
- 30 Y. Lu C. T. Sah Two pathways of positive oxide-charge buildup during electron tunneling into silicon dioxide film, J. Appl. Phys., 76: 4724–4727, 1994.
- 31 J. H. Shiue J. Y. Lee T. S. Chao A study of interface trap generation by Fowler-Nordheim and substrate-hot-carrier for 4-nm thick gate oxides IEEE Trans. Electron Devices, 46: 1705–1710, 1999.
- 32 For a review see L. K. Han et al., Recent developments in ultra thin oxynitride gate dielectric, Microelectron. Eng., 28: 89–96, 1995.
- 33 S. Krishnan et al. Assessment of charge-induced damage to ultra-thin gate MOSFETs, IEDM Tech. Dig., 445–448, 1997.
- 34 C. T. Liu et al. Light nitrogen implant for preparing thin-gate oxides, IEEE Electron Device Lett., 18 (3): 105–107, 1997.
- 35 D. Misra Charge-trapping properties of gate oxide grown on nitrogen-implanted silicon substrate, Appl. Phys. Lett., 75 (15): 2283–2285, 1999.
- 36 T. Hori Inversion layer mobility under high normal field in nitrided-oxide MOSFETs, IEEE Trans. Electron Devices, ED-37: 2058–2069, 1990.
- 37 D. Misra S. Kishore Gate oxides grown on deuterium implanted silicon substrate, IEEE/ECS Electrochem. Solid-State Lett., 2: 637–639, 1999.
- 38 D. Misra R. K. Jarwal Metal-oxides-semiconductor diodes on deuterium-implanted silicon substrate, Appl. Phys. Lett., 76 (21): 3076–3078, 2000.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: