Confronting the COVID-19 Pandemic: December 2019–May 2020
Roland E. Dolle
Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
Search for more papers by this authorDonald J. Abraham
Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
Search for more papers by this authorBryan Norman
Norman Drug Discovery Training and Consulting, Indianapolis, IN, USA
Search for more papers by this authorMichael Kinch
Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
Search for more papers by this authorRoland E. Dolle
Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
Search for more papers by this authorDonald J. Abraham
Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
Search for more papers by this authorBryan Norman
Norman Drug Discovery Training and Consulting, Indianapolis, IN, USA
Search for more papers by this authorMichael Kinch
Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
Search for more papers by this authorAbstract
The SARS-CoV-2 (COVID-19) pandemic was officially declared by the World Health Organization on 11 March, 2020. From the initial public reports from China in December 2019, the contagion blazed its way from ground zero in Wuhan, China into 165 countries. The health disaster caught the planet by surprise. At the time of this writing, 6.6 million COVID-19 cases were confirmed worldwide. Central and South America are the latest hotspots. Utilizing state-of-the-art science and technology, industry, government, and academic enterprises internationally are engaged in a monumental campaign to combat and eliminate the viral threat. Small-molecule therapeutics discovery largely by way of drug repurposing and accelerated vaccine development are at the forefront of this campaign. Within five months time, 500 unique therapeutic agents have advanced into development, >150 clinical trials initiated, and seven agents authorized for emergency use. This article presents a snapshot of these activities as of 29 May 2020.
References
- 1Scudellari, M. (2020). The sprint to solve coronavirus protein structures – and disarm them with drugs. Nat. Res. News (15 May).
- 2Hamner, L., Dubbel, P., Capron, I. et al. (2020). High SARS-CoV-2 attack rate following exposure at a choir practice – Skagit County, Washington, March 2020. Center for Disease Center Weekly Morbidity and Mortality Weekly Report (MMWR). 69, pp. 606–610.
- 3Katsnelson, A. (2020). What we know about the novel coronavirus's proteins. Chem. Eng. News (20 April), pp. 19–21.
- 4Forster, P., Forster, L., Renfrew, C., and Forster, M. (2020). Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. U.S.A. 117: 9241–9243. doi: 10.1073/pnas.20004999117.
- 5Howes, L. (2020). Another coronavirus drug target image. Chemical and Engineering News (20 April), p. 4.
- 6Jarvis, L. M. (2020). Big pharma's quiet effort to find new coronavirus antivirals. Chem. Eng. News (11 May), pp. 20–22.
- 7Grady, D. (2020). Moderna's coronovirus vaccine trial shows promising early results. New York Times (23 May).
- 8Meng, Y., Nicholas, C.W., Xueyong, Z., Chang-Chun, D.L., Ray, T.Y.S., Huibin, L.V., Mok, C.K.P., and Wilson, I.A. (2020). A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368: 630–633. doi: 10.1126/science.abb7269.
- 9Wu, F., Zhao, S., Yu, B. et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579: 265–269. doi: 10.1038/s41586-020-2008-3.
- 10Wrapp, D., Wang, N., Corbett, K.S. et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260–1263. doi: 10.1126/science.abb2507.
- 11Boerner, L.B. (2020). Cell studies follow up on previous SARS-CoV-2 study. Chem. Eng. News (11 May), p. 5.
- 12Gordon, D.E., Jang, G.M., Bouhaddou, M. et al. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583: 459–468. doi: 10.1038/s41586-020-2286-9.
- 13Watanabe, Y., Allen, J.D., Wrapp, D., McLellan, J.S., and Crispin, M. (2020). Site-specific analysis of the SARS-CoV-2 glycan shield. doi: 10.1101/2020.03.26.010322v1.
- 14Parastoo, A. et al. (2020). Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. doi: 10.1101/2020.04.01.020966.
- 15Hao, Y. (2020). Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins using high-resolution mass spectrometry. doi: 10.1101/2020.03.28.013276.
- 16Fung, T.S. and Liu, D.X. (2019). Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73: 529–557. doi: 10.1146/annurev-micro-020518-115759.
- 17Lau, S.K.P., Luk, H.K.H., Wong, A.C.P. et al. (2020). Possible bat origin of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 26: doi: 10.3201/eid2607.200092.
- 18Xiao, K., Zhai, J., Feng, Y. et al. (2020). Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583: 286–289. doi: 10.1038/s41586-020-2313-x.
- 19Gandhi, M., Yokoe, D.S., and Havlir, D.V. (2020). Asymptomatic transmission, the Achilles' heel of current strategies to control Covid-19. N. Engl. J. Med. 382: 2158–2160. doi: 10.1056/NEJMe2009758.
- 20Guan, W.J., Ni, Z.Y., Hu, Y. et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382: 1708–1720. doi: 10.1056/NEJMoa2002032.
- 21Richardson, S., Hirsch, J.S., Narasimhan, M. et al. (2020). Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 323: 2052–2059. doi: 10.1001/jama.2020.6775 [Published correction appears in DOI: 10.1001/jama.2020.7681].
- 22Ottestad, W., Seim, M., and Mæhlen, J.O. (2020). COVID-19 with silent hypoxemia. Tidsskr. Nor. Laegeforen. 140: doi: 10.4045/tidsskr.20.0299.
- 23Bellosta, R., Luzzani, L., Natalini, G. et al. (2020). Acute limb ischemia in patients with COVID-19 pneumonia. J. Vasc. Surg. (S0741-5214): 31080–31086. doi: 10.1016/j.jvs.2020.04.483.
- 24Mullins, E., Evans, D., Viner, R.M., O'Brien, P., and Morris, E. (2020). Coronavirus in pregnancy and delivery: rapid review. Ultrasound Obstet. Gynecol. 55: 586–592. doi: 10.1002/uog.22014.
- 25Singhal, T.A. (2020). Review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 87: 281–286. doi: 10.1007/s12098-020-03263-6.
- 26Lapostolle, F., Schneider, E., Vianu, I. et al. (2020). Clinical features of 1487 COVID-19 patients with outpatient management in the Greater Paris: the COVID-call study. Intern. Emerg. Med. 15: 813–817. doi: 10.1007/s11739-020-02379-z.
- 27Yang, R., Gui, X., and Xiong, Y. (2020). Comparison of clinical characteristics of patients with asymptomatic versus symptomatic coronavirus disease 2019 in Wuhan, China. JAMA Netw. Open. 3: e2010182. doi: 10.1001/jamanetworkopen.2020.10182.
- 28Hamer, M., Kivimäki, M., Gale, C.R., David, B.G. et al. (2020). Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav. Immun. 87: 184–187. doi: 10.1016/j.bbi.2020.05.059.
- 29Zhou, F., Yu, T., Du, R. et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395: 1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
- 30Kuno, T., Takahashi, M., Obata, R., and Maeda, T. (2020). Cardiovascular comorbidities, cardiac injury and prognosis of COVID-19 in New York City. Am. Heart J. 226: 24–25. doi: 10.1016/j.ahj.2020.05.005.
- 31 Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html (accessed 12 May 2020).
- 32Matsushita, K., Ding, N., Kou, M. et al. (2020). The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: a systematic review and meta-analysis. doi: 10.1101/2020.04.05.20054155.
- 33Grasselli, G., Zangrillo, A., Zanella, A. et al. (2020). Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 323: 1574–1581. doi: 10.1001/jama.2020.5394.
- 34Usher, K., Bhullar, N., Durkin, J., Gyamfi, N., and Jackson, D. (2020). Family violence and COVID-19: increased vulnerability and reduced options for support. Int. J. Ment. Health Nurs. 29 (4): 549–552. doi: 10.1111/inm.12735.
- 35Zhonghua, L., Xing, B., and Xue, Z.Z. (2020). Epidemiology working group for NCIP epidemic response. 41: 145–151. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003.
- 36Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H.K., Morgan, R., and Klein, S.L. (2020). Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 11: 9. doi: 10.1186/s13293-020-00304-9.
- 37Klein, S. and Flanagan, K. (2016). Sex differences in immune responses. Nat. Rev. Immunol. 2016 (16): 626–638. doi: 10.1038/nri.2016.90.
- 38Gausman, J. and Langer, A. (2020). Sex and gender disparities in the COVID-19 pandemic. J. Women's Health (Larchmt) 29: 465–466. doi: 10.1089/jwh.2020.8472.
- 39Wenham, C., Smith, J., and Morgan, R. (2020). Gender and COVID-19 working group. COVID-19: the gendered impacts of the outbreak. Lancet 395: 846–848. doi: 10.1016/S0140-6736(20)30526-2.
- 40Price-Haywood, E.G., Burton, J., Fort, D., and Seoane, L. (2020, 2020). Hospitalization and mortality among black patients and white patients with Covid-19. N. Engl. J. Med. doi: 10.1056/NEJMsa2011686.
- 41Subbaraman, N. (2020). How to address the coronavirus's outsized toll on people of colour. Nature 581: 366–367. doi: 10.1038/d41586-020-01470-x.
- 42 COVID-19 in racial and ethnic minority groups. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/racial-ethnic-minorities.html (accessed 4 April 2020).
- 43Elizabeth Fernandez, E. and Weiler, N. (2020). Initial results of mission district COVID-19 testing announced latinx community, men and economically ulnerable are at highest risk. Patient Care https://www.ucsf.edu/news/2020/05/417356/initial-results-mission-district-covid-19-testing-announced.
- 44Khansa, A., Sebhat, E., and Wen-Chih, W. (2020). Association of poor housing conditions with COVID-19 incidence and mortality across US counties. doi: 10.1101/2020.05.28.20116087.
- 45Guha, J.B., Amit, D., and Addison, D. (2020). Community and socioeconomic factors associated with COVID-19 in the United States: zip code level cross sectional analysis. doi: 10.1101/2020.04.19.20071944.
- 46 Louisiana Department of Health. https://ldh.la.gov/coronavirus/ (accessed 30 April 2020).
- 47Taylor, C., Kahn, R. et al. (2020). U.S. county-level characteristics to inform equitable COVID-19 response. doi: 10.1101/2020.04.08.20058248.
- 48Burki, T. (2020). Prisons are “in no way equipped” to deal with COVID-19. Lancet 395: 1411–1412. doi: 10.1016/S0140-6736(20)30984-3.
- 49Mason, R.J. (2020). Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 55: doi: 10.1183/13993003.00607-2020.
- 50Shereen, M.A., Khan, S., Kazmi, A., Bashir, N., and Siddique, R. (2020). COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24: 91–98. doi: 10.1016/j.jare.2020.03.005.
- 51Yang, Y., Shen, C., Li, J. et al. (2020). Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. doi: 10.1101/2020.03.02.20029975.
- 52Menter, T., Haslbauer, J.D., Nienhold, R. et al. (2020). Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. doi: 10.1111/his.14134.
- 53Bryce, C., Grimes, Z., Elisabet Pujadas, E. et al. (2020). Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. doi: 10.1101/2020.05.18.20099960.
- 54Wang, D., Hu, B., C, H. et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323: 1061–1069. doi: 10.1001/jama.2020.1585.
- 55Ankita, K.A. and Saxena, S.K. (2020). COVID-19: an ophthalmological update. In: Coronavirus Disease 2019 (COVID-19). Medical Virology: From Pathogenesis to Disease Control (ed. S. Saxena). Singapore: Springer. doi: 10.1007/978-981-15-4814-7_8.
10.1007/978‐981‐15‐4814‐7_8 Google Scholar
- 56Han, C., Duan, C., Zhang, S. et al. (2020). Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing and outcomes. Am. J. Gastroenterol. 115: 916–923. doi: 10.14309/ajg.0000000000000664.
- 57Cha, M.H., Regueiro, M., and Sandhu, D.S. (2020). Gastrointestinal and hepatic manifestations of COVID-19: a comprehensive review. World J. Gastroenterol. 26: 2323–2332. doi: 10.3748/wjg.v26.i19.2323.
- 58Menni, C., Valdes, A.M., Freidin, M.B. et al. (2020). Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 26: 1037. doi: 10.1038/s41591-020-0916-2.
- 59Asadi-Pooya, A.A. and Simani, L. (2020). Central nervous system manifestations of COVID-19: a systematic review. J. Neurol. Sci. 413: 116832. doi: 10.1016/j.jns.2020.116832.
- 60Liu, K., Pan, M., Xiao, Z., and Xu, X. (2020). Neurological manifestations of the coronavirus (SARS-CoV-2) pandemic 2019–2020. J. Neurol. Neurosurg. Psychiatry 91: 669–670. doi: 10.1136/jnnp-2020-323177.
- 61Gupta, A.K., Jneid, H., Addison, D. et al. (2020). Current perspectives on Coronavirus 2019 (COVID-19) and cardiovascular disease: a white paper by the JAHA. J. Am. Heart Assoc. 9: e017013. doi: 10.1161/JAHA.120.017013.
- 62Sattar, N., McInnes, I.B., and McMurray, J.J.V. (2020). Obesity a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation 142: 4–6. doi: 10.1161/CIRCULATIONAHA.120.047659.
- 63Shi, S., Qin, M., Cai, Y. et al. (2020). Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur. Heart J. 41: 2070. doi: 10.1093/eurheartj/ehaa408.
- 64Anand, P., Puranik, A., Aravamudan, M., Venkatakrishnan, A.J., and Soundararajan, V. (2020). SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. elife 9: e58603. doi: 10.7554/eLife.58603.
- 65Gawande, A. https://www.newyorker.com/science/medical-dispatch/amid-the-coronavirus-crisis-a-regimen-for-reentry (accessed 13 May 2020).
- 66Guy, R.K., DiPaola, R.S., Romanelli, F., and Dutch, R.E. (2020). Rapid repurposing of drugs for COVID-19. Science 368: 829–830. doi: 10.1126/science.abb9332.
- 67Thanh Le, T., Andreadakis, Z., Kumar, A. et al. (2020). The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 19: 305–306. doi: 10.1038/d41573-020-00073-5.
- 68Mullard, A. (2020). COVID-19 vaccine development pipeline gears up. www.thelancet.com. 395: 1751. doi: 10.1016/S0140-6736(20)31252-6.
- 69Harrison, C. (2020). Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol. 38: 379–381. doi: 10.1038/d41587-020-00003-1.
- 70Shereen, M.A., Khan, S., Kazmi, A., Bashir, N., and Siddique, R. (2020). COVID-19 infection: origin, transmission, and characteristics of human Coronaviruses. J. Adv. Res. 24: 91–98. doi: 10.1016/j.jare.2020.03.005.
- 71Sanders, J.M., Monogue, M.L., Jodlowski, T.Z., and Cutrell, J.B. (2020). Pharmacologic treatments for Coronavirus Disease 2019 (COVID-19): a review. JAMA 323 (18): 1824–1836. doi: 10.1001/jama.2020.6019.
- 72Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A. et al. (2020). SARS-CoV-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271–280.e8. doi: 10.1016/j.cell.2020.02.052.
- 73Tang, T., Bidon, M., Jaimes, J.A., Whittaker, G.R., and Daniel, S. (2020). Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir. Res. 178 (March): 104792. doi: 10.1016/j.antiviral.2020.104792.
- 74Muramatsu, T., Takemoto, C., Kim, Y.T., Wang, H., Nishii, W., Terada, T., Shirouzu, M., and Yokoyama, S. (2016). SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. Sci. U.S.A. 113 (46): 12997–13002. doi: 10.1073/pnas.1601327113.
- 75Dulin, D., Arnold, J.J., van Laar, T., Oh, H.S., Lee, C., Perkins, A.L., Harki, D.A., Depken, M., Cameron, C.E., and Dekker, N.H. (2017). Signatures of nucleotide analog incorporation by an RNA-dependent RNA polymerase revealed using high-throughput magnetic tweezers. Cell Rep. 21 (4): 1063–1076. doi: 10.1016/j.celrep.2017.10.005.
- 76Jose, R.J. and Manuel, A. (2019). COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir. Med. 2020: 2019–2020. doi: 10.1016/S2213-2600(20)30216-2.
10.1016/S2213‐2600(20)30216‐2 Google Scholar
- 77Moore, J.B. and June, C.H. (2020). Cytokine release syndrome in severe COVID-19. Science 368 (6490): 473–474. doi: 10.1126/science.abb8925.
- 78Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Nunneley, J.W., Barnard, D., Pöhlmann, S., McKerrow, J.H., Renslo, A.R. et al. (2015). Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 116: 76. doi: 10.1016/j.antiviral.2015.01.011.
- 79Hoffmann, M., Schroeder, S., Kleine-Weber, H., Müller, M.A., Drosten, C., and Pöhlmann, S. (2020). Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob. Agents Chemother. 2 (April): 1–7. doi: 10.1128/AAC.00754-20.
10.1128/AAC.00754‐20. Google Scholar
- 80Uno, Y. (2020). Camostat mesilate therapy for COVID-19. Intern. Emerg. Med. 0123456789: 10–11. doi: 10.1007/s11739-020-02345-9.
10.1007/s11739‐020‐02345‐9 Google Scholar
- 81Yamamoto, M., Kiso, M., Sakai-Tagawa, Y., et al. (2020). The anticoagulant Nafamostat potently inhibits SARS-CoV-2 S Protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. 12: 629. doi: 10.3390/v12060629.
- 82Kadam, R.U. and Wilson, I.A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug arbidol. Proc. Natl. Acad. Sci. U.S.A. 114 (2): 206–214. doi: 10.1073/pnas.1617020114.
- 83Wang, Z., Yang, B., Li, Q., Wen, L., and Zhang, R. (2020). Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin. Infect. Dis. 71: 769–777. doi: 10.1093/cid/ciaa272.
- 84Lian, N., Xie, H., Lin, S., Huang, J., Zhao, J., and Lin, Q. (2020). Umifenovir treatment is not associated with improved outcomes in patients with Coronavirus disease 2019: a retrospective study. Clin. Microbiol. Infect. 26: 917. doi: 10.1016/j.cmi.2020.04.026.
- 85Flexner, C. (1998). HIV-protease inhibitors. N. Engl. J. Med. 338: 1281–1292. doi: 10.1056/NEJM199804303381808.
- 86Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., and Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 368 (6489): 409–412. doi: 10.1126/science.abb3405.
- 87De Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., Van Nieuwkoop, S., Bestebroer, T.M., Van Den Hoogen, B.G., Neyts, J., and Snijder, E.J. (2014). Screening of an FDA-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome Coronavirus replication in cell culture. Antimicrob. Agents Chemother. 58 (8): 4875–4884. doi: 10.1128/AAC.03011-14.
- 88Choy, K.T., Wong, A.Y.L., Kaewpreedee, P., Sia, S.F., Chen, D., Hui, K.P.Y., Chu, D.K.W., Chan, M.C.W., Cheung, P.P.H., Huang, X. et al. (2020). Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 178 (March): 104786. doi: 10.1016/j.antiviral.2020.104786.
- 89Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M. et al. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 382 (19): 1787–1799. doi: 10.1056/NEJMoa2001282.
- 90Li, Y., Xie, Z., Lin, W., Cai, W., Wen, C., Guan, Y., Mo, X., Wang, J., Wang, Y., Peng, P., Chen, X., Hong, W., Xiao, G., Liu, J., Zhang, L., Hu, F., Zhang, F., Deng, X., & Li, L. (2020). Efficacy and safety of Lopinavir/Ritonavir or Arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med (New York, N.Y.). doi: 10.1016/j.medj.2020.04.001. Advance online publication. https://doi.org/10.1016/j.medj.2020.04.001
- 91Eyer, L., Nencka, R., de Clercq, E., Seley-Radtke, K., and Růžek, D. (2018). Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir. Chem. Chemother. 26: 1–28. doi: 10.1177/2040206618761299.
10.1177/2040206618761299. Google Scholar
- 92Stockman, L.J., Bellamy, R., and Garner, P. (2006). SARS: systematic review of treatment effects. PLoS Med. 3 (9): 1525–1531. doi: 10.1371/journal.pmed.0030343.
- 93Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., and Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel Coronavirus (2019-NCoV) in vitro. Cell Res. 30 (3): 269–271. doi: 10.1038/s41422-020-0282-0.
- 94Morra, M.E., Van Thanh, L., Kamel, M.G., Ghazy, A.A., Altibi, A.M.A., Dat, L.M., Thy, T.N.X., Vuong, N.L., Mostafa, M.R., Ahmed, S.I. et al. (2018). Clinical outcomes of current medical approaches for middle east respiratory syndrome: a systematic review and meta-analysis. Rev. Med. Virol. 28 (3): 1–9. doi: 10.1002/rmv.1977.
- 95Furuta, Y., Komeno, T., and Nakamuba, T. (2017). Polymerase activity (%) 100 μ mol/L favipiravir favipiravir-RMP control. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 93 (7): 449–463.
- 96Eastman, R.T., Roth, J.S., Brimacombe, K.R., Simeonov, A., Shen, M., Patnaik, S., and Hall, M.D. (2020). Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent. Sci. 6: 672–683. doi: 10.1021/acscentsci.0c00489.
- 97Sheahan, T.P., Sims, A.C., Leist, S.R., Schäfer, A., Won, J., Brown, A.J., Montgomery, S.A., Hogg, A., Babusis, D., Clarke, M.O. et al. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 11 (1): 222. doi: 10.1038/s41467-019-13940-6.
- 98de Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., Scott, D., Cihlar, T., and Feldmann, H. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. U.S.A. 117 (12): 6771–6776. doi: 10.1073/pnas.1922083117.
- 99Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., Feldt, T., Green, G., Green, M.L., Lescure, F.-X. et al. (2020). Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 382: 2327–2336. doi: 10.1056/nejmoa2007016.
- 100Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q. et al. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395 (10236): 1569–1578. doi: 10.1016/S0140-6736(20)31022-9.
- 101Beigel, J.H., Tomashek, K.M., Dodd, L.E., Mehta, A.K., Zingman, B.S., Kalil, A.C., Hohmann, E., Chu, H.Y., Luetkemeyer, A., Kline, S. et al. (2020). Remdesivir for the treatment of Covid-19-preliminary report. N. Engl. J. Med. 383: 1–12. doi: 10.1056/NEJMoa2007764.
- 102Davies, M., Osborne, V., Lane, S., Roy, D., Dhanda, S., Evans, A., & Shakir, S. (2020). Remdesivir in treatment of COVID-19: a systematic benefit-risk assessment. Drug safety 43: 645–656. doi: 10.1007/s40264-020-00952-1.
- 103Russell, B., Moss, C., Rigg, A., and Van Hemelrijck, M. (2020). COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting? Ecancermedicalscience 14: 1–3. doi: 10.3332/ecancer.2020.1023.
- 104Russell, C.D., Millar, J.E., and Baillie, J.K. (2020). Clinical evidence does not support corticosteroid treatment for 2019-NCoV lung injury. Lancet 395 (10223): 473–475. doi: 10.1016/S0140-6736(20)30317-2.
- 105Gritti, G., Raimondi, F., Ripamonti, D., Riva, I., Landi, F., Alborghetti, L., Frigeni, M., Damiani, M., Micò, C., Fagiuoli, S. et al. (2020). Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv doi: 10.1101/2020.04.01.20048561.
10.1101/2020.04.01.20048561 Google Scholar
- 106Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., and Li, J. (2020). Tocilizumab treatment in COVID-19: a single center experience. J. Med. Virol. 92 (7): 814. doi: 10.1002/jmv.25801.
- 107Gremese, E., Cingolani, A., Bosello, S.L., Alivernini, S., Tolusso, B., Perniola, S., Landi, F., Pompili, M., Murri, R., Santoliquido, A. et al. (2020). Sarilumab use in severe SARS-CoV-2 pneumonia. medRxiv doi: 10.1101/2020.05.14.20094144.
10.1101/2020.05.14.20094144 Google Scholar
- 108Klopfenstein, T., Zayet, S., Lohse, A., Balblanc, J.C., Badie, J., Royer, P.Y., Toko, L., Mezher, C., Kadiane-Oussou, N.J., Bossert, M. et al. (2020). Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med. Mal. Infect. 50: 397. doi: 10.1016/j.medmal.2020.05.001.
- 109Bechman, K., Yates, M., and Galloway, J.B. (2019). The new entries in the therapeutic armamentarium: the small molecule JAK inhibitors. Pharmacol. Res. 147 (June): 104392. doi: 10.1016/j.phrs.2019.104392.
- 110Cantini, F., Niccoli, L., Matarrese, D., Nicastri, E., Stobbione, P., and Goletti, D. (2020). Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J. Infect. doi: 10.1016/j.jinf.2020.04.017.
- 111Ben-Zvi, I., Kivity, S., Langevitz, P., and Shoenfeld, Y. (2012). Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. Allergy Immunol. 42: 145–153. doi: 10.1007/s12016-010-8243-x.
- 112Schrezenmeier, E. and Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16 (3): 155–166. doi: 10.1038/s41584-020-0372-x.
- 113Hashem, A.M., Alghamdi, B.S., Algaissi, A.A., Alshehri, F.S., Bukhari, A., Alfaleh, M.A., and Memish, Z.A. (2020). Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: a narrative review. Travel Med. Infect. Dis. 35: 101735. doi: 10.1016/j.tmaid.2020.101735.
- 114Gautret, P., Lagier, J.-C., Parola, P., Hoang, V.T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V.E. et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 56: 105949. doi: 10.1016/j.ijantimicag.2020.105949.
- 115Meyerowitz, E.A., Vannier, A.G.L., Friesen, M.G.N., Schoenfeld, S., Gelfand, J.A., Callahan, M.V., Kim, A.Y., Reeves, P.M., and Poznansky, M.C. (2020). Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 34 (5): 6027–6037. doi: 10.1096/fj.202000919.
- 116Magagnoli, J., Narendran, S., Pereira, F., Cummings, T., Hardin, J.W., Sutton, S.S., and Ambati, J. (2020). Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. Med (New York, N.Y.). doi: 10.1016/j.medj.2020.06.001. Advance online publication. https://doi.org/10.1016/j.medj.2020.06.001.
- 117Geleris, J., Sun, Y., Platt, J., Zucker, J., Baldwin, M., Hripcsak, G., Labella, A., Manson, D.K., Kubin, C., Barr, R.G. et al. (2020). Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med. 382: 2411–2418. doi: 10.1056/nejmoa2012410.
- 118Borba, M.G.S., Val, F.F.A., Sampaio, V.S., Alexandre, M.A.A., Melo, G.C., Brito, M., Mourão, M.P.G., Brito-Sousa, J.D., Baía-da-Silva, D., Guerra, M.V.F. et al. (2020). Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw. open 3 (4): e208857. doi: 10.1001/jamanetworkopen.2020.8857.
- 119Mehra, M.R., Desai, S.S., Ruschitzka, F., and Patel, A.N. (2020). Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 6736 (20): 1–10. doi: 10.1016/S0140-6736(20)31180-6.
10.1016/S0140‐6736(20)31180‐6 Google Scholar
- 120Shanmugaraj, B., Siriwattananon, K., Wangkanont, K., and Phoolcharoen, W. (2020). Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus Disease-19 (COVID-19). Asian Pacific J. Allergy Immunol. 38: 10–18.
- 121Zhang, H., Penninger, J.M., Li, Y., Zhong, N., and Slutsky, A.S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 46: 586–590. doi: 10.1007/s00134-020-05985-9.
- 122Sheahan, T.P., Sims, A.C., Zhou, S., Graham, R.L., Pruijssers, A.J., Agostini, M.L., Leist, S.R., Schäfer, A., Dinnon, K.H., Stevens, L.J. et al. (2020). An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12 (541): eabb5883. doi: 10.1126/scitranslmed.abb5883.
- 123Wenzel, R.P. and Edmond, M.B. (2003). Managing SARS amidst uncertainty. N. Engl. J. Med. 348 (20): 1947–1948. doi: 10.1056/NEJMp030072.
- 124van Griensven, J., Edwards, T., de Lamballerie, X. et al. (2016). Evaluation of convalescent plasma for ebola virus disease in Guinea. N. Engl. J. Med. 374 (1): 33–42. doi: 10.1056/NEJMoa1511812.
- 125Rojas, M., Rodríguez, Y., Monsalve, D.M. et al. (2020). Convalescent plasma in Covid-19: possible mechanisms of action. Autoimmun. Rev. 19 (7): 102554. doi: 10.1016/j.autrev.2020.102554.
- 126Duan, K., Liu, B., Li, C. et al. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. U.S.A. 117 (17): 9490–9496. doi: 10.1073/pnas.2004168117.
- 127https://www.cbsnews.com/news/coronavirus-may-never-go-away-world-health-organization-endemic-virus