The Gut Microbiome
Abstract
In the past decade, there has been a remarkable growth in the interest and enthusiasm for microbiome research. The microbiome includes bacteria, viruses, fungi, and parasites; our microbes cover all parts of our body. Researchers from many disciplines are now considering the role of microbiota and its relationship to development, physical health, and mental health. The multidisciplinary nature of ongoing research efforts is advancing our knowledge base at a fast pace. The current attention to tool development for analysis beyond bacterial composition will help scientists interpret the relationship between microbes, health, and disease. This article provides an introduction to host–microbe interactions based on animal and clinical research focused on the gut microbiome.
References
- 1Gill, S.R. et al. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312 (5778): 1355–1359.
- 2Sender, R., Fuchs, S., and Milo, R. (2016). Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164 (3): 337–340.
- 3Lankelma, J.M. et al. (2015). The gut microbiota in internal medicine: implications for health and disease. Neth. J. Med. 73 (2): 61–68.
- 4Qin, J. et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 (7285): 59–65.
- 5Backhed, F. et al. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17 (5): 690–703.
- 6Erny, D. et al. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18 (7): 965–977.
- 7Mayer, E.A., Savidge, T., and Shulman, R.J. (2014). Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146 (6): 1500–1512.
- 8Murphy, E.F. et al. (2010). Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59 (12): 1635–1642.
- 9Turnbaugh, P.J. et al. (2007). The human microbiome project. Nature 449 (7164): 804–810.
- 10Zhang, X. et al. (2013). Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8 (8): e71108.
- 11Belkaid, Y. and Hand, T.W. (2014). Role of the microbiota in immunity and inflammation. Cell 157 (1): 121–141.
- 12Macpherson, A.J. and Harris, N.L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4 (6): 478–485.
- 13Ege, M.J. et al. (2011). Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364 (8): 701–709.
- 14Gustafsson, B., Kahlson, G., and Rosengren, E. (1957). Biogenesis of histamine studied by its distribution and urinary excretion in germ free reared and not germ free rats fed a histamine free diet. Acta Physiol. Scand. 41 (2–3): 217–228.
- 15Gustafsson, B.E. (1959). Lightweight stainless steel systems for rearing germfree animals. Ann. N. Y. Acad. Sci. 78: 17–28.
- 16Hansson, J. et al. (2011). Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol. Immunol. 48 (9–10): 1091–1101.
- 17Cahenzli, J. et al. (2013). Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14 (5): 559–570.
- 18Hill, D.A. et al. (2012). Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 18 (4): 538–546.
- 19Bowcutt, R. et al. (2014). Heterogeneity across the murine small and large intestine. World J. Gastroenterol. 20 (41): 15216–15232.
- 20Munakata, K. et al. (2008). Importance of the interferon-alpha system in murine large intestine indicated by microarray analysis of commensal bacteria-induced immunological changes. BMC Genomics 9: 192.
- 21Zaph, C. et al. (2008). Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 205 (10): 2191–2198.
- 22Wu, H.J. et al. (2010). Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32 (6): 815–827.
- 23Block, K.E. et al. (2016). Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells. J. Immunol. 196 (4): 1550–1557.
- 24Francino, M.P. (2014). Early development of the gut microbiota and immune health. Pathogens 3 (3): 769–790.
- 25Lazar, V. et al. (2018). Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 9: 1830.
- 26Honda, K. and Littman, D.R. (2016). The microbiota in adaptive immune homeostasis and disease. Nature 535 (7610): 75–84.
- 27Thomas, C.M. and Versalovic, J. (2010). Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes 1 (3): 148–163.
- 28Chang, Y.C. et al. (2017). TLR2 and interleukin-10 are involved in bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS One 12 (7): e0180025.
- 29Wang, Y. et al. (2014). An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat. Commun. 5: 4432.
- 30Kellermayer, R. et al. (2011). Colonic mucosal DNA methylation, immune response, and microbiome patterns in toll-like receptor 2-knockout mice. FASEB J. 25 (5): 1449–1460.
- 31Zhang, Y.L. et al. (2018). SPON2 promotes M1-like macrophage recruitment and inhibits hepatocellular carcinoma metastasis by distinct integrin-Rho GTPase-hippo pathways. Cancer Res. 78 (9): 2305–2317.
- 32Vijay-Kumar, M. et al. (2010). Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328 (5975): 228–231.
- 33Fulde, M. et al. (2018). Neonatal selection by toll-like receptor 5 influences long-term gut microbiota composition. Nature 560 (7719): 489–493.
- 34Chassaing, B., Ley, R.E., and Gewirtz, A.T. (2014). Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 147 (6): 1363–77.e17.
- 35Luczynski, P. et al. (2017). Microbiota regulates visceral pain in the mouse. elife 6: e25887.
- 36Gustafsson, B.E. and Laurell, C.B. (1958). G Gamma globulins in germ-free rats. J. Exp. Med. 108 (2): 251–258.
- 37Macpherson, A.J., Koller, Y., and McCoy, K.D. (2015). The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol. 36 (8): 460–470.
- 38Nakajima, A. et al. (2018). IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215 (8): 2019–2034.
- 39Fransen, F. et al. (2015). BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43 (3): 527–540.
- 40Corthesy, B. (2013). Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun. Rev. 12 (6): 661–665.
- 41Campbell, J.H. et al. (2012). Host genetic and environmental effects on mouse intestinal microbiota. ISME J. 6 (11): 2033–2044.
- 42Elderman, M. et al. (2018). Sex and strain dependent differences in mucosal immunology and microbiota composition in mice. Biol. Sex Differ. 9 (1): 26.
- 43Horne, R. et al. (2019). Microbe and host interaction in gastrointestinal homeostasis. Psychopharmacology 236 (5): 1623–1640.
- 44Hapfelmeier, S. et al. (2010). Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328 (5986): 1705–1709.
- 45Donaldson, G.P. et al. (2018). Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360 (6390): 795–800.
- 46Belkaid, Y. and Harrison, O.J. (2017). Homeostatic immunity and the microbiota. Immunity 46 (4): 562–576.
- 47van de Wouw, M. et al. (2019). Monocyte mobilisation, microbiota and mental illness. Brain Behav. Immun. 81: 74–91.
- 48Bain, C.C. et al. (2014). Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15 (10): 929–937.
- 49Martinez-Lopez, M. et al. (2019). Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity 50 (2): 446–461.e9.
- 50Hegazy, A.N. et al. (2017). Circulating and tissue-resident CD4(+) T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153 (5): 1320–1337.e16.
- 51Ostman, S. et al. (2006). Impaired regulatory T cell function in germ-free mice. Eur. J. Immunol. 36 (9): 2336–2346.
- 52Atarashi, K. et al. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331 (6015): 337–341.
- 53Tanoue, T. et al. (2019). A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565 (7741): 600–605.
- 54Ahern, P.P., Faith, J.J., and Gordon, J.I. (2014). Mining the human gut microbiota for effector strains that shape the immune system. Immunity 40 (6): 815–823.
- 55Geva-Zatorsky, N. et al. (2017). Mining the human gut microbiota for immunomodulatory organisms. Cell 168 (5): 928–943 e11.
- 56Thaiss, C.A. et al. (2016). The microbiome and innate immunity. Nature 535 (7610): 65–74.
- 57Gensollen, T. et al. (2016). How colonization by microbiota in early life shapes the immune system. Science 352 (6285): 539–544.
- 58Postler, T.S. and Ghosh, S. (2017). Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 26 (1): 110–130.
- 59Honda, K. and Littman, D.R. (2012). The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30: 759–795.
- 60Deehan, E.C. et al. (2017). Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol. Spectr. 5 (5).
- 61Makki, K. et al. (2018). The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23 (6): 705–715.
- 62Chambers, E.S. et al. (2018). Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep. 7 (4): 198–206.
- 63Baxter, N.T. et al. (2019). Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 10 (1): e02566–18.
- 64Rieder, R. et al. (2017). Microbes and mental health: a review. Brain Behav. Immun. 66: 9–17.
- 65Zhou, D. et al. (2017). Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J. Gastroenterol. 23 (1): 60–75.
- 66den Besten, G. et al. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54 (9): 2325–2340.
- 67Sonnenburg, J.L. and Backhed, F. (2016). Diet-microbiota interactions as moderators of human metabolism. Nature 535 (7610): 56–64.
- 68De Filippis, F. et al. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65 (11): 1812–1821.
- 69Shankar, V. et al. (2017). Differences in gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets. mSystems 2 (1).
- 70Jain, A., Li, X.H., and Chen, W.N. (2019). An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci. Rep. 9 (1): 9191.
- 71Wu, G.D. et al. (2016). Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65 (1): 63–72.
- 72Johnson, A.J. et al. (2019). Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25 (6): 789–802.e5.
- 73Waclawikova, B. and El Aidy, S. (2018). Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals (Basel) 11 (3): 63.
- 74Le Floc'h, N., Otten, W., and Merlot, E. (2011). Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41 (5): 1195–1205.
- 75Badawy, A.A. (2017). Tryptophan availability for kynurenine pathway metabolism across the life span: control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 112 (Pt B): 248–263.
- 76Richard, D.M. et al. (2009). L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2: 45–60.
- 77Ruddick, J.P. et al. (2006). Tryptophan metabolism in the central nervous system: medical implications. Expert Rev. Mol. Med. 8 (20): 1–27.
- 78Kennedy, P.J. et al. (2017). Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112 (Pt B): 399–412.
- 79Dinan, T.G. and Cryan, J.F. (2017). The microbiome-gut-brain axis in health and disease. Gastroenterol. Clin. N. Am. 46 (1): 77–89.
- 80Clarke, G. et al. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18 (6): 666–673.
- 81Desbonnet, L. et al. (2015). Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 48: 165–173.
- 82Yano, J.M. et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2): 264–276.
- 83O'Mahony, S.M. et al. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277: 32–48.
- 84Vancamelbeke, M. and Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 11 (9): 821–834.
- 85Dieterich, W., Schink, M., and Zopf, Y. (2018). Microbiota in the gastrointestinal tract. Med. Sci. (Basel) 6 (4): 116.
- 86Hyland, N.P. et al. (2015). Early-life stress selectively affects gastrointestinal but not behavioral responses in a genetic model of brain-gut axis dysfunction. Neurogastroenterol. Motil. 27 (1): 105–113.
- 87Lennon, E.M. et al. (2013). Early life stress triggers persistent colonic barrier dysfunction and exacerbates colitis in adult IL-10/mice. Inflamm. Bowel Dis. 19 (4): 712–719.
- 88Venkova, K. et al. (2010). Exposure of the amygdala to elevated levels of corticosterone alters colonic motility in response to acute psychological stress. Neuropharmacology 58 (7): 1161–1167.
- 89Juge, N. (2012). Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 20 (1): 30–39.
- 90Marchiando, A.M., Graham, W.V., and Turner, J.R. (2010). Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 5: 119–144.
- 91Ramanan, D. and Cadwell, K. (2016). Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe 19 (4): 434–441.
- 92Takiishi, T., Fenero, C.I.M., and Camara, N.O.S. (2017). Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5 (4): e1373208.
- 93Diwakarla, S. et al. (2017). Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterol. Motil. 29 (6). doi: 10.1111/nmo.13101.
- 94Sjolund, K. et al. (1983). Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85 (5): 1120–1130.
- 95Kim, Y.S. and Ho, S.B. (2010). Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep. 12 (5): 319–330.
- 96Jakobsson, H.E. et al. (2015). The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16 (2): 164–177.
- 97Johansson, M.E. et al. (2015). Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18 (5): 582–592.
- 98Van der Sluis, M. et al. (2006). Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131 (1): 117–129.
- 99Johansson, M.E. and Hansson, G.C. (2016). Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16 (10): 639–649.
- 100Foster, J.A. and McVey Neufeld, K.A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36 (5): 305–312.
- 101Rajilic-Stojanovic, M. et al. (2011). Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141 (5): 1792–1801.
- 102Nagel, R. et al. (2016). Comparison of faecal microbiota in Blastocystis-positive and Blastocystis-negative irritable bowel syndrome patients. Microbiome 4 (1): 47.
- 103Jeffery, I.B. et al. (2012). Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10 (9): 591–592.
- 104Labus, J.S. et al. (2017). Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome 5 (1): 49.
- 105Rigsbee, L. et al. (2012). Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 107 (11): 1740–1751.
- 106Hugerth, L.W. et al. (2019). No distinct microbiome signature of irritable bowel syndrome found in a Swedish random population. Gut. 69 (6): 1076–1084.
- 107Rajilic-Stojanovic, M. et al. (2015). Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena? Am. J. Gastroenterol. 110 (2): 278–287.
- 108Jeffery, I.B. et al. (2019). Differences in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid malabsorption. Gastroenterology 158 (4): 1016–1028.e8.
- 109Dash, S. et al. (2015). The gut microbiome and diet in psychiatry: focus on depression. Curr. Opin. Psychiatry 28 (1): 1–6.
- 110Foster, J.A. et al. (2016). Gut microbiota and brain function: an evolving field in neuroscience. Int. J. Neuropsychopharmacol. 19 (5): pyv114.
- 111Sherwin, E., Dinan, T.G., and Cryan, J.F. (2018). Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann. N. Y. Acad. Sci. 1420 (1): 5–25.
- 112Sudo, N. et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558 (Pt 1): 263–275.
- 113Foster, J.A., Rinaman, L., and Cryan, J.F. (2017). Stress and the gut-brain axis: regulation by the microbiome. Neurobiol. Stress 7: 124–136.
- 114Bharwani, A. et al. (2016). Structural and functional consequences of chronic psychosocial stress on the microbiome and host. Psychoneuroendocrinology 63: 217–227.
- 115De Palma, G. et al. (2015). Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 6: 7735.
- 116O'Mahony, S.M. et al. (2011). Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology 214 (1): 71–88.
- 117Tsilimigras, M.C.B. et al. (2018). Interactions between stress and sex in microbial responses within the microbiota-gut-brain axis in a mouse model. Psychosom. Med. 80 (4): 361–369.
- 118Rincel, M. et al. (2019). Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav. Immun. 80: 179–192.
- 119Neufeld, K.M. et al. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 23 (3): 255–264, e119.
- 120Diaz Heijtz, R. et al. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U. S. A. 108 (7): 3047–3052.
- 121Clarke, D.M. and Currie, K.C. (2009). Depression, anxiety and their relationship with chronic diseases: a review of the epidemiology, risk and treatment evidence. Med. J. Aust. 190 (S7): S54–S60.
- 122Lyte, M. et al. (2006). Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89 (3): 350–357.
- 123Bravo, J.A. et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U. S. A. 108 (38): 16050–16055.
- 124Bercik, P. et al. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23 (12): 1132–1139.
- 125Svensson, E. et al. (2015). Vagotomy and subsequent risk of Parkinson's disease. Ann. Neurol. 78 (4): 522–529.
- 126Caspani, G. et al. (2019). Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microb. Cell 6 (10): 454–481.
- 127Masuda, T. et al. (2019). Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566 (7744): 388–392.
- 128Luczynski, P. et al. (2016). Growing up in a Bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol. 19 (8): pyw020.
- 129Borre, Y.E. et al. (2014). Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20 (9): 509–518.
- 130Sharon, G. et al. (2016). The central nervous system and the gut microbiome. Cell 167 (4): 915–932.
- 131Vuong, H.E. and Hsiao, E.Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81 (5): 411–423.
- 132Vuong, H.E. et al. (2017). The microbiome and host behavior. Annu. Rev. Neurosci. 40: 21–49.
- 133Luna, R.A. and Foster, J.A. (2015). Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol. 32: 35–41.
- 134Fung, T.C., Olson, C.A., and Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20 (2): 145–155.
- 135Butler, M. et al. (2019). The gut microbiome and mental health; what should we tell our patients? Can. J. Psychiatr. 64 (11): 747–760.
- 136Sharma, S. and Tripathi, P. (2019). Gut microbiome and type 2 diabetes: where we are and where to go? J. Nutr. Biochem. 63: 101–108.
- 137Siljander, H., Honkanen, J., and Knip, M. (2019). Microbiome and type 1 diabetes. EBioMedicine 46: 512–521.
- 138Tang, W.H., Kitai, T., and Hazen, S.L. (2017). Gut microbiota in cardiovascular health and disease. Circ. Res. 120 (7): 1183–1196.
- 139Upadhyaya, S. and Banerjee, G. (2015). Type 2 diabetes and gut microbiome: at the intersection of known and unknown. Gut Microbes 6 (2): 85–92.
- 140Mitev, K. and Taleski, V. (2019). Association between the gut microbiota and obesity. Open Access Maced. J. Med. Sci. 7 (12): 2050–2056.
- 141Castaner, O. et al. (2018). The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol. 2018: 4095789.
- 142Muscogiuri, G. et al. (2019). Gut microbiota: a new path to treat obesity. Int. J. Obes. Suppl. 9 (1): 10–19.
- 143Zhi, C. et al. (2019). Connection between gut microbiome and the development of obesity. Eur. J. Clin. Microbiol. Infect. Dis. 38 (11): 1987–1998.
- 144Gagniere, J. et al. (2016). Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 22 (2): 501–518.
- 145Gao, R. et al. (2017). Gut microbiota and colorectal cancer. Eur. J. Clin. Microbiol. Infect. Dis. 36 (5): 757–769.
- 146Wong, S.H. and Yu, J. (2019). Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16 (11): 690–704.
- 147Mangiola, F. et al. (2016). Gut microbiota in autism and mood disorders. World J. Gastroenterol. 22 (1): 361–368.
- 148Moser, G., Fournier, C., and Peter, J. (2018). Intestinal microbiome-gut-brain axis and irritable bowel syndrome. Wien. Med. Wochenschr. 168 (3–4): 62–66.
- 149Shahi, S.K., Freedman, S.N., and Mangalam, A.K. (2017). Gut microbiome in multiple sclerosis: the players involved and the roles they play. Gut Microbes 8 (6): 607–615.
- 150Bhargava, P. and Mowry, E.M. (2014). Gut microbiome and multiple sclerosis. Curr. Neurol. Neurosci. Rep. 14 (10): 492.
- 151Mowry, E.M. and Glenn, J.D. (2018). The dynamics of the gut microbiome in multiple sclerosis in relation to disease. Neurol. Clin. 36 (1): 185–196.
- 152Ochoa-Reparaz, J., Kirby, T.O., and Kasper, L.H. (2018). The gut microbiome and multiple sclerosis. Cold Spring Harb. Perspect Med. 8 (6): a029017.
- 153Dickerson, F., Severance, E., and Yolken, R. (2017). The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav. Immun. 62: 46–52.
- 154Caso, J.R. et al. (2016). The microbiota and gut-brain axis: contributions to the immunopathogenesis of schizophrenia. Curr. Pharm. Des. 22 (40): 6122–6133.
- 155Severance, E.G., Yolken, R.H., and Eaton, W.W. (2016). Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr. Res. 176 (1): 23–35.
- 156Nguyen, T.T. et al. (2018). Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J. Psychiatr. Res. 99: 50–61.
- 157Gkolfakis, P., Dimitriadis, G., and Triantafyllou, K. (2015). Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis. Int. 14 (6): 572–581.
- 158Jasirwan, C.O.M. et al. (2019). The role of gut microbiota in non-alcoholic fatty liver disease: pathways of mechanisms. Biosci. Microbiota. Food Health 38 (3): 81–88.
- 159Miura, K. and Ohnishi, H. (2014). Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J. Gastroenterol. 20 (23): 7381–7391.
- 160Puri, P. and Sanyal, A.J. (2018). The intestinal microbiome in nonalcoholic fatty liver disease. Clin. Liver. Dis. 22 (1): 121–132.
- 161Sanduzzi Zamparelli, M. et al. (2016). The metabolic role of gut microbiota in the development of nonalcoholic fatty liver disease and cardiovascular disease. Int. J. Mol. Sci. 17 (8): 1225.
- 162Usami, M., Miyoshi, M., and Yamashita, H. (2015). Gut microbiota and host metabolism in liver cirrhosis. World J. Gastroenterol. 21 (41): 11597–11608.
- 163Barrington, W.T. and Lusis, A.J. (2017). Atherosclerosis: association between the gut microbiome and atherosclerosis. Nat. Rev. Cardiol. 14 (12): 699–700.
- 164Jonsson, A.L. and Backhed, F. (2017). Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 14 (2): 79–87.
- 165Li, D.Y. and Tang, W.H.W. (2017). Gut microbiota and atherosclerosis. Curr. Atheroscler. Rep. 19 (10): 39.
- 166de Clercq, N.C. et al. (2017). Gut microbiota and the gut-brain axis: new insights in the pathophysiology of metabolic syndrome. Psychosom. Med. 79 (8): 874–879.
- 167Festi, D. et al. (2014). Gut microbiota and metabolic syndrome. World J. Gastroenterol. 20 (43): 16079–16094.
- 168Mazidi, M. et al. (2016). Gut microbiome and metabolic syndrome. Diabetes Metab. Syndr. 10 (2 Suppl 1): S150–S157.
- 169Fujimura, K.E. and Lynch, S.V. (2015). Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17 (5): 592–602.
- 170Johnson, C.C. and Ownby, D.R. (2017). The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl. Res. 179: 60–70.
- 171Kang, Y.B., Cai, Y., and Zhang, H. (2017). Gut microbiota and allergy/asthma: from pathogenesis to new therapeutic strategies. Allergol Immunopathol (Madr) 45 (3): 305–309.
- 172Bischoff, S.C. (2016). Microbiota and aging. Curr. Opin. Clin. Nutr. Metab. Care 19 (1): 26–30.
- 173O'Toole, P.W. and Jeffery, I.B. (2015). Gut microbiota and aging. Science 350 (6265): 1214–1215.
- 174Vaiserman, A.M., Koliada, A.K., and Marotta, F. (2017). Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res. Rev. 35: 36–45.
- 175Winek, K., Meisel, A., and Dirnagl, U. (2016). Gut microbiota impact on stroke outcome: fad or fact? J. Cereb. Blood Flow Metab. 36 (5): 891–898.
- 176Jiang, C. et al. (2017). The gut microbiota and alzheimer's disease. J. Alzheimers Dis. 58 (1): 1–15.
- 177Marizzoni, M. et al. (2017). Microbiota and neurodegenerative diseases. Curr. Opin. Neurol. 30 (6): 630–638.
- 178Hu, X., Wang, T., and Jin, F. (2016). Alzheimer's disease and gut microbiota. Sci. China Life Sci. 59 (10): 1006–1023.
- 179Quigley, E.M.M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 17 (12): 94.
- 180Anderson, G. et al. (2016). Gut permeability and microbiota in parkinson's disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways. Curr. Pharm. Des. 22 (40): 6142–6151.
- 181Mulak, A. and Bonaz, B. (2015). Brain-gut-microbiota axis in Parkinson's disease. World J. Gastroenterol. 21 (37): 10609–10620.
- 182Parashar, A. and Udayabanu, M. (2017). Gut microbiota: implications in Parkinson's disease. Parkinsonism Relat. Disord. 38: 1–7.
- 183Chen, J.J. et al. (2018). Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 14: 647–655.
- 184Jiang, H. et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48: 186–194.
- 185Finegold, S.M. et al. (2002). Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 35 (Suppl 1): S6–S16.
- 186Kang, D.W. et al. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49: 121–131.
- 187Golubeva, A.V. et al. (2017). Microbiota-related changes in bile acid and tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24: 166–178.
- 188Petrov, V.A. et al. (2017). Analysis of gut microbiota in patients with Parkinson's disease. Bull. Exp. Biol. Med. 162 (6): 734–737.
- 189Li, W. et al. (2017). Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features. Sci. China Life Sci. 60 (11): 1223–1233.
- 190Vogt, N.M. et al. (2017). Gut microbiome alterations in Alzheimer's disease. Sci. Rep. 7 (1): 13537.
- 191De Palma, G. et al. (2017). Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. 9 (379): eaaf6397.
- 192Murugesan, S. et al. (2018). Gut microbiome production of short-chain fatty acids and obesity in children. Eur. J. Clin. Microbiol. Infect. Dis. 37 (4): 621–625.
- 193Allen, J.M. et al. (2018). Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50 (4): 747–757.
- 194Federico, A. et al. (2017). Gut microbiota, obesity and metabolic disorders. Minerva Gastroenterol. Dietol. 63 (4): 337–344.
- 195Boulange, C.L. et al. (2016). Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8 (1): 42.
- 196Fukuda, S. and Ohno, H. (2014). Gut microbiome and metabolic diseases. Semin. Immunopathol. 36 (1): 103–114.
- 197Chung, Y.E. et al. (2019). Exploration of microbiota targets for major depressive disorder and mood related traits. J. Psychiatr. Res. 111: 74–82.
- 198Valles-Colomer, M. et al. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4 (4): 623–632.
- 199Buchberger, B. et al. (2016). Symptoms of depression and anxiety in youth with type 1 diabetes: a systematic review and meta-analysis. Psychoneuroendocrinology 70: 70–84.
- 200Byrne, G. et al. (2017). Prevalence of anxiety and depression in patients with inflammatory bowel disease. Can. J. Gastroenterol. Hepatol. 2017: 6496727.
- 201Remes, O. et al. (2016). A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 6 (7): e00497.
- 202Chen, Y.H. et al. (2019). Association between fecal microbiota and generalized anxiety disorder: severity and early treatment response. J. Affect. Disord. 259: 56–66.
- 203Jiang, H.Y. et al. (2018). Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res. 104: 130–136.
- 204 American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5e. Arlington: American Psychiatric Association.
10.1176/appi.books.9780890425596 Google Scholar
- 205Sandin, S. et al. (2014). The familial risk of autism. JAMA 311 (17): 1770–1777.
- 206Anagnostou, E. et al. (2014). Autism spectrum disorder: advances in evidence-based practice. CMAJ 186 (7): 509–519.
- 207Chaste, P. and Leboyer, M. (2012). Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin. Neurosci. 14 (3): 281–292.
- 208Betancur, C. (2011). Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 1380: 42–77.
- 209Boukthir, S. et al. (2010). Abnormal intestinal permeability in children with autism. Tunis Med. 88 (9): 685–686.
- 210Berding, K. and Donovan, S.M. (2018). Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 12: 515.
- 211Hsiao, E.Y. et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155 (7): 1451–1463.
- 212Kang, D.W. et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8 (7): e68322.
- 213Finegold, S.M. et al. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16 (4): 444–453.
- 214De Angelis, M. et al. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 8 (10): e76993.
- 215Poirier, A.A. et al. (2016). Gastrointestinal dysfunctions in Parkinson's disease: symptoms and treatments. Parkinsons Dis. 2016: 6762528.
- 216Felice, V.D. et al. (2016). Microbiota-gut-brain signalling in Parkinson's disease: implications for non-motor symptoms. Parkinsonism Relat. Disord. 27: 1–8.
- 217Bedarf, J.R. et al. (2019). The gut microbiome in Parkinson's disease. Nervenarzt 90 (2): 160–166.
- 218Hasegawa, S. et al. (2015). Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson's disease. PLoS One 10 (11): e0142164.
- 219Keshavarzian, A. et al. (2015). Colonic bacterial composition in Parkinson's disease. Mov. Disord. 30 (10): 1351–1360.
- 220Scheperjans, F. et al. (2015). Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30 (3): 350–358.
- 221Hill-Burns, E.M. et al. (2017). Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32 (5): 739–749.
- 222Unger, M.M. et al. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat. Disord. 32: 66–72.
- 223Soret, R. et al. (2010). Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138 (5): 1772–1782.
- 224Kidd, S.K. and Schneider, J.S. (2010). Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Res. 1354: 172–178.
- 225Zhuang, Z.Q. et al. (2018). Gut microbiota is altered in patients with Alzheimer's disease. J. Alzheimers Dis. 63 (4): 1337–1346.
- 226Cattaneo, A. et al. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 49: 60–68.
- 227Grochowska, M., Laskus, T., and Radkowski, M. (2019). Gut microbiota in neurological disorders. Arch. Immunol. Ther. Exp. (Warsz). 67 (6): 375–383.
- 228Hill, J.M. and Lukiw, W.J. (2015). Microbial-generated amyloids and Alzheimer's disease (AD). Front. Aging Neurosci. 7: 9.
- 229Iizumi, T. et al. (2017). Gut microbiome and antibiotics. Arch. Med. Res. 48 (8): 727–734.
- 230Jernberg, C. et al. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156 (Pt 11): 3216–3223.
- 231Rashid, M.U. et al. (2015). Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin. Infect. Dis. (60 Suppl 2): S77–S84.
- 232Dethlefsen, L. and Relman, D.A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. U. S. A. 108 (Suppl 1): 4554–4561.
- 233Ng, K.M. et al. (2019). Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe. 26 (5): 650–665 e4.
- 234Zimmermann, M. et al. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570 (7762): 462–467.
- 235Maier, L. et al. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555 (7698): 623–628.
- 236Clayton, T.A. et al. (2009). Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. U. S. A. 106 (34): 14728–14733.
- 237Wu, H. et al. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23 (7): 850–858.
- 238Bretler, T. et al. (2019). The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 17 (1): 112.
- 239Flowers, S.A. et al. (2017). Interaction between atypical antipsychotics and the gut microbiome in a bipolar disease cohort. Pharmacotherapy 37 (3): 261–267.
- 240van Kessel, S.P. et al. (2019). Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nat. Commun. 10 (1): 310.
- 241Maini Rekdal, V. et al. (2019). Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364 (6445): eaau6323.
- 242 Nations, F.a.A.O.o.t.U. and W.H. Organization (2006). Health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria. Guidelines for the evaluation of probiotics in food. In: Probiotics in Food : Health and Nutritional Properties and Guidelines For Evaluation. Italy: Rome : Food and Agriculture Organization of the United Nations : World Health Organization.
- 243Gibson, G.R. et al. (2010). Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. Funct. Foods 7: 1–19.
- 244Sarkar, A. et al. (2016). Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 39 (11): 763–781.
- 245Rios-Covian, D. et al. (2016). Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7: 185.
- 246Savignac, H.M. et al. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 287: 59–72.
- 247O'Hagan, C. et al. (2017). Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats. Neurobiol. Learn. Mem. 144: 36–47.
- 248Matthews, D.M. and Jenks, S.M. (2013). Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav. Process. 96: 27–35.
- 249Davari, S. et al. (2013). Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240: 287–296.
- 250Athari Nik Azm, S. et al. (2018). Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1-42) injected rats. Appl. Physiol. Nutr. Metab. 43 (7): 718–726.
- 251Jeong, J.J. et al. (2015). Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett. Appl. Microbiol. 60 (4): 307–314.
- 252Park, J. et al. (2017). Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci. Rep. 7 (1): 14520.
- 253Savignac, H.M. et al. (2014). Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 26 (11): 1615–1627.
- 254Liang, S. et al. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310: 561–577.
- 255Liu, Y.W. et al. (2016). Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res. 1631: 1–12.
- 256Yang, X.D. et al. (2018). Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol. 18 (1): 177.
- 257Tillmann, S. and Wegener, G. (2019). Probiotics reduce risk-taking behavior in the elevated plus maze in the flinders sensitive line rat model of depression. Behav. Brain Res. 359: 755–762.
- 258Ramalho, J.B. et al. (2019). In vitro probiotic and antioxidant potential of lactococcus lactis subsp. cremoris LL95 and its effect in mice behaviour. Nutrients 11 (4): 901.
- 259Hunsche, C., Cruces, J., and De la Fuente, M. (2019). Improvement of redox state and functions of immune cells as well as of behavioral response in aged mice after two-week supplementation of fermented milk with probiotics. Curr. Microbiol. 76 (11): 1278–1289.
- 260Burokas, A. et al. (2017). Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry 82 (7): 472–487.
- 261Abildgaard, A. et al. (2017). Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology 79: 40–48.
- 262Abildgaard, A. et al. (2017). Probiotic treatment protects against the pro-depressant-like effect of high-fat diet in flinders sensitive line rats. Brain Behav. Immun. 65: 33–42.
- 263Kantak, P.A., Bobrow, D.N., and Nyby, J.G. (2014). Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav. Pharmacol. 25 (1): 71–79.
- 264Distrutti, E. et al. (2013). Probiotics VSL#3 protect against development of visceral pain in murine model of irritable bowel syndrome. PLoS One 8 (5): e63893.
- 265Johnson, A.C., Greenwood-Van Meerveld, B., and McRorie, J. (2011). Effects of Bifidobacterium infantis 35624 on post-inflammatory visceral hypersensitivity in the rat. Dig. Dis. Sci. 56 (11): 3179–3186.
- 266Bagheri, S. et al. (2019). Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav. 95: 43–50.
- 267Moya-Perez, A. et al. (2017). Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav. Immun. 65: 43–56.
- 268Cowan, C.S. et al. (2016). The lasting impact of early-life adversity on individuals and their descendants: potential mechanisms and hope for intervention. Genes Brain Behav. 15 (1): 155–168.
- 269Wang, X. et al. (2019). Oral probiotic administration during pregnancy prevents autism-related behaviors in offspring induced by maternal immune activation via anti-inflammation in mice. Autism Res. 12 (4): 576–588.
- 270McVey Neufeld, K.A. et al. (2019). Neurobehavioural effects of Lactobacillus rhamnosus GG alone and in combination with prebiotics polydextrose and galactooligosaccharide in male rats exposed to early-life stress. Nutr. Neurosci. 22 (6): 425–434.
- 271Lebovitz, Y. and Theus, M.H. (2019). Molecular phenotyping and genomic characterization of a novel neuroactive bacterium strain, lactobacillus murinus HU-1. Front. Pharmacol. 10: 1162.
- 272Buffington, S.A. et al. (2016). Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165 (7): 1762–1775.
- 273Sgritta, M. et al. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101 (2): 246–259 e6.
- 274Peng, H.H. et al. (2019). Probiotic treatment restores normal developmental trajectories of fear memory retention in maternally separated infant rats. Neuropharmacology 153: 53–62.
- 275Bercik, P. et al. (2010). Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139 (6): 2102–2112 e1.
- 276Desbonnet, L. et al. (2010). Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170 (4): 1179–1188.
- 277Jeong, J.J. et al. (2015). Orally administrated Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent colitis by inhibiting the nuclear factor-kappa B signaling pathway via the regulation of lipopolysaccharide production by gut microbiota. PLoS One 10 (2): e0116533.
- 278Woo, J.Y. et al. (2014). Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 27: 22–26.
- 279Reber, S.O. et al. (2016). Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. U. S. A. 113 (22): E3130-39.
- 280D'Mello, C. et al. (2015). Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J. Neurosci. 35 (30): 10821–10830.
- 281Jang, H.M., Lee, K.E., and Kim, D.H. (2019). The preventive and curative effects of lactobacillus reuteri NK33 and bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients 11 (4): 819.
- 282Hao, Z. et al. (2019). Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology 104: 132–142.
- 283Han, S.K. and Kim, D.H. (2019). Lactobacillus mucosae and Bifidobacterium longum synergistically alleviate immobilization stress-induced anxiety/depression in mice by suppressing gut dysbiosis. J. Microbiol. Biotechnol. 29 (9): 1369–1374.
- 284Ait-Belgnaoui, A. et al. (2014). Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil. 26 (4): 510–520.
- 285de Cossio, L.F. et al. (2017). Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain Behav. Immun. 64: 33–49.
- 286Dhaliwal, J. et al. (2018). Lactobacillus plantarum MTCC 9510 supplementation protects from chronic unpredictable and sleep deprivation-induced behaviour, biochemical and selected gut microbial aberrations in mice. J. Appl. Microbiol. 125 (1): 257–269.
- 287Hadizadeh, M., Hamidi, G.A., and Salami, M. (2019). Probiotic supplementation improves the cognitive function and the anxiety-like behaviors in the stressed rats. Iran. J. Basic Med. Sci. 22 (5): 506–514.
- 288Ait-Belgnaoui, A. et al. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37 (11): 1885–1895.
- 289Frank, M.G. et al. (2018). Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain Behav. Immun. 73: 352–363.
- 290Tian, T. et al. (2019). Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice. Biochem. Biophys. Res. Commun. 516 (2): 430–436.
- 291McVey Neufeld, K.A., Kay, S., and Bienenstock, J. (2018). Mouse strain affects behavioral and neuroendocrine stress responses following administration of probiotic Lactobacillus rhamnosus JB-1 or traditional antidepressant fluoxetine. Front. Neurosci. 12: 294.
- 292Avolio, E. et al. (2019). Probiotics modify body weight together with anxiety states via pro-inflammatory factors in HFD-treated Syrian golden hamster. Behav. Brain Res. 356: 390–399.
- 293Trudeau, F. et al. (2019). Bifidobacterium longum R0175 attenuates post-myocardial infarction depressive-like behaviour in rats. PLoS One 14 (4): e0215101.
- 294Murray, E. et al. (2019). Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav. Immun. 81: 198–212.
- 295Gareau, M.G. et al. (2011). Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60 (3): 307–317.
- 296Yang, C. et al. (2017). Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci. Rep. 7: 45942.
- 297Mackos, A.R. et al. (2013). Probiotic Lactobacillus reuteri attenuates the stressor-enhanced severity of Citrobacter rodentium infection. Infect. Immun. 81 (9): 3253–3263.
- 298Mackos, A.R. et al. (2016). Social stress-enhanced severity of Citrobacter rodentium-induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri. Mucosal Immunol. 9 (2): 515–526.
- 299Dinan, T.G., Stanton, C., and Cryan, J.F. (2013). Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74 (10): 720–726.
- 300Sarkar, A. et al. (2018). The microbiome in psychology and cognitive neuroscience. Trends Cogn. Sci. 22 (7): 611–636.
- 301Benton, D., Williams, C., and Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61 (3): 355–361.
- 302Marotta, A. et al. (2019). Effects of probiotics on cognitive reactivity, mood, and sleep quality. Front Psychiatry 10: 164.
- 303Messaoudi, M. et al. (2011). Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2 (4): 256–261.
- 304Slykerman, R.F. et al. (2017). Effect of lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: a randomised double-blind placebo-controlled trial. EBioMedicine 24: 159–165.
- 305Rao, A.V. et al. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 1 (1): 6.
- 306Takeda, T. et al. (2016). Stress fracture and premenstrual syndrome in Japanese adolescent athletes: a cross-sectional study. BMJ Open 6 (10): e013103.
- 307Allen, A.P. et al. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 6 (11): e939.
- 308Tillisch, K. et al. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144 (7): 1394–1401. 1401 e1-4.
- 309Bagga, D. et al. (2019). Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. Eur. J. Nutr. 58 (5): 1821–1827.
- 310Steenbergen, L. et al. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 48: 258–264.
- 311Chahwan, B. et al. (2019). Gut feelings: a randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 253: 317–326.
- 312Rudzki, L. et al. (2019). Probiotic lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100: 213–222.
- 313Papalini, S. et al. (2019). Stress matters: randomized controlled trial on the effect of probiotics on neurocognition. Neurobiol Stress 10: 100141.
- 314Akkasheh, G. et al. (2016). Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32 (3): 315–320.
- 315Majeed, M. et al. (2018). Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res. 62.
- 316Moludi, J. et al. (2019). The effect of probiotic supplementation on depressive symptoms and quality of life in patients after myocardial infarction: results of a preliminary double-blind clinical trial. Psychosom. Med. 81 (9): 770–777.
- 317Tomasik, J. et al. (2015). Immunomodulatory effects of probiotic supplementation in schizophrenia patients: a randomized, placebo-controlled trial. Biomark. Insights 10: 47–54.
- 318Soldi, S. et al. (2019). Effect of a multistrain probiotic (Lactoflorene((R)) Plus) on inflammatory parameters and microbiota composition in subjects with stress-related symptoms. Neurobiol. Stress 10: 100138.
- 319Raygan, F., Ostadmohammadi, V., and Asemi, Z. (2019). The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 38 (4): 1594–1598.
- 320Losasso, C. et al. (2018). Assessing the influence of vegan, vegetarian and omnivore oriented westernized dietary styles on human gut microbiota: a cross sectional study. Front. Microbiol. 9: 317.
- 321Nakayama, J. et al. (2017). Impact of westernized diet on gut microbiota in children on Leyte Island. Front. Microbiol. 8: 197.
- 322Wu, G.D. et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334 (6052): 105–108.
- 323Chen, T. et al. (2017). Fiber-utilizing capacity varies in prevotella- versus bacteroides-dominated gut microbiota. Sci. Rep. 7 (1): 2594.
- 324Chung, W.S. et al. (2016). Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14: 3.
- 325Haro, C. et al. (2016). Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J. Clin. Endocrinol. Metab. 101 (1): 233–242.
- 326Vanegas, S.M. et al. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr. 105 (3): 635–650.
- 327Rossen, N.G. et al. (2015). Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149 (1): 110–118.e4.
- 328Seekatz, A.M. et al. (2014). Recovery of the gut microbiome following fecal microbiota transplantation. MBio 5 (3): e00893-14.
- 329Seekatz, A.M. et al. (2018). Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 53: 64–73.
- 330Vindigni, S.M. and Surawicz, C.M. (2017). Fecal microbiota transplantation. Gastroenterol. Clin. N. Am. 46 (1): 171–185.
- 331Gough, E., Shaikh, H., and Manges, A.R. (2011). Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53 (10): 994–1002.
- 332Pinn, D.M., Aroniadis, O.C., and Brandt, L.J. (2014). Is fecal microbiota transplantation the answer for irritable bowel syndrome? A single-center experience. Am. J. Gastroenterol. 109 (11): 1831–1832.
- 333Vrieze, A. et al. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143 (4): 913–6.e7.
- 334Ridaura, V.K. et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341 (6150): 1241214.
- 335Turnbaugh, P.J. et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122): 1027–1031.
- 336Schaubeck, M. et al. (2016). Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut 65 (2): 225–237.
- 337Tian, Z. et al. (2016). Beneficial effects of fecal microbiota transplantation on ulcerative colitis in mice. Dig. Dis. Sci. 61 (8): 2262–2271.
- 338Zhou, J. et al. (2019). Effect of fecal microbiota transplantation on experimental colitis in mice. Exp. Ther. Med. 17 (4): 2581–2586.
- 339Kelly, J.R. et al. (2016). Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82: 109–118.
- 340Zheng, P. et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol. Psychiatry 21 (6): 786–796.
- 341Yalchin, M. et al. (2019). Gaps in knowledge and future directions for the use of faecal microbiota transplant in the treatment of inflammatory bowel disease. Ther. Adv. Gastroenterol. 12: 1756284819891038.
- 342Papanicolas, L.E. et al. (2020). Improving risk-benefit in faecal transplantation through microbiome screening. Trends Microbiol. 28 (5): 331–339.
- 343Gilbert, J.A. et al. (2018). Current understanding of the human microbiome. Nat. Med. 24 (4): 392–400.