Cryo-Electron Microscopy in Drug Discovery and Development: Opportunities and Challenges
Abstract
While utilization of structural information has been a staple technology in drug discovery for many years, electron microscopy creates opportunities that have been thus far out of reach for the conventional techniques, like the visualization of very large molecular complexes in solution or obtaining high-resolution structural data for small molecules from microcrystals. These opportunities come at a cost: hardware is extremely expensive, software is ever-changing, and constantly challenged by new developments in the hardware and requests by the users, and IT departments are faced with significant requirements for storage and computational power. Nevertheless, the establishment of centralized facilities, commercial consortia, and cooperative research centers is well positioned to provide access to Cryo-EM to an expanded base of researchers, from academia as well as from industry. Understanding of the requirements, advantages, and limitations of this technique becomes then necessary to ensure correct decision-making processes and resource allocation when undertaking a structure-guided drug design project.
References
- 1Lounnas, V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R.P., and Foloppe, N. (2013). Comput. Struct. Biotechnol. J. 5: e201302011.
- 2França, T.C. (2015). J. Biomol. Struct. Dyn. 33 (8): 1780–1793.
- 3Renaud, J.-P., Chari, A., Ciferri, C., Liu, W.-t., Rémigy, H.-W., Stark, H., and Wiesmann, C. (2018). Nat. Rev. Drug Discov. 17: 471. doi: 10.1038/nrd.2018.77.
- 4Scapin, G., Potter, C.S., and Carragher, B. (2018). Cell Chem. Biol. 25 (11): 1318–1325. doi: 10.1016/j.chembiol.2018.07.006.
- 5Ceska, T., Chung, C.-W., Cooke, R., Phillips, C., and Williams, P.A. (2019). Biochem. Soc. Trans. 47 (1): 281. doi: 10.1042/BST20180267.
- 6Frank, G.A., Shukla, S., Rao, P., Borgnia, M.J., Bartesaghi, A., Merk, A., Mobin, A., Esser, L., Earl, L.A., Gottesman, M.M., Xia, D., Ambudkar, S.V., and Subramaniam, S. (2016). Mol. Pharmacol. 90 (1): 35–41.
- 7Roh, S.-H., Hryc, C.F., Jeong, H.-H., Fei, X., Jakana, J., Lorimer, G.H., and Chiu, W. (2017). Proc. Natl. Acad. Sci. U.S.A. 114 (31): 8259–8264. doi: 10.1073/pnas.1704725114.
- 8Nogales, E. and Scheres, S.H.W. (2015). Mol. Cell 58 (4): 677–689. doi: 10.1016/j.molcel.2015.02.019.
- 9Nannenga, B.L. and Gonen, T. (2014). Curr. Opin. Struct. Biol. 27: 24–31.
- 10Jones, C.G., Martynowycz, M.W., Hattne, J., Fulton, T.J., Stoltz, B.M., Rodriguez, J.A., Nelson, H.M., and Gonen, T. (2018). ACS Cent. Sci. 4 (11): 1587–1592. doi: 10.1021/acscentsci.8b00760.
- 11Kunde, T. and Schmidt, B.M. (2019). Angew. Chem. Int. Ed. Engl. 58 (3): 666–668.
- 12Baker, L.A. and Rubinstein, J.L. (2010). Chapter Fifteen – Radiation damage in electron cryomicroscopy. In: Methods in Enzymology (ed. G.J. Jensen), 371–388. Academic Press.
- 13Booth, D.S., Avila-Sakar, A., and Cheng, Y. (2011). J. Vis. Exp. 22 (58): 3227. doi: 10.3791/3227.
- 14Dubochet, J. and McDowall, A.W. (1981). J. Microsc. 124 (3): 3–4. doi: 10.1111/j.1365-2818.1981.tb02483.x.
10.1111/j.1365-2818.1981.tb02483.x Google Scholar
- 15Matthies, D., Bartesaghi, A., Merk, A., Banerjee, S., and Subramaniam, S. (2015). Biophys. J. 108 (2): 190a. doi: 10.1016/j.bpj.2014.11.1052.
- 16Hattne, J., Shi, D., Glynn, C., Zee, C.-T., Gallagher-Jones, M., Martynowycz, M.W., Rodriguez, J.A., and Gonen, T. (2018). Structure 26 (5): 759–766.e4. doi: 10.1016/j.str.2018.03.021.
- 17Gan, L. and Jensen, G.J. (2011). Q. Rev. Biophys. 45 (1): 27–56. doi: 10.1017/S0033583511000102.
- 18Cheng, Y., Grigorieff, N., Penczek, P.A., and Walz, T. (2015). Cell 161 (3): 438–449. doi: 10.1016/j.cell.2015.03.050.
- 19Milne, J.L.S., Borgnia, M.J., Bartesaghi, A., Tran, E.E.H., Earl, L.A., Schauder, D.M., Lengyel, J., Pierson, J., Patwardhan, A., and Subramaniam, S. (2013). The FEBS J. 280 (1): 28–45. doi: 10.1111/febs.12078.
- 20Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State, 2e, 432. Oxford University Press.
- 21Magnani, F., Serrano-Vega, M.J., Shibata, Y., Abdul-Hussein, S., Lebon, G., Miller-Gallacher, J., Singhal, A., Strege, A., Thomas, J.A., and Tate, C.G. (2016). Nat. Protoc. 11: 1554. doi: 10.1038/nprot.2016.088.
- 22Zhang, X., Stevens, R.C., and Xu, F. (2015). Trends Biochem. Sci. 40 (2): 79–87. doi: 10.1016/j.tibs.2014.12.005.
- 23Steyaert, J. and Kobilka, B.K. (2011). Curr. Opin. Struct. Biol. 21 (4): 567–572. doi: 10.1016/j.sbi.2011.06.011.
- 24Kastner, B., Fischer, N., Golas, M.M., Sander, B., Dube, P., Boehringer, D., Hartmuth, K., Deckert, J., Hauer, F., Wolf, E., Uchtenhagen, H., Urlaub, H., Herzog, F., Peters, J.M., Poerschke, D., Lührmann, R., and Stark, H. (2007). Nat. Methods 5: 53. doi: 10.1038/nmeth1139.
- 25Khoshouei, M., Radjainia, M., Baumeister, W., and Danev, R. (2017). Nat. Commun. 8: 16099. doi: 10.1038/ncomms16099.
- 26Thompson, R.F., Walker, M., Siebert, C.A., Muench, S.P., and Ranson, N.A. (2016). Methods 100: 3–15. doi: 10.1016/j.ymeth.2016.02.017.
- 27Jain, T., Sheehan, P., Crum, J., Carragher, B., and Potter, C.S. (2012). J. Struct. Biol. 179 (1): 68–75. doi: 10.1016/j.jsb.2012.04.020.
- 28Buckingham, J.D. (1965). Brit. J. Appl. Phys. 16 (12): 1821–1832. doi: 10.1088/0508-3443/16/12/306.
- 29Crewe, A.V., Eggenberger, D.N., Wall, J., and Welter, L.M. (1968). Rev. Sci. Instrum. 39 (4): 576–583. doi: 10.1063/1.1683435.
- 30Herzik, M.A. Jr., Wu, M., and Lander, G.C. (2017). Nat. Methods 14: 1075. doi: 10.1038/nmeth.4461.
- 31Herzik, M.A., Wu, M., and Lander, G.C. (2019). Nat. Commun. 10 (1): 1032. doi: 10.1038/s41467-019-08991-8.
- 32Brink, J. and Chiu, W. (1994). J. Struct. Biol. 113 (1): 23–34. doi: 10.1006/jsbi.1994.1029.
- 33Carragher, B., Kisseberth, N., Kriegman, D., Milligan, R.A., Potter, C.S., Pulokas, J., and Reilein, A. (2000). J. Struct. Biol. 132 (1): 33–45. doi: 10.1006/jsbi.2000.4314.
- 34Kühlbrandt, W. (2014). Science 343 (6178): 1443–1444. doi: 10.1126/science.1251652.
- 35Bammes, B.E., Rochat, R.H., Jakana, J., Chen, D.-H., and Chiu, W. (2012). J. Struct. Biol. 177 (3): 589–601. doi: 10.1016/j.jsb.2012.01.008.
- 36Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., and Cheng, Y. (2013). Nat. Methods 10 (6): 584–590. doi: 10.1038/nmeth.2472.
- 37Grant, T. and Grigorieff, N. (2015). Elife 4: e06980. doi: 10.7554/eLife.06980.
- 38Mastronarde, D.N. (2005). J. Struct. Biol. 152 (1): 36–51. doi: 10.1016/j.jsb.2005.07.007.
- 39Alewijnse, B., Ashton, A.W., Chambers, M.G., Chen, S., Cheng, A., Ebrahim, M., Eng, E.T., Hagen, W.J.H., Koster, A.J., López, C.S., Lukoyanova, N., Ortega, J., Renault, L., Reyntjens, S., Rice, W.J., Scapin, G., Schrijver, R., Siebert, A., Stagg, S.M., Grum-Tokars, V., Wright, E.R., Wu, S., Yu, Z., Zhou, Z.H., Carragher, B., and Potter, C.S. (2017). J. Struct. Biol. 199 (3): 225–236. doi: 10.1016/j.jsb.2017.07.011.
- 40Kimanius, D., Forsberg, B.O., Scheres, S.H., and Lindahl, E. (2016). Elife 5: e18722. doi: 10.7554/eLife.18722.
- 41Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). Nat. Methods 14 (3): 290–296. doi: 10.1038/nmeth.4169.
- 42Grant, T., Rohou, A., and Grigorieff, N. (2018). Elife 7: e35383. doi: 10.7554/eLife.35383.
- 43Bell, J.M., Chen, M., Baldwin, P.R., and Ludtke, S.J. (2016). Methods 100: 25–34. doi: 10.1016/j.ymeth.2016.02.018.
- 44de la Rosa-Trevin, J.M., Oton, J., Marabini, R., Zaldivar, A., Vargas, J., Carazo, J.M., and Sorzano, C.O. (2013). J. Struct. Biol. 184 (2): 321–328. doi: 10.1016/j.jsb.2013.09.015.
- 45Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., Leith, A., and Frank, J. (2008). Nat. Protoc. 3 (12): 1941–1974. doi: 10.1038/nprot.2008.156.
- 46Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017). Nat. Methods 14 (4): 331–332. doi: 10.1038/nmeth.4193.
- 47Zivanov, J., Nakane, T., and Scheres, S.H.W. (2019). IUCrJ 6 (Pt 1): 5–17. doi: 10.1107/S205225251801463X.
- 48Rohou, A. and Grigorieff, N. (2015). J. Struct. Biol. 192 (2): 216–221. doi: 10.1016/j.jsb.2015.08.008.
- 49Zhang, K. (2016). J. Struct. Biol. 193 (1): 1–12. doi: 10.1016/j.jsb.2015.11.003.
- 50Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S., and Carragher, B. (2009). J. Struct. Biol. 166 (2): 205–213.
- 51Hoang, T.V., Cavin, X., Schultz, P., and Ritchie, D.W. (2013). BMC Struct. Biol. 13: 25. doi: 10.1186/1472-6807-13-25.
- 52Roseman, A.M. (2004). J. Struct. Biol. 145 (1–2): 91–99.
- 53Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., Hagel, P., Sitsel, O., Raisch, T., Prumbaum, D., Quentin, D., Roderer, D., Tacke, S., Siebolds, B., Schubert, E., Shaikh, T.R., Lill, P., Gatsogiannis, C., and Raunser, S. (2019). bioRxiv doi: 10.1101/356584.
10.1101/356584 Google Scholar
- 54Lyumkis, D. (2019). J. Biol. Chem. 294 (13): 5181–5197. doi: 10.1074/jbc.REV118.005602.
- 55Zhou, A., Rohou, A., Schep, D.G., Bason, J.V., Montgomery, M.G., Walker, J.E., Grigorieff, N., and Rubinstein, J.L. (2015). bioRxiv 023770. doi: 10.1101/023770.
10.1101/023770 Google Scholar
- 56Scheres, S.H.W. and Chen, S. (2012). Nat. Methods 9 (9): 853–854. doi: 10.1038/nmeth.2115.
- 57Murshudov, G. and Dodson, E. (1997). Simplified Error Estimation a la Cruickshank in Macromolecular Crystallography, in CCP4 Bulletin.
- 58Trabuco, L.G., Villa, E., Mitra, K., Frank, J., and Schulten, K. (2008). Structure 16 (5): 673–683. doi: 10.1016/j.str.2008.03.005.
- 59van Heel, M. and Schatz, M. (2005). J. Struct. Biol. 151 (3): 250–262. doi: 10.1016/j.jsb.2005.05.009.
- 60Kucukelbir, A., Sigworth, F.J., and Tagare, H.D. (2014). Nat. Methods 11 (1): 63–65. doi: 10.1038/nmeth.2727.
- 61Yu, I., Nguyen, L., Avaylon, J., Wang, K., Lai, M., and Zhou, Z.H. (2018). J. Struct. Biol. 204 (2): 313–318. doi: 10.1016/j.jsb.2018.08.004.
- 62Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Acta Crystallogr. Sect. D 66 (4): 486–501. doi: 10.1107/S0907444910007493.
- 63Hryc, C.F., Chen, D.-H., Afonine, P.V., Jakana, J., Wang, Z., Haase-Pettingell, C., Jiang, W., Adams, P.D., King, J.A., Schmid, M.F., and Chiu, W. (2017). Proc. Natl. Acad. Sci. U.S.A. 114 (12): 3103. doi: 10.1073/pnas.1621152114.
- 64Zhou, N., Wang, H., and Wang, J. (2017). Sci. Rep. 7 (1): 2664. doi: 10.1038/s41598-017-02725-w.
- 65DiMaio, F. and Chiu, W. (2016). Methods Enzymol. 579: 255–276. doi: 10.1016/bs.mie.2016.06.003.
- 66Afonine, P.V., Headd, J.J., Terwilliger, T.C., and Adams, P.D. (2013). Comput. Crystallogr. Newsl. 4: 43–44.
- 67Nicholls, R.A., Tykac, M., Kovalevskiy, O., and Murshudov, G.N. (2018). Acta Crystallogr. Sect. D 74 (6): 492–505. doi: 10.1107/S2059798318007313.
- 68Kovalevskiy, O., Nicholls, R.A., Long, F., Carlon, A., and Murshudov, G.N. (2018). Acta Crystallogr. Sect. D, Struct. Biol. 74 (Pt 3): 215–227. doi: 10.1107/S2059798318000979.
- 69Croll, T. (2018). Acta Crystallogr. Sect. D 74 (6): 519–530. doi: 10.1107/S2059798318002425.
- 70Afonine, P.V., Klaholz, B.P., Moriarty, N.W., Poon, B.K., Sobolev, O.V., Terwilliger, T.C., Adams, P.D., and Urzhumtsev, A. (2018). Acta Crystallogr. Sect. D 74 (9): 814–840. doi: 10.1107/S2059798318009324.
- 71Wlodawer, A., Li, M., and Dauter, Z. (2017). Structure 25 (10): 1589–1597.e1. doi: 10.1016/j.str.2017.07.012.
- 72Lasker, K., Topf, M., Sali, A., and Wolfson, H.J. (2009). J. Mol. Biol. 388 (1): 180–194. doi: 10.1016/j.jmb.2009.02.031.
- 73DiMasi, J.A., Grabowski, H.G., and Hansen, R.W. (2016). J. Health Econ. 47: 20–33.
- 74Pammolli, F., Magazzini, L., and Riccaboni, M. (2011). Nat. Rev. Drug Discov. 10 (6): 428–438.
- 75Jones, L.H. (2016). Expert Opin. Drug Discov. 11 (7): 623–625. doi: 10.1080/17460441.2016.1182484.
- 76Russell, R.B. and Eggleston, D.S. (2000). Nat. Struct. Biol. 7: 928. doi: 10.1038/80691.
- 77Bassetto, M., Massarotti, A., Coluccia, A., and Brancale, A. (2016). Curr. Opin. Pharmacol. 30: 116–130. doi: 10.1016/j.coph.2016.08.014.
- 78Macalino, S.J.Y., Gosu, V., Hong, S., and Choi, S. (2015). Arch. Pharm. Res. 38 (9): 1686–1701. doi: 10.1007/s12272-015-0640-5.
- 79Rice, W.J., Cheng, A., Noble, A.J., Eng, E.T., Kim, L.Y., Carragher, B., and Potter, C.S. (2018). J. Struct. Biol. 204 (1): 38–44. doi: 10.1016/j.jsb.2018.06.007.
- 80Glaeser, R.M. and Han, B.-G. (2017). Biophys. Rep. 3 (1): 1–7. doi: 10.1007/s41048-016-0026-3.
- 81Tan, Y.Z., Baldwin, P.R., Davis, J.H., Williamson, J.R., Potter, C.S., Carragher, B., and Lyumkis, D. (2017). Nat. Methods 14: 793. doi: 10.1038/nmeth.4347.
- 82Chen, J., Noble, A.J., Kang, J.Y., and Darst, S. (2018). bioRxiv 457267. doi: 10.1101/457267.
10.1101/457267 Google Scholar
- 83Noble, A.J., Dandey, V.P., Wei, H., Brasch, J., Chase, J., Acharya, P., Tan, Y.Z., Zhang, Z., Kim, L.Y., Scapin, G., Rapp, M., Eng, E.T., Rice, W.J., Cheng, A., Negro, C.J., Shapiro, L., Kwong, P.D., Jeruzalmi, D., des Georges, A., Potter, C.S., and Carragher, B. (2018). eLife 7: e34257. doi: 10.7554/eLife.34257.
- 84Frank, J. (2017). J. Struct. Biol. 200 (3): 303–306. doi: 10.1016/j.jsb.2017.06.005.
- 85Zhang, Y., Sun, B., Feng, D., Hu, H., Chu, M., Qu, Q., Tarrasch, J.T., Li, S., Sun Kobilka, T., Kobilka, B.K., and Skiniotis, G. (2017). Nature 546: 248. doi: 10.1038/nature22394.
- 86Kang, Y., Kuybeda, O., de Waal, P.W., Mukherjee, S., Van Eps, N., Dutka, P., Zhou, X.E., Bartesaghi, A., Erramilli, S., Morizumi, T., Gu, X., Yin, Y., Liu, P., Jiang, Y., Meng, X., Zhao, G., Melcher, K., Ernst, O.P., Kossiakoff, A.A., Subramaniam, S., and Xu, H.E. (2018). Nature 558 (7711): 553–558. doi: 10.1038/s41586-018-0215-y.
- 87Cheng, A., Eng, E.T., Alink, L., Rice, W.J., Jordan, K.D., Kim, L.Y., Potter, C.S., and Carragher, B. (2018). J. Struct. Biol. 204 (2): 270–275. doi: 10.1016/j.jsb.2018.07.015.
- 88Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J.M., and Baumeister, W. (2014). Proc. Natl. Acad. Sci. U.S.A. 111 (44): 15635. doi: 10.1073/pnas.1418377111.
- 89Danev, R. and Nagayama, K. (2001). Ultramicroscopy 88 (4): 243–252. doi: 10.1016/S0304-3991(01)00088-2.
- 90Murata, K., Liu, X., Danev, R., Jakana, J., Schmid, M.F., King, J., Nagayama, K., and Chiu, W. (2010). Structure 18 (8): 903–912. doi: 10.1016/j.str.2010.06.006.
- 91Dai, W., Fu, C., Khant, H.A., Ludtke, S.J., Schmid, M.F., and Chiu, W. (2014). Nat. Protoc. 9 (11): 2630–2642. doi: 10.1038/nprot.2014.176.
- 92Liang, Y.-L., Khoshouei, M., Radjainia, M., Zhang, Y., Glukhova, A., Tarrasch, J., Thal, D.M., Furness, S.G.B., Christopoulos, G., Coudrat, T., Danev, R., Baumeister, W., Miller, L.J., Christopoulos, A., Kobilka, B.K., Wootten, D., Skiniotis, G., and Sexton, P.M. (2017). Nature 546: 118. doi: 10.1038/nature22327.
- 93Liang, Y.-L., Khoshouei, M., Glukhova, A., Furness, S.G.B., Zhao, P., Clydesdale, L., Koole, C., Truong, T.T., Thal, D.M., Lei, S., Radjainia, M., Danev, R., Baumeister, W., Wang, M.-W., Miller, L.J., Christopoulos, A., Sexton, P.M., and Wootten, D. (2018). Nature 555: 121. doi: 10.1038/nature25773.
- 94García-Nafría, J., Lee, Y., Bai, X., Carpenter, B., and Tate, C.G. (2018). eLife 7: e35946. doi: 10.7554/eLife.35946.
- 95Danev, R., Tegunov, D., and Baumeister, W. (2017). eLife 6: e23006. doi: 10.7554/eLife.23006.
- 96Gómez-Blanco, J., de la Rosa-Trevín, J.M., Marabini, R., del Cano, L., Jiménez, A., Martínez, M., Melero, R., Majtner, T., Maluenda, D., Mota, J., Rancel, Y., Ramírez-Aportela, E., Vilas, J.L., Carroni, M., Fleischmann, S., Lindahl, E., Ashton, A.W., Basham, M., Clare, D.K., Savage, K., Siebert, C.A., Sharov, G.G., Sorzano, C.O.S., Conesa, P., and Carazo, J.M. (2018). J. Struct. Biol. 204 (3): 457–463. doi: 10.1016/j.jsb.2018.10.001.
- 97(2016). Nat. Methods 13: 381. doi: 10.1038/nmeth.3862.
10.1038/nmeth.3862 Google Scholar
- 98Pereira, J. and Lamzin, V.S. (2017). IUCrJ 4: 657–670. doi: 10.1107/S2052252517008466.
- 99Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart, P.H., Hung, L.-W., Read, R.J., and Adams, P.D. (2008). Acta Crystallogr. Sect. D 64 (1): 61–69. doi: 10.1107/S090744490705024X.
- 100Cowtan, K. (2006). Acta Crystallogr. Sect. D: Bio. Crystallogr. 62 (9): 1002–1011. doi: 10.1107/S0907444906022116.
- 101Sharff, A., Keller, P., Vonrhein, C., Smart, O., Womack, T., Flensburg, C., Paciorek, C. and Bricogne, G. (2011). Pipedream, version 1.2.3, Global Phasing Ltd, Cambridge, UK.
- 102Jakobi, A.J., Wilmanns, M., and Sachse, C. (2017). eLife 6: e27131. doi: 10.7554/eLife.27131.
- 103Terwilliger, T.C., Sobolev, O.V., Afonine, P.V., and Adams, P.D. (2018). Acta Crystallogr. Sect. D, Struct. Biol. 74 (Pt 6): 545–559. doi: 10.1107/S2059798318004655.
- 104Terwilliger, T.C., Adams, P.D., Afonine, P.V., and Sobolev, O.V. (2018). Nat. Methods 15 (11): 905–908. doi: 10.1038/s41592-018-0173-1.
- 105Igaev, M., Kutzner, C., Bock, L.V., Vaiana, A.C., and Grubmüller, H. (2019). eLife 8: e43542. doi: 10.7554/eLife.43542.
- 106van Zundert, G.C.P., Melquiond, A.S.J., and Bonvin, A.M.J.J. (2015). Structure 23 (5): 949–960. doi: 10.1016/j.str.2015.03.014.
- 107McGreevy, R., Singharoy, A., Li, Q., Zhang, J., Xu, D., Perozo, E., and Schulten, K. (2014). Acta Crystallogr. Sect. D 70 (9): 2344–2355. doi: 10.1107/S1399004714013856.
- 108Shi, D., Nannenga, B.L., Iadanza, M.G., and Gonen, T. (2013). eLife 2: e01345. doi: 10.7554/eLife.01345.
- 109Gruene, T., Wennmacher, J.T.C., Zaubitzer, C., Holstein, J.J., Heidler, J., Fecteau-Lefebvre, A., De Carlo, S., Müller, E., Goldie, K.N., Regeni, I., Li, T., Santiso-Quinones, G., Steinfeld, G., Handschin, S., van Genderen, E., van Bokhoven, J.A., Clever, G.H., and Pantelic, R. (2018). Angew. Chem. Int. Ed. 57 (50): 16313–16317. doi: 10.1002/anie.201811318.
- 110Merino, F. and Raunser, S. (2017). Angew. Chem. Int. Ed. 56 (11): 2846–2860. doi: 10.1002/anie.201608432.
- 111Bai, X.-C., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S.H.W., and Shi, Y. (2015). Nature 525: 212. doi: 10.1038/nature14892.
- 112Bai, X.-C., Rajendra, E., Yang, G., Shi, Y., and Scheres, S.H.W. (2015). eLife 4: e11182. doi: 10.7554/eLife.11182.
- 113Fitzpatrick, A.W.P., Falcon, B., He, S., Murzin, A.G., Murshudov, G., Garringer, H.J., Crowther, R.A., Ghetti, B., Goedert, M., and Scheres, S.H.W. (2017). Nature 547: 185. doi: 10.1038/nature23002.
- 114Zhang, Z., Liang, W.G., Bailey, L.J., Tan, Y.Z., Wei, H., Wang, A., Farcasanu, M., Woods, V.A., McCord, L.A., Lee, D., Shang, W., Deprez-Poulain, R., Deprez, B., Liu, D.R., Koide, A., Koide, S., Kossiakoff, A.A., Li, S., Carragher, B., Potter, C.S., and Tang, W.-J. (2018). eLife 7: e33572. doi: 10.7554/eLife.33572.
- 115Tagari, M., Newman, R., Chagoyen, M., Carazo, J.-M., and Henrick, K. (2002). Trends Biochem. Sci. 27 (11): 589. doi: 10.1016/S0968-0004(02)02176-X.
- 116Madej, M.G. and Ziegler, C.M. (2018). Pflüg. Arch. – Eur. J. Phy. 470 (2): 213–225. doi: 10.1007/s00424-018-2107-2.
- 117Bayburt, T.H. and Sligar, S.G. (2010). FEBS Lett. 584 (9): 1721–1727. doi: 10.1016/j.febslet.2009.10.024.
- 118Qiu, W., Fu, Z., Xu, G.G., Grassucci, R.A., Zhang, Y., Frank, J., Hendrickson, W.A., and Guo, Y. (2018). Proc. Natl. Acad. Sci. 115 (51): 12985. doi: 10.1073/pnas.1812526115.
- 119Gao, Y., Cao, E., Julius, D., and Cheng, Y. (2016). Nature 534: 347. doi: 10.1038/nature17964.
- 120Singh, A.K., Saotome, K., McGoldrick, L.L., and Sobolevsky, A.I. (2018). Nat. Commun. 9 (1): 2465. doi: 10.1038/s41467-018-04828-y.
- 121Wang, W. and MacKinnon, R. (2017). Cell 169 (3): 422–430.e10. doi: 10.1016/j.cell.2017.03.048.
- 122Safdari, H.A., Pandey, S., Shukla, A.K., and Dutta, S. (2018). Trends Cell Biol. 28 (8): 591–594. doi: 10.1016/j.tcb.2018.06.002.
- 123Gutmann, T., Kim, K.H., Grzybek, M., Walz, T., and Coskun, Ü. (2018). J. Cell Biol. 217 (5): 1643. doi: 10.1083/jcb.201711047.
- 124Scapin, G., Dandey, V.P., Zhang, Z., Prosise, W., Hruza, A., Kelly, T., Mayhood, T., Strickland, C., Potter, C.S., and Carragher, B. (2018). Nature 556: 122. doi: 10.1038/nature26153.
- 125Weis, F., Menting, J.G., Margetts, M.B., Chan, S.J., Xu, Y., Tennagels, N., Wohlfart, P., Langer, T., Müller, C.W., Dreyer, M.K., and Lawrence, M.C. (2018). Nat. Commun. 9 (1): 4420–4420. doi: 10.1038/s41467-018-06826-6.
- 126Brown, A. and Shao, S. (2018). Curr. Opin. Struct. Biol. 52: 1–7. doi: 10.1016/j.sbi.2018.07.001.
- 127Shalev-Benami, M., Zhang, Y., Rozenberg, H., Nobe, Y., Taoka, M., Matzov, D., Zimmerman, E., Bashan, A., Isobe, T., Jaffe, C.L., Yonath, A., and Skiniotis, G. (2017). Nat. Commun. 8 (1): 1589. doi: 10.1038/s41467-017-01664-4.
- 128Liu, Z., Gutierrez-Vargas, C., Wei, J., Grassucci, R.A., Ramesh, M., Espina, N., Sun, M., Tutuncuoglu, B., Madison-Antenucci, S., Woolford, J.L., Tong, L., and Frank, J. (2016). Proc. Natl. Acad. Sci. U.S.A. 113 (43): 12174. doi: 10.1073/pnas.1614594113.
- 129Wong, W., Bai, X.-C., Sleebs, B.E., Triglia, T., Brown, A., Thompson, J.K., Jackson, K.E., Hanssen, E., Marapana, D.S., Fernandez, I.S., Ralph, S.A., Cowman, A.F., Scheres, S.H.W., and Baum, J. (2017). Nat. Microbiol. 2: 17031. doi: 10.1038/nmicrobiol.2017.31.
- 130Earl, L.A. and Subramaniam, S. (2016). Proc. Natl. Acad. Sci. U.S.A. 113 (32): 8903. doi: 10.1073/pnas.1609721113.
- 131Liljeroos, L., Malito, E., Ferlenghi, I., and Bottomley, M.J. (2015). J. Immunol. Res. 2015: 17. doi: 10.1155/2015/156241.
- 132Dingens, A.S., Acharya, P., Haddox, H.K., Rawi, R., Xu, K., Chuang, G.-Y., Wei, H., Zhang, B., Mascola, J.R., Carragher, B., Potter, C.S., Overbaugh, J., Kwong, P.D., and Bloom, J.D. (2018). PLoS Pathog. 14 (7): e1007159. doi: 10.1371/journal.ppat.1007159.
- 133Bianchi, M., Turner, H.L., Nogal, B., Cottrell, C.A., Oyen, D., Pauthner, M., Bastidas, R., Nedellec, R., McCoy, L.E., Wilson, I.A., Burton, D.R., Ward, A.B., and Hangartner, L. (2018). Immunity 49 (2): 288–300.e8. doi: 10.1016/j.immuni.2018.07.009.
- 134Gallagher, J.R., McCraw, D.M., Torian, U., Gulati, N.M., Myers, M.L., Conlon, M.T., and Harris, A.K. (2018). Vaccines 6 (2): 31. doi: 10.3390/vaccines6020031.
- 135Stuart, D.I., Subramaniam, S., and Abrescia, N.G.A. (2016). Nat. Methods 13: 607. doi: 10.1038/nmeth.3946.