Metal Carbides
Jae Sung Lee
Pohang University of Science and Technology, Pohang, South Korea
Search for more papers by this authorJae Sung Lee
Pohang University of Science and Technology, Pohang, South Korea
Search for more papers by this authorAbstract
Transition metal carbides of early transition metals attracted considerable attention as catalysts because of their availability with high specific areas and surface cleanness. Their refractory properties render them resistance against attrition and sintering under reaction conditions. They are catalytically active in many reactions, particularly those involving hydrogen transfer such as hydrotreating (hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation), hydrogenation, dehydrogenation, isomerization, hydrogenolysis, reforming, and aromatization. Recently, they are also receiving attention as electrocatalysis. In many of these reactions, metal carbides behave like group 8–10 metals (Pt, Pd, Rh, Ru, etc) of high cost and limited supply and have potential to replace them. Structure, bonding, synthesis, and surface reactivity of transition metal carbides are discussed.
Bibliography
- 1 S. T. Oyama and G. L. Haller, in G. C. Bonds and G. Webbs, eds., Catalysis, Specialist Periodical Reports, Vol. 5, The Chemical Society, London, 1981, p. 333.
- 2
L. Leclercq, in
J. P. Bonnelle,
B. Delmon, and
E. Derouane, eds.,
Surface Properties and Catalysis by Nonmetals,
Reidel,
Dordrecht, the Netherlands,
1983,
p. 433.
10.1007/978-94-009-7160-8_18 Google Scholar
- 3 R. B. Levy, in J. J. Burton and R. L. Garten, eds., Advanced Materials in Catalysis, Academic Press, Inc., New York, 1977, p. 101.
- 4 S. T. Oyama, Catal. Today 15, 179–200 (1992).
- 5 S. T. Oyama, in S. T. Oyama, ed., The Chemistry of Transition Metal Carbides and Nitrides, Blacke Academic and Professional, Glasgow, UK, 1996, p. 1.
- 6 L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press, Inc., New York, 1971.
- 7 E. K. Storms, The Refractory Carbides, Academic Press, Inc., New York, 1967.
- 8 R. Freer, ed., The Physics and Chemisry of Carbides, Nitrides, and Borides, Kluwer Academic Publishers, Dortrecht, the Netherlands, 1990.
- 9
V. A. Gubanov,
A. L. Ianovsky, and
V. P. Zhukov,
Electronic Structure of Refractory Carbides and Nitrides,
Cambridge University Press,
Cambridge, UK,
1994.
10.1017/CBO9780511629037 Google Scholar
- 10 Y. G. Gogotsi and R. A. Andrievski, eds., Materials Science of Carbides, Nitrides, and Borides, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1999.
- 11 S. T. Oyama and R. Kieffer, in M. E. Howe-Grant, ed., Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., John Wiley & Sons, Inc., New York, 1992, p. 841.
- 12 P. Ettmayer and W. Lengauer, in R. B. King, ed., Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Inc., Chichester, UK, 1994, p. 519.
- 13(a) L. Volpe and M. Boudart, J. Solid State Chem. 59, 332 (1985); (b) J. Solid State Chem. 59, 348 (1985).
- 14 F. H. Ribeiro, R. A. Dalla Betta, G. J. Guskey, and M. Boudart, Chem. Mater. 3, 805 (1991).
- 15 R. Kapoor and S. T. Oyama, J. Solid State Chem. 120, 320 (1995).
- 16
V. L. S. Tesixeira da Silva,
M. Schmal, and
S. T. Oyama,
J. Solid State Chem.
123,
168
(1996).
10.1006/jssc.1996.0165 Google Scholar
- 17 R. L. Levy and M. Boudart, Science 181, 547 (1973).
- 18 L. I. Johansson, Surf. Sci. Rep. 21, 177 (1995).
- 19 L. H. Bennet, J. R. Cuthill, A. J. McAlister, N. E. Erikson, and R. E. Warson, Science 187, 858 (1975).
- 20 J. G. Chen, J. Eng. Jr., and S. P. Kelty, Catal. Today 43, 147 (1998).
- 21 J. E. Houston, G. E. Laramore, and R. L. Park, Science 258, 547 (1974).
- 22 V. Heine, Phys. Rev. 153, 673 (1967).
- 23 E. Siegel, Semicond. Insul. 5, 47 (1979).
- 24 M. E. Eberhart and J. M. MacLaren, in Ref. 5, p. 107.
- 25 J. G. Chen, Chem. Rev. 96, 1477–1498 (1996).
- 26 R. J. Colton and J. W. Rabalais, Inorg. Chem. 15, 236 (1976).
- 27 G. Leclercq, M. Kamal, J. M. Giraudon, P. Devassine, L. Feigenbaum, L. Leclercq, A. Frennet, J. M. Bastin, A. Löfberg, S. Decker, and M. Dufour, J. Catal. 158, 142 (1996).
- 28 Y. Hara, N. Minami and H. Itagaki, Appl. Catal., A 323, 86 (2007).
- 29 M. J. Ledoux, S. Hantzer, C. Pham-Huu, and J. Guille, J. Catal. 114, 176 (1988).
- 30 L. Leclercq, M. Provost, H. Paster, J. Grimblot, A. M. Hardy, L. Gengembre, and G. Leclercq, J. Catal. 117, 371 (1989).
- 31 T. Hyeon, M. Fang, and K. S. Suslick, J. Am. Chem. Soc. 118, 5492 (1996).
- 32(a) D. Zeng and M. J. Hampden-Smith, Chem. Mater. 4, 968 (1992); (b) Chem. Mater. 5, 681 (1993).
- 33 R. Ganesan and J. S. Lee, Angew. Chem., Int. Ed. 44, 6557 (2005).
- 34 R. Ganesan, D. J. Ham, and J. S. Lee, Electrochem. Commun. 9, 2576 (2007).
- 35 D. J. Ham, Y. K. Kim, S. H. Han, and J. S. Lee, Catal. Today 132, 117 (2008).
- 36 T. Morishita, Y. Soneda, H. Hatori, and M. Inagaki, Electrochim. Acta 52, 2487 (2007).
- 37 M. B. Zellner and J. G. Chen, Catal. Today 99, 299 (2005).
- 38 E. C. Weigert, J. South, S. A. Rykov and J. G. Chen, Catal. Today 99, 285 (2005).
- 39 S. V. Pol, V. G. Pol, and A. Gedanken, Adv. Mater. 18, 2023 (2006).
- 40 S. Shanmugam, D. S. Jacoh, and A. Gedanken, J. Phys. Chem. B 109, 19056 (2005).
- 41 J. C. Lytle, N. R. Denny, R. T. Turgeon, and A. Stein, Adv. Mater. 19, 3682 (2007).
- 42 J. S. Lee, S. T. Oyama, and M. Boudart, J. Catal. 106, 125 (1987).
- 43 J. S. Lee, L. Volpe, F. H. Ribeiro, and M. Boudart, J. Catal. 112, 44 (1988).
- 44 K. T. Jung, W. B. Kim, C. H. Rhee, and J. S. Lee, Chem. Mater. 16, 307 (2004).
- 45 G. S. Ranhotra, G. W. Haddix, A. T. Bell, and J. A. Reimer, J. Catal. 108, 24 (1987).
- 46 S. Li and J. S. Lee, J. Catal. 162, 76 (1996).
- 47 E. Iglesia, F. H. Ribeiro, M. Boudart, and J. E. Baumgartner, Catal. Today 15, 307 (1992).
- 48 I. Barin and O. Knacke, Thermodynamic Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973.
- 49
L. Leclercq,
K. Imura,
S. Yoshida,
T. Barbee, and
M. Boudart, in
B. Delmon,
P. Grange,
P. A. Jacobs, and
G. Poncelet, eds.,
Preparation of Catalysts II,
Elsevier,
Amsterdam, the Netherlands,
1979,
p. 627.
10.1016/S0167-2991(09)60240-8 Google Scholar
- 50 M. J. Ledoux, C. Pham-Huu, J. Guille, and H. Dunlop, J. Catal. 134, 383 (1992).
- 51 J. S. Lee, S. Locatalli, S. T. Oyama, and M. Boudart, J. Catal. 125, 157 (1990).
- 52 J. S. Lee, M. H. Yeom, K. Y. Park, I. Nam, J. S. Chung, Y. G. Kim, and S. H. Moon, J. Catal. 128, 126 (1991).
- 53 T. Miya, I. Shishikura, M. Msakuni, and M. Nagai, Chem. Lett. 561 (1996).
- 54 T. Bécue, J.-M. Manoli, C. Potvin, R. J. Davis, and G. Djéga-Mariadassou, J. Catal. 186, 110 (1999).
- 55 N. A. Dhas and A. Gedanken, Chem. Mater. 9, 3144 (1997).
- 56 J. Lemaitre, B. Vidick, and B. Delmon, J. Catal. 99, 415 (1986).
- 57 M. J. Ledoux, C. Pham-Huu, S. Martin, M. Weibel, and J. L. Guille, C. R. Acad. Sci. Paris 310, 707 (1990).
- 58 H. Zheng, J. Huang, W. Wang and C. Ma, Electrochem. Commun. 7, 1045 (2005).
- 59 H. Pan, J. Lin and Y. P. Feng, Appl. Phys. Lett. 90, 223104 (2007).
- 60 L. Hu, S. Ji, T. Xiao, C. Guo, P. Wu and P. Nie, J. Phys. Chem. B 111, 3599 (2007).
- 61 F. Hu, G. Cui, Z. Wei, and P. K. Shen, Electrochem. Commun. 10, 1303 (2008).
- 62 H. Meng and P. K. Shen, Electrochem. Commun. 8, 588 (2006).
- 63 H. Meng and P. K. Shen, J. Phys. Chem. B 109, 22705 (2005).
- 64 H. Kwon, L. T. Thompson, J. Eng Jr., and J. G. Chen, J. Catal. 190, 60 (2000).
- 65 F. Meunier, P. Delporte, B. Heinrich, C. Bouchy, C. Crouzet, C. Pham-Huu, P. Panissod, J. J. Lerou, P. L. Mills, and M. J. Ledoux, J. Catal. 169, 33 (1997).
- 66
V. L. S. Tesixeira da Silva,
E. I. Ko,
M. Schmal, and
S. T. Oyama,
Chem. Mater.
7,
179
(1995).
10.1021/cm00049a027 Google Scholar
- 67 H. S. Kim, G. Bugli, and G. Djega-Mariadassou, J. Solid State Chem. 142, 100 (1999).
- 68 J. B. Claridge, A. P. E. York, A. J. Brungs, and M. L. H. Green, Chem. Mater. 12, 132 (2000).
- 69 S. T. Oyama, J. C. Schlatter, J. E. Metcalfe and J. M. Lambert, Ind. Eng. Chem. Res. 27, 1639 (1988).
- 70 Y. Iwama, N. Ichikuni, K. K. Bando and S. Shimazu, Appl. Catal., A 323, 104 (2007).
- 71 K. Huo, Y. Hu, Y. Ma, Y. Lu, Z. Hu, and Y. Chen, Nanotechnology 18, 145615 (2007).
- 72 T. Yu, Y. Deng, L. Wang, R. Liu, L. Zhang, B. Tu, and D. Zhao, Adv. Mater. 19, 2301 (2007).
- 73 S. T. Oyama, C. C. Yu, and S. Ramanathan, J. Catal. 184, 535 (1999).
- 74 S. Decker, A. Lofberg, J. M. Bastin, and A. Frennet, Catal. Lett. 44, 229 (1997).
- 75 E. I. Ko and R. J. Madix, Surf. Sci. 109, 221 (1981).
- 76 J. S. Lee, K. H. Lee, and J. Y. Lee, J. Phys. Chem. 96, 362 (1992).
- 77 T. Aizawa, W. Hayami, R. Souda, S. Otani, and Y. Ishizawa, Surf. Sci. 381, 157 (1997).
- 78 J. Wang, M. Castonguay, P. H. McBreen, R. Ramanathan, and S. T. Oyama, in Ref. 5, p. 426.
- 79 K. J. Leary, J. N. Michaels, and A. M. Stacy, J. Catal. 101, 301 (1986).
- 80 N. I. Ilchenko and Y. I. Pyatnitsky, in Ref. 5, p. 311.
- 81 S. Ramanathan and S. T. Oyama, J. Phys. Chem. 99, 16365 (1995).
- 82 D. J. Sajkowski and S. T. Oyama, Appl. Catal., A 134, 339 (1996).
- 83 P. A. Aegerter, W. W. C. Quigley, G. J. Simpson, D. D. Ziegler, J. W. Logan, K. R. McCrea, S. Glazier, and M. E. Bussel, J. Catal. 164, 109 (1996).
- 84 J.-G. Choi, J. R. Brenner, and L. T. Thompson, J. Catal. 154, 33 (1995).
- 85 B. Dhandapani, T. S. Clair, and S. T. Oyama, Appl. Catal., A 168, 219 (1998).
- 86 H. K. Park, D. S. Kim, and K. L. Kim, Korean J. Chem. Eng. 15, 625 (1998).
- 87 C. C. Yu, S. Ramanathan, B. Dhandapani, J. G. Chen, and S. T. Oyama, J. Phys. Chem. B 101, 512 (1997).
- 88 S. Li, J. S. Lee, T. Hyeon, and K. S. Suslick, Appl. Catal. A 184, 1 (1999).
- 89 J. S. Lee and M. Boudart, Appl. Catal. 19, 207 (1985).
- 90 K. R. McCrea, J. W. Logan, T. L. Tarbuck, J. L. Heiser, and M. E. Bussel, J. Catal. 171, 266 (1997).
- 91 S. Li and J. S. Lee, J. Catal. 178, 119 (1998).
- 92 S. Li and J. S. Lee, J. Catal. 173, 134 (1998).
- 93 J. M. Muller and F. G. Gault, Bull. Soc. Chim. Fr. 2, 416 (1970).
- 94 J. H. Sinfelt and D. J. C. Yates, Nat. Phys. Sci. 229, 27 (1971).
- 95 J. S. Lee, M. H. Yeom, and D.-S. Lee, J. Mol. Catal. 62, L45 (1990).
- 96 M. K. Neylon, S. Choi, H. Kwon, K. E. Curry, and L. T. Thompson, Appl. Catal. A 183, 253 (1999).
- 97 P. D. Gallo, F. Meunier, C. Pham-Huu, C. Crouzet, and M. J. Ledoux, Ind. Eng. Chem. Res. 36, 4166 (1997).
- 98 J. S. Lee, B. J. Song, S. Li, and H. C. Woo, in Ref. 5, p. 398.
- 99 C. Bouchy, C. Pham-Huu, B. Heinrich, C. Chaumont, and M. J. Ledoux, J. Catal. 190, 92 (2000).
- 100 G. A. Gaziev, G. V. Samsonov, O. V. Kylon, S. Z. Rozinsky, E. A. Forika, and I. F. Yanovskii, Dokl. Akad. Nauk. SSSR 140, 863 (1961).
- 101 G. V. Samsonov, T. G. Bulankova, P. A. Khodak, E. M. Prshedromirskaya, E. M. Sinenilkova, and V. M. Sleptsov, Kinet. Katal. 10, 105 (1969).
- 102 J. G. Chen, B. Fruhberger, J. Eng Jr., and B. E. Bent, J. Mol. Catal. 131, 285 (1998).
- 103 M. E. Harlin, A. O. I. Krause, B. Heinrich, C. Pham-Huu, and M. J. Ledoux, Appl. Catal. A 185, 311 (1999).
- 104 G. Horanyi and G. Vertes, J. Chem. Soc., Perkin Trans. 2 8, 827 (1975).
- 105 G. Horanyi and E. M. Rizmayer, React. Kinet. Catal. Lett. 13, 21 (1980).
- 106 M. Logan, A. Gellman, and G. A. Somorjai, J. Catal. 94, 60 (1985).
- 107 J.-S. Choi, G. Bugli, and G. Djega-Mariadassou, J. Catal. 193, 238 (2000).
- 108 I. Kojima, E. Miyazaki, Y. Inoue, and Y. Yasumori, J. Catal. 59, 472 (1979).
- 109 E. Miyazaki, I. Kojima, and M. Orita, J. Chem. Soc., Chem. Commun. 108 (1985).
- 110 J. S. Lee and M. Boudart, Catal. Lett. 8, 107 (1991).
- 111 R. B. Anderson, The Fischer–Tropsch Synthesis, Academic Press, Inc., Orlando, Fla., 1984, p. 159.
- 112 M. Saito and R. B. Anderson, J. Catal. 63, 438 (1980).
- 113 H. G. Kim, K. H. Lee, and J. S. Lee, Res. Chem. Intermed. 26, 27 (2000).
- 114 J. S. Lee and M. Boudart, Catal. Lett. 20, 97 (1993).
- 115 K. Y. Park, W. K. Seo, and J. S. Lee, Catal. Lett. 11, 349 (1991).
- 116 H. C. Woo, K. Y. Park, Y. G. Kim, I. Nam, J. S. Chung, and J. S. Lee, Appl. Catal. 75, 267 (1991).
- 117 J. S. Lee, S. Kim, and Y. G. Kim, Topics Catal. 2, 127 (1995).
- 118 M. Saito and R. B. Anderson, J. Catal. 67, 296 (1981).
- 119 M. Nagai, K. Oshikawa, T. Kurakami, T. Miyao, and S. Omi, J. Catal. 180, 14 (1998).
- 120 J. Patt, D. J. Moon, C. Phillips, and L. T. Thompson, Catal. Lett. 65, 193 (2000).
- 121 I. Kojima, E. Miyazaki, Y. Inoue, and Y. Yasumori, Bull. Chem. Soc. Jpn. 58, 611 (1985).
- 122 L. Leclercq, A. Almazouari, M. Dufour, and G. Leclercq, in , Ref. 5, p. 345.
- 123 M. C. J. Bradford and M. A. Vannice, Catal. Rev.—Sci. Eng. 41, 1 (1999).
- 124 J. B. Claridge, A. P. E. York, A. J. Brungs, C. Marquz-Alvarez, J. Sloan, S. C. Tsang, and M. L. H. Green, J. Catal. 180, 85 (1998).
- 125 A. J. Brungs, A. P. E. York, and M. L. H. Green, Catal. Lett. 57, 65 (1999).
- 126 L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, and Y. Xu, Catal. Lett. 21, 35 (1993).
- 127 D. Wang, J. H. Lunsford, and M. P. Rosynek, J. Catal. 169, 85 (1997).
- 128 S. Liu, L. Wang, R. Ohnishi, and M. Ichikawa, J. Catal. 181, 175 (1999).
- 129 F. Solymosi, J. Cserenyi, A. Szoke, T. Bansagi, and A. Oszko, J. Catal. 165, 150 (1997).
- 130 R. W. Borry III, Y. H. Kim, A. Huffsmith, J. A. Reimer, and E. Iglesia, J. Phys. Chem. B 103, 5787 (1999).
- 131 J.-Z. Zhang, M. A. Long, and R. F. Howe, Catal. Today 44, 293 (1998).
- 132 Y. Shu, S. Xu, L. Wong, X. Wang, and J. Guo, J. Catal. 170, 11 (1997).
- 133 R. Ohnishi, S. Liu, Q. Dong, L. Wang, and M. Ichikawa, J. Catal. 182, 92 (1999).
- 134 M. Nakazawa and H. Okamoto, Proc. Mater. Res. Soc. 48, 85 (1985).
- 135 P. N. Ross and P. Stonehart, J. Catal. 39, 298 (1975).
- 136 L. Leclercq, M. Prigent, F. Daubrege, L. Gengembre, and G. Leclercq, Stud. Surf. Sci. Catal. 30, 417 (1987).
- 137
M. Boudart,
S. T. Oyama, and
L. Leclercq, in
T. Seiyama and
K. Tanabe, eds.,
Proceedings of the 7th International Congress on Catalysis,
Elsevier,
Amsterdam, the Netherlands,
1981,
p. 578.
10.1016/S0167-2991(09)60300-1 Google Scholar
- 138 J.-G. Choi, J. Ha, and J.-W. Hong, Appl. Catal. A 168, 47 (1998).
- 139 K. M. Andersson, and L. Bergström, Int. J. Refract. Met. H. 18, 121 (2000).
- 140 M. Jain, R. K. Sadangi, W. R. Cannon, and B. H. Kear, Scr. Mater. 44, 2099 (2001).
- 141 M. H. Ghandehari, J. Electrochem. Soc. 127, 2144 (1980).
- 142 H. Binder, A. Köhling, W. Kuhn, W. Linder, and G. Sandstede, Nature 224, 1299 (1969).
- 143 P. R. Patil, S. H. Pawar, and P. S. Patil, Solid-State Ionics 136–137, 505 (2000).
- 144 S. Sutthiruangwong and G. Mori, Int. J. Refract. Met. H. 21, 135 (2003).
- 145 H. Scholl, B. Hofman, and A. Rauscher, Electrochim. Acta 37, 447 (1992).
- 146 K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, and K. Ota, Electrochim. Acta 49, 3479 (2004).
- 147 C. D. A. Brady, E. J. Rees, and G. T. Burstein, J. Power Sources 179, 17 (2008).
- 148 H. H. Hwu, B. D. Polizzotti, and J. G. Chen, J. Phys. Chem. B 105, 10045 (2001).
- 149 M. K. Jeon, H. Daimon, K. R. Lee, A. Nakahara, and S. I. Woo, Electrochem. Commun. 9, 2692 (2007).
- 150 D. R. McIntyre, G. T. Burstein, and A. Vossen, J. Power Sources 107, 67 (2002).
- 151 M. Nagai, M. Yoshida, and H. Tominaga, Electrochim. Acta 52, 5430 (2007).
- 152 X. G. Yang and C. Y. Wang, Appl. Phys. Lett. 86, 224104 (2005).
- 153 N. Liu, K. Kourtakis, J. C. Figueroa, and J. G. Chen, J. Catal. 215, 254 (2003).
- 154 E. C. Weigert, A. L. Stottlemyer, M. B. Zellner, and J. G. Chen, J. Phys. Chem. C 111, 14617 (2007).
- 155 J. B. Joo, J. S. Kim, P. Kim, and J. Yi, Mater. Lett. 62, 3497 (2008).
- 156 H. H. Hwu, and J. G. Chen, Surf. Sci. 536, 75 (2003).
- 157 M. B. Zellner, H. H. Hwu, and J. G. Chen, Surf. Sci. 598, 185 (2005).
- 158 M. Nie, H. Tang, Z. Wei, S. P. Jiang, and P. K. Shen, Electrochem. Commun. 9, 2375 (2007).
- 159 T. Kudo, G. Kawamura, and H. Okamoto, J. Electrochem. Soc. 130, 1491 (1983).
- 160 H. Chhina, S. Campbell, and O. Kesler, J. Power Sources 164, 431 (2007).
- 161 K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, and K. Ota, Electrochim. Acta 49, 3479 (2004).
- 162 M. Nie, P. K. Shen, and Z. Wei, J. Power Sources 167, 69 (2007).
- 163 D. J. Ham, R. Ganesan, and J. S. Lee, Int. J. Hydrogen Energy, 33, 6865 (2008).
- 164 M. Wu, P. K. Shen, Z. Wei, S. Song, and M. Nie, J. Power Sources 166, 310 (2007).
- 165 L. Ma, S. Sui, and Y. Zhai, J. Power Sources 177, 470 (2008).