Kinetics of Catalyzed Reactions—Heterogeneous
Abstract
The kinetics of heterogeneously catalyzed reactions are challenging many scientists in various fields. Catalysis is of utmost importance on the route to a sustainable society and, hence, a fundamental understanding of catalytic phenomena is of great importance. This contribution presents the requirements in order to adequately measure the intrinsic rates of catalytic reactions and how these rates can be assessed through proposed reaction mechanisms and corresponding kinetic models.
Bibliography
- 1
I. Chorkendorff and
J. W. Niemantsverdriet,
Concepts of Modern Catalysis and Kinetics,
Wiley-VCH,
Weinheim, Germany,
2003,
xvii,
452 p.
10.1002/3527602658 Google Scholar
- 2 G. F. Froment and K. B. Bischoff, Chemical Reactor Analysis and Design. 2nd ed., Wiley series in chemical engineering, John Wiley & Sons, New York, 1990, xxxiv, 664 p.
- 3 R. A. Potyrailo and W. F. Maier, Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials, CRC and Taylor & Francis, Boca Raton, Fla., 2007, 473 p.; Ref. 8, p. of plates.
- 4 A. Holzwarth and co-workers, Catal. Today 67, 309–318 (2001).
- 5 J. M. Serra and co-workers, Catal. Today, 81, 393–403 (2003).
- 6 W. F. Maier, K. Stowe, and S. Sieg, Angew. Chem., Int. Ed. 46, 6016-6067 (2007).
- 7 J. Scheidtmann, P. A. Weiss, and W. F. Maier, Appl. Catal. A: Gen. 222 (1–2), 79–89 (2001).
- 8 J. M. Smith, Chemical Engineering Kinetics, 3d ed., McGraw-Hill chemical engineering series, McGraw-Hill, New York, 1981, xix, 676 p.
- 9 A. Sengupta and G. Thodos, AIChE J. 9, 751–754 (1963).
- 10 J. Deacetis and G. Thodos, Ind. Eng. Chem. 52, 1003–1006 (1960).
- 11 E. W. Thiele, J. Ind. Eng. Chem. 31, 916–920 (1939).
- 12 P. B. Weisz and C. D. Prater, Adv. Catal. 6, 143–196 (1954).
- 13 M. E. Davis and R. J. Davis, Fundamentals of Chemical Reaction Engineering, Int. ed., McGraw-Hill, Boston, Mass., 2003, xvi, 368 p.
- 14
M. A. Vannice,
Kinetics of Catalytic Reactions,
Springer,
New York,
2005,
xii,
240 p.
10.1007/b136380 Google Scholar
- 15 R. J. Berger and co-workers, Cattech 5 (1), 30–60 (2001).
- 16 G. F. Froment, Ind. Eng. Chem. 59 (2), 18 (1967).
- 17 R. J. Berger and co-workers, Chem. Eng. J. 90 (1–2), 173–183 (2002).
- 18 Cm. Vandenbl, K. Vanderwi, and Pj. Vandenbe, Chem. Eng. Sci. 24, 681 (1969).
- 19 M. Boudart, Kinetics of Chemical Processes, Prentice-Hall, Englewood Cliffs, N.J., 1968, ix, 246 p.
- 20 G. B. Marin, J. H. B. J. Hoebink, and L. Guczi, Appl. Catal. A: Gen. 187 (1), 1 (1999).
- 21 W. L. M. Weerts, M. H. J. M. deCroon, and G. B. Marin, Chem. Eng. Sci. 51, 2583–2588 (1996).
- 22 J. A. Dumesic and D. F. Rudd, The Microkinetics of Heterogeneous Catalysis, ACS professional reference book, American Chemical Society, Washington, D.C., 1993, xii, 315 p.
- 23
M. Boudart and
G. Djéga-Mariadassou,
Kinetics of Heterogeneous Catalytic Reactions,
Princeton University Press,
Princeton, N.J.,
1984,
xviii,
222 p.
10.1515/9781400853335 Google Scholar
- 24 S. Katare and co-workers, Ind. Eng. Chem. Res. 43, 3484–3512 (2004).
- 25 D. Farrusseng, Surf. Sci. Rep. 63, 487–513 (2008).
- 26 H. C. Kang and W. H. Weinberg, Chem. Rev. 95, 667–676 (1995).
- 27 R. Dickman, Phys. Rev. A 34, 4246–4250 (1986).
- 28 O. A. Hougen and K. M. Watson, Chemical Process Principles, A Combined Volume consisting of Part 1. Material and Energy Balances; Part 2. Thermodynamics; Part 3. Kinetics and Catalysis, J. Wiley and Sons, New York, 1950, xv, 1107, xvii–xlvii.
- 29 M. G. Evans and M. Polanyi, Trans. Faraday Soc. 34, 11–24 (1938).
- 30 H. Sellers and E. Shustorovich, Surf. Sci. 504 (1–3), 167–182 (2002).
- 31 E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31 (1–3), 5–119 (1998).
- 32
R. A. v. Santen and
M. Neurock,
Molecular Heterogeneous Catalysis: A Conceptual and Computational Approach,
Wiley-VCH,
Weinheim, Germany,
2006,
xiii,
474 p.
10.1002/9783527610846 Google Scholar
- 33 N. Armata and co-workers, Top. Catal. 52, 444–455 (2009).
- 34 M. Neurock, J. Catal. 216 (1–2), 73–88 (2003).
- 35 E. W. Hansen and M. Neurock, J. Catal. 196, 241–252 (2000).
- 36 M. Saeys and co-workers, J. Phys. Chem. B 109, 2064–2073 (2005).
- 37 S. G. Podkolzin and co-workers, J. Phys. Chem. B 105, 8550–8562 (2001).
- 38 A. Logadottir and co-workers, J. Catal. 197, 229–231 (2001).
- 39 M. L. Bocquet and co-workers, J. Am. Chem. Soc. 125, 3119–3125 (2003).
- 40 S. Dapprich and co-workers, J. Mol. Str.-Theochem 462, 1–21 (1999).
- 41 T. Vreven and K. Morokuma, J. Comput. Chem. 21, 1419–1432 (2000).
- 42 V. P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces, Fundamental and Applied Catalysis, Plenum Press, New York, 1991, xi, 314 p.
- 43 E. Shustorovich, Surf. Sc. 176, L863–L872 (1986).
- 44 T. F. Edgar, D. M. Himmelblau, and L. S. Lasdon, Optimization of Chemical Processes, 2nd ed., McGraw-Hill chemical engineering series, McGraw-Hill, New York, 2001, xv, 651 p.
- 45 G. Buzzi-Ferraris and F. Manenti, Chem. Eng. Sci. 64, 1061–1074 (2009).
- 46 G. Buzzi-Ferraris, Catal. Today 52 (2–3), 125–132 (1999).
- 47 L. H. Hosten, Chem. Eng. Sci. 29, 2247–2252 (1974).
- 48 G. F. Froment and R. Mezaki, Chem. Eng. Sci. 25, 293 (1970).
- 49 W. J. Hill, W. G. Hunter, and D. W. Wichern, Technometrics 10 (1), 145 (1968).
- 50 B. M. R. Donckels and co-workers, Chemomet. Intell. Lab. Syst. 95 (1), 53–63 (2009).
- 51 F. J. Dumez, L. H. Hosten, and G. F. Froment, Ind. Eng. Chem. Fundam. 16, 298–301 (1977).
- 52 M. Boudart, D. E. Mears, and M. A. Vannice, Ind. Chim. Belg. 32, 281–284 (1967).