Catalyst Deactivation/Regeneration – Biological
Géraldine Drevon
University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorAlan J. Russell
University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorGéraldine Drevon
University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorAlan J. Russell
University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorAbstract
Biocatalyst inactivation is caused by external stresses, including high pressures and temperatures, extreme pH's, organic media, freezing, drying, and oxidative, chelating, and denaturing agents. These stresses may result either in reversible or irreversible activity loss. The main structural and covalent mechanisms in biocatalyst inactivation such as the disulfide intra- and interexchanges, the deamidation of asparagine residues, the decomposition of disulfide bridges by β-elimination, the hydrolysis of peptide chains, the β-isomerization of asparagine and aspartic acid residues, and amino acid racemization are discussed. The strategies that have been developed to prevent biocatalyst inactivation, i.e. chemical modification immobilization, protein engineering, directed evolution, are briefly presented.
Bibliography
- 1 F. Ahmad, in M. N. Gupta, ed., Thermostability of Enzymes, Springer-Verlag, Berlin, 1993, pp. 96–112.
- 2 C. Tanford, Protein Chem. 23, 121–282 (1968).
- 3
C. Ghélis and
J. Yon, eds.,
Protein Folding,
Academic Press, Inc.,
London,
1982,
pp. 374–418.
10.1016/B978-0-12-281520-1.50016-0 Google Scholar
- 4 S. E. Zale and A. M. Klibanov, Biotechnol. Bioeng. 25, 2231–2242 (1983).
- 5 J. P. Henley and A. Sadana, Biotechnol. Bioeng. 28, 1277–1285 (1985).
- 6 A. Sadana, in Ref. (1), pp. 84–93.
- 7 A. M. Klibanov, Biochem. Biophys. Res. Commun. 3, 1012–1017 (1978).
- 8 S. Gupta, in Ref. (1), pp. 114–122.
- 9 D. B. Volkin and A. M. Klibanov, in T. E. Creighton, ed., Protein Function: A Practical Approach, IRL Press, London, 1989, pp. 1–24.
- 10 C. Ó. Fágáin, ed., in Stabilizing Protein Function, Springer-Verlag, Berlin, 1997, pp. 21–38.
- 11 D. B. Volkin, H. Mach, and C. R. Middaugh, Mol. Biol. 8, 105–122 (1997).
- 12 S. E. Zale and A. M. Klibanov, Biochemistry 25, 5432–5444 (1986).
- 13 A. S. Inglis, Methods Enzymol. 91, 324–332 (1983).
- 14
R. F. Hurrell and
K. J. Carpenter, in
M. Friedman, ed.,
Protein Cross-linking: Advances in Experimental Medicine and Biology
Vol. 86B,
New York,
1977,
pp. 225–238.
10.1007/978-1-4757-9113-6_16 Google Scholar
- 15 T. Geiger and S. Clarke, J. Biol. Chem. 15, 785–794 (1987).
- 16 J. L. Bada, Methods Enzymol. 106, 98–115 (1984).
- 17 P. A. Finot, E. Bujard, F. Mottu, and J. Mauron, in Ref. (14), pp. 343–365.
- 18 H. C. E. Staufer and D. Etson, J. Biol. Chem. 244, 5333–5338 (1969).
- 19 C. Schöneich, Methods Enzymol. 251, 45–55 (1995).
- 20 H. J. Hartmann, C. Sievers, and U. Weser, Met. Ions Biol. Syst. 36, 389–413 (1999).
- 21
G. Carrea and
S. Riva,
Angew. Chem., Int. Ed. Engl.
39,
2226–2254
(2000).
10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 22 A. M. Klikanov, CHEMTECH 16, 354–359 (1986).
- 23 Ref. (10), pp. 39–46.
- 24 A. M. Klibanov, Trends Biochem. Sci. 14, 141–144 (1989).
- 25 A. M. Klibanov, Nature 409, 241–246 (2001).
- 26 V. V. Mozhaev and co-workers, Eur. J. Biochem. 184, 597–602 (1989).
- 27 Y. L. Khmelnitsky and co-workers, Enzyme Microb. Technol. 10, 710–724 (1989).
- 28 A. S. Ghatorae and co-workers, Biotechnol. Bioeng. 44, 1355–1361 (1994).
- 29 C. J. Beverung, C. J. Radke, and H. W. Blanch, Biophys. Chem. 81, 59–80 (1999).
- 30 A. Hickel, C. J. Radke, and H. W. Blanch, Biotechnol. Bioeng. 74, 18–28 (2001).
- 31 A. S. Ghatorae, G. Bell, and P. J. Halling, Biotechnol. Bioeng. 43, 331–336 (1994).
- 32 A. Hickel, C. J. Radke, and H. W. Blanch, J. Mol. Catal. B 5, 349–354 (1998).
- 33 C. J. Gray, in Ref. (1), pp. 124–143.
- 34 B. L. Vallee and D. D. Ulmer, Annu. Rev. Biochem. 41, 91–128 (1972).
- 35 A. F. S. A. Habeeb, Methods Enzymol. 25, 457–464 (1972).
- 36 Ref. (10), pp. 70–79.
- 37 M. Gross and R. Jaenicke, Eur. J. Biochem. 221, 617–630 (1994).
- 38 V. V. Mozhaev and co-workers, TIBTECH 12, 493–501 (1994).
- 39 P. C. Michels, D. Hei, and D. S. Clark, Adv. Protein Chem. 48, 341–376 (1996).
- 40 C. J. Marshall, TIBTECH 15, 359–364 (1997).
- 41 F. Franks, Adv. Protein Chem. 46, 105–139 (1995).
- 42 J. F. Carpenter and K.-I. Izutsu, Drugs Pharm. Sci. 96, 123–160 (1999).
- 43 M. J. Pikal, Drugs Pharm. Sci. 96, 161–198 (1999).
- 44 W. Wang, Int. J. Pharm. 185, 129–188 (1999).
- 45 S. N. Timasheff, in Ref. (9), pp. 331–345.
- 46 G. DeSantis and J. B. Jones, Curr. Opin. Biotechnol. 10, 324–330 (1999).
- 47 Ref. (10), pp. 81–114.
- 48 R. Tyagi and M. N. Gupta, Ref. (1), pp. 146–160.
- 49 E. Shaw, Physiol. Rev. 50, 244–296 (1970).
- 50 A. Nureddin and T. Inagami, Biochem. J. 147, 71–81 (1975).
- 51 Y. Inada and co-workers, Adv. Biochem. Eng./Biotechnol. 52, 129–150 (1995).
- 52 A. Matusushima and co-workers, J. Mol. Catal., B: Enzymatic 2, 1–17 (1996).
- 53
A. I. Këstner,
Russian Chem. Rev.
43,
690–705
(1974).
10.1070/RC1974v043n08ABEH001846 Google Scholar
- 54 E. Kokufuta, Adv. Polym. Sci. 110, 157–177 (1993).
- 55 J. F. Liang, Y. T. Li, and C. Yang, J. Pharm. Sci. 89, 979–990 (2000).
- 56 J. M. S. Cabral, in Ref. (1), pp. 162–181.
- 57 Ref, (10), pp. 115–128.
- 58
B. J. Kline,
G. Drevon, and
A. J. Russell, in
B. Zwanenburg and co-workers, eds.,
Enzymes in Action,
Kluwer Academic Publishers,
the Netherlands,
2000,
pp. 397–431.
10.1007/978-94-010-0924-9_20 Google Scholar
- 59
K. E. LeJeune and
A. J. Russell,
Biotechnol. Bioeng.
51,
450–457
(1996).
10.1002/(SICI)1097-0290(19960820)51:4<450::AID-BIT8>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 60 G. Drevon and A. J. Russell, Biomacromolecules 1, 571–576 (2000).
- 61 M. Bakker and co-workers, Biotechnol. Bioeng. 70, 342–348 (2000).
- 62 M. T. Reetz, Adv. Mater. 9, 943–954 (1997).
- 63 I. Gill and A. Ballesteros, TIBTECH 18, 282–296 (2000)
- 64 H. Böttcher, J. Prakt. Chem. 342, 427–436 (2000).
- 65 Y. Nosoh and T. Sekiguchi, in Ref. (1), pp. 182–203.
- 66 R. Sterner and W. Liebl, Crit. Rev. Biochem. Mol. Biol. 36, 39–106 (2001).
- 67 M. Lehmann and co-workers, Biochim. Biophys. Acta 1543, 408–415 (2000).
- 68 G. DeSantis and J. B. Jones, Curr. Opin. Biotechnol. 10, 324–330 (1999).
- 69 M. Lehmann and M. Wyss, Curr. Opin. Biotechnol. 12, 371–375 (2001).
- 70 R. R. Chirumamilla and co-workers, Mol. Cell. Biochem. 224, 159–168 (2001).
- 71 W. P. C. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 91, 10747–10751 (1994).
- 72 A. L. Kurtzman and co-workers, Curr. Opin. Biotechnol. 12, 361–370 (2001).
- 73 F. H. Arnold and co-workers, Trends Biochem. Sci. 26, 100–106 (2001).