Biodesulfurization
Lucia Regina Durrant
University of Campinas, Campinas, Sao Paulo, Brazil
Search for more papers by this authorLucia Regina Durrant
University of Campinas, Campinas, Sao Paulo, Brazil
Search for more papers by this authorAbstract
Sulfur is an essential element for all life forms. Sulfur is important for the structure and function of proteins in the form of the sulfur containing amino acids cysteine and methionine. Sulfur groups from sulfur amino acids and prosthetic groups are involved in enzyme catalysis. In addition inorganic sulfur in the form of sulfate, sulfite, elemental sulfur and hydrogen sulfide are used for electron acceptors and donors in energy generating respiratory reactions.
The use of sulfur associated respiratory systems has been commercialized for the the removal of sulfur oxides and hydrogen sulfide from gas streams. The development of sulfur specific biodesulfurization processes has been a long sought after goal to either replace or augment conventional hydrodesulfurization technology in the petroleum refining industry. In addition to these applications, the biochemistry associated with biodesulfurization may have applications in chemical synthesis and biosensors.
The role of sulfur in biology and the research and commercial applications of biodesulfurization systems are reviewed.
Bibliography
- 1 U.S. Environmental Protection Agency, Clean Air Act Amendments of 1990, U.S. Environmental Protection Agency. Washington, D.C., 1990.
- 2 U.S. Environmental Protection Agency, Office of Mobile Sources, Diesel Fuel Quality, Advance Notice of Proposed Rulemaking, EPA 420-F-99-011, U.S. Environmental Protection Agency. Washington, D.C., 1999.
- 3 U.S. Environmental Protection Agency, Office of Mobile Sources, Pro-posed “Tier 2” Emission Standards for Vehicles and Gasoline Sulfur Standards for Refineries, EPA 420-F-99-010, U.S. Environmental Protection Agency. Washington, D.C., 1999.
- 4 Fed. Reg., 66(80), 5135–5193 (Jan. 18, 2001).
- 5 J. G. Speight, ed., The Chemistry and Technology of Petroleum, 3rd ed. Marcel Dekker, New York, 1998 1–202.
- 6 H. T. Rall, C. J. Thompson, H. J. Coleman, and R. L. Hopkins, U.S. Bureau of Mines Bulletin No. 659, US Department of the Interior, Bureau of Mines, Washington, D.C., 1972.
- 7 X. Ma, K. Sakanishi, T. Isoda, and I. Mochida, Energy Fuels. 9, 33 (1995).
- 8 T. Kabe, A. Ishihara, and H. Tajima, Ind. Eng. Chem. Res. 31, 1577 (1992).
- 9 L. Vradman, M. V. Landau, and M. Herskowitz, Catal. Today 48, 41–48 (1999).
- 10 A. A. Maliyantz, Azerbaidzhanskoe Nefyanoe Khoz. 15, 89 (1935).
- 11 A. A. Maliyantz, Azerbaidzhanskoe Nefyanoe Khoz. 15, 36 (1936).
- 12 U.S. Pat. 2,641,564 (1953), C. E. ZoBell (to Texaco Development Corp.).
- 13 M. Kohler, I. L. Genz, B. Schicht, and V. Eckart, Zentralbl. Mikrobiol. 139, 239 (1984).
- 14 K. W. Miller, Appl. Environ. Microbiol. 58, 2176 (1992).
- 15 H. M. Lizama, L. A. Wilkens, and T. C. Scott, Biotechnol. Lett. 17(1), 113–116 (1995).
- 16 T. S. Kim, H. Y. Kim, and B. H. Kim, Biotechnol. Lett. 12, 757 (1990).
- 17 U.S. Pat. 4,954,229 (1990), B. H. Kim, T. S. Kim, and H. Y. Kim (to Korea Advanced Institute of Science and Technology).
- 18S. M. Armstrong, B. M. Sankey, and G. Voordouw, Fuel. 76(3), 223–227 (1997).
- 19S. M. Armstrong, B. M. Sankey, and G. Voordouw, Biotechnol. Lett. 17, 1133–1136 (1995).
- 20W. R. Finnerty. Fuel 72, 1631 (1993).
- 21 John G. Holt, ed., Bergey's Manual of Determinative Bacteriology, 9th ed., Williams & Wilkins, Baltimore, Md., 1994, ISBN 0-683-00603-7.
- 22 H. P. Bloch and A. Godse, Compressors and Modern Process Applications, John Wiley & Sons, Inc., Hoboken, N.J., 2005.
- 23 H. Dijkman and C. J. N. Buisman, Available at http://www.paques.nl/documents/papers/PAPER%20182%20-%20Biotechnology%20in%20the%20mining%20and%20metallurgical%20industries, access date 9/21/2010.
- 24 G. Muyzer and A. J. M. Stams, Nat. Rev. Microbiol. 6, 441 (2008).
- 25 U.S. Pat. 2,975,103 (1961), I. Kirshenbaum (to Esso Research and Engineering Co.).
- 26 F. Kargi and J. M. Robinson, Biotech. Bioeng. 26, 687 (1984).
- 27 F. Kargi and J. M. Robinson, Fuel. 65, 397 (1986).
- 28 U.S. Pat. 6,156,205 (2000), C. J. N. Buisman, D. Y. Sorokin, J. G. Kuenen, A. J. H. Janssen, and L. A. Robertson (to Paques Bio Systems B.V. (Balk, Newfoulndland)).
- 29 U.S. Pat. 2,521,761 (1950), R. J. Strawinski (to Texaco Development Corp.).
- 30 U.S. Pat. 2,574,070 (1951), R. J. Strawinski (to Texaco Development Corp.).
- 31 K. Kodama, S. Nakatani, K. Umehara, K. Shimizu, Y. Minoda, and K. Yamada, Agr. Biol. Chem. 34, 1320 (1970).
- 32 K. Kodama, K. Umehara, K. Shimizu, S. Nakatani, Y. Minoda, and K. Yamada, Agr. Biol. Chem. 37, 45 (1973).
- 33 C. E. Cerniglia, in R. Atlas, ed., Petroleum Microbiology, Macmillan, New York, 1984, pp. 99–128.
- 34 C. T. Hou and A. I. Laskin, Dev. Ind. Microbiol. 17, 351 (1976).
- 35 K. A. Malik and D. Claus, in Abstracts of the Fifth International Fermentation Symposium, Berlin, 1976, pp. 421.
- 36 A. Laborde and D. T. Gibson, Appl. Environ. Microbiol. 34, 783 (1977).
- 37 K. A. Malik, Process Biochem. 13 (9), 10 (1978).
- 38 D. J. Monticello, D. Bakker, and W. R. Finnerty, Appl. Environ. Microbiol. 49, 756 (1985).
- 39 D. J. Monticello and W. R. Finnerty, Ann. Rev. Microbiol. 39, 371 (1985).
- 40 K. M. Yen and I. C. Gunsalus, Proc. Natl. Acad. Sci. U. S. A. 79, 874 (1982).
- 41 W. R. Finnerty, in R. F. Hill, ed., Energy technology IX: “ Energy efficiency in the eighties”. Government Institutes, Inc., Lanham, Md., 1982, pp. 883–890.
- 42 F. J. Hartdegen, J. M. Coburn, and R. L. Roberts, Chem. Eng. Prog. 80, 63 (1984).
- 43 J. M. Foght, P. M. Fedorak, M. R. Gray, and D. W. S. Westlake, in H. L. Ehrlich and C. L. Brierley, eds., Microbial Mineral Recovery, McGraw-Hill, New York, 1990, pp. 379–407.
- 44 A. Bhadra, J. M. Scharer, and M. Moo-Young, Biotechnol. Adv. 5, 1 (1987).
- 45 A. T. Knecht, Jr., Ph.D. Thesis, Louisiana State University, 1961.
- 46 J. D. Isbister and E. A. Kobylinski, in Y. A. Attia, ed., Coal Science and Technology Series No. 9, Elsevier, Amsterdam, 1985, pp. 627–641.
- 47 Archtech Inc., Final Report No. DE89 001572, submitted to U.S. DOE, Pittsburgh Energy Technology Center, 1988.
- 48 I. M. Campbell, Am. Chem. Soc., Div. Petroleum Chem., Preprints 38 (2), 275 (1993).
- 49 J. J. Kilbane and B. A. Bielaga, Chem. Tech. 20, 747–751 (1990).
- 50 K. J. Kayser, B. A. Bielaga-Jones, K. Jackowski, O. Odusan, and J. J. Kilbane, II, J. Gen. Micro. 139, 3123–3129 (1993).
- 51 T. Omori, L. Monna, Y. Saiki, and T. Kodama, Appl. Environ. Microbiol. 58, 911–915 (1992).
- 52 Y. Izumi, T. Ohshiro, H. Ogino, Y. Hine, and M. Shimao, Appl. Environ. Microbiol. 60, 223–226 (1994).
- 53 I. M. Campbell, Am. Chem. Soc., Div. Petroleum Chem., Preprints 38 (2), 275–278 (1993).
- 54 M. Van Afferden, S. Schacht, J. Klein, and H. G. Truper, Arch. Microbiol. 153, 324–328 (1990).
- 55 P. Wang and S. Krawiec, Arch. Microbiol. 161, 266–271 (1994).
- 56 M. K. Lee, J. D. Senius, and M. J. Grossman, Appl. Environ. Microbiol. 61, 4362–4366 (1995).
- 57 H. Chena, W.-J. Zhanga, Y.-B. Caia, Y. Zhanga, and W. Li, Bioresour. Technol. 99 (15), 6928–6933 (2008).
- 58 S. A. Denome, C. Oldfield, L. J. Nash, and K. D. Young, J. Bacteriol. 176, 6707 (1994).
- 59 C. S. Piddington, B. R. Kovacevich, and J. Rambosek, Appl. Environ. Microbiol. 61, 468 (1995).
- 60 M. Z. Li, C. H. Squires, D. J. Monticello, and J. D. Childs, J. Bacteriol. 178, 6409–6418 (1996).
- 61 C. Denis-Larose, D. Labbe, H. Bergeron, A. M. Jones, C. W. Greer, J. Al-Hawari, M. J. Grossman, B. M. Sankey, and P. C. Lau, Appl. Environ. Microbiol. 63, 2915–2919 (1997).
- 62 M. Shavandi, M. Sadeghizadeh, K. Khajeh, G. Mohebali, and A. Zomorodipour, Appl. Microbiol. Biotechnol. 87, 1455–1461 (2010).
- 63 Y. Ishii, J. Konishi, H. Okada, K. Herasawa, T. Onaka, and M. Suzuki, Biochem. Biophys. Res. Commun. 270, 81–88 (2000).
- 64 S. F. Altschul, T. L. Madden, A. A. Schäffer, I, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, Nucleic Acids Res. 25, 3389–3402 (1997).
- 65 National Center for Biotechnology Information, Available at http://blast.ncbi.nlm.nih.gov/, access date 9/21/2010.
- 66 A. Marchler-Bauer, A. R. Panchenko, B. A. Shoemaker, P. A. Thiessen, L. Y. Geer, and S. H. Bryant, Nucleic Acids Res. 30, 281–283 (2002).
- 67 A. J. Fisher, T. B. Thompson, J. B. Thoden, T O. Baldwin, and I. Raymen, J. Biol. Chem. 271, 21956–21968 (1996).
- 68 A. Kahnert and M. A. Kertesz, J. Biol. Chem. 41, 31661–31667 (2000).
- 69 C. Oldfield, O. Pogrebinsky, J. Simmonds, E. S. Olson, and C. F. Kulpa, Microbiology 143, 2961–2973 (1997).
- 70 T. Ohshiro, Y. Hine, and Y. Izumi, FEMS Microbiol. Lett. 118, 341–344 (1994).
- 71 K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14, 1705–1709 (1996).
- 72 T. Ohshiro, K. Suzuki, and Y. Izumi, J. Ferment. Bioeng. 83, 233–237 (1997).
- 73 J. Li, J. Feng, Q. Li, C. Ma, B. Yu, C. Gao, G. Wu, and P. Xu, Bioresour. Technol. 100(9), 2594–2599 (2009).
- 74 T. Matsubara, T. Ohshiro, Y. Nishina, and Y. Izumi, Appl. Environ. Microbiol. 67, 1179–1184 (2001).
- 75 T. Ohshiro, T. Kojima, K. Torii, H. Kawasoe, and Y. Izumi, J. Biosci. Bioeng. 88, 610–616 (1999).
- 76 V. Massey, J. Biol. Chem. 269, 22459–22462 (1994).
- 77 V. Blanc, D. Lagneaux, P. Didier, P. Gil, P. Lacroix, and J. Crouzet, J. Bacteriol. 177 (18), 5206–5214 (1995).
- 78 D. Thibaut, N. Ratet, D. Bisch, D. Faucher, L. Debussche, and R. Blanche, J. Bacteriol. 177, 5199–5205 (1995).
- 79 Y. Xu, M. W. Mortimer, T. S. Fisher, M. L. Kahn, F. J. Brockman, and L. Xun, J. Bacteriol. 179 (4), 1112–1116 (1997).
- 80 B. Galán, E. Díaz, M. A. Prieto, and J. L. García, J. Bacteriol. 182, 627–636 (2000).
- 81 V. Niviere, F. Fieschi, J.-L. Decout, and M. Fontecave, J. Biol. Chem. 274, 18252–18260 (1999).
- 82 F. Fieschi, V. Nivière, C. Frier, J.-L. Décout, and M. Fontecave, J. Biol. Chem. 270, 30392–30400 (1995).
- 83 B. Lei and S-C. Tu, J. Bacteriol. 178, 5699–5705 (1996).
- 84 T. Oshiro and Y. Izumi, Bioseparation 9, 185–188 (2000).
- 85 M. Eschenbrenner, J. Coves, and M. Fontecave, J. Biol. Chem. 270, 20550–20555 (1995).
- 86 T. Onaka, M. Kobayashi, Y. Ishii, K. Okumura, and M. Suzuki, J. Chromatogr. A 903, 193–202 (2000).
- 87 T. Ohshiro, T. Hirata, and Y. Izumi, FEMS Microbiol. Lett. 142, 65–70 (1996).
- 88 M. Kobayashi, T. Onaka, Y. Ishii, J. Konishi, M. Takaki, H. Okada, Y. Ohta, K. Koizumi, and M. Suzuki, FEMS Microbiol. Lett. 187, 123–126 (2000).
- 89 S. C. Gilbert, J. Morton, S. Buchanan, C. Oldfield, and A. McRoberts, Microbiology 144, 2545–2553 (1998).
- 90 T. Matsui, T. Onaka, Y. Tanaka, T. Tezuka, M. Suzuki, and R. Kurane, Biosci. Biotechnol. Biochem. 64, 596–599 (2000).
- 91 T. Matsui, K. Hirasawa, J. Konishi, Y. Tanaka, K. Maruhashi, and R. Kurane, Appl. Microbiol. Biotechnol. 56(1–2), 196–200 (2001).
- 92 J. Konishi, Y. Ishii, T. Onaka, K. Okumura, and M. Suzuki, Appl. Environ. Microbiol. 63, 3164–3169 (1997).
- 93 J. Konish, T. Onaka, Y. Ishii, and M. Suzuki, FEMS Microbiol. Lett. 187, 151–154 (2000).
- 94 M. J. Grossman, M. K. Lee, R. C. Prince, K. K. Garrett, G. N. George, and I. J. Pickering, Appl. Environ. Microbiol. 65 (1), 181–188 (1999).
- 95 S.-K. Rhee, J. H. Chang, Y. K. Chang, and H. N. Chang, Appl. Envion. Microbiol. 64, 2327–2331 (1998).
- 96(a) J. H. Chang, S.-K. Rhee, Y. K. Chang, and H. N. Chang, Biotechnol. Prog. 14: 851–855 ; (b) Appl. Envion. Microbiol. 65, 4967–4972 (1998).
- 97 B. R. Folsom, D. R. Schieche, P. M. DiGrazia, J. Werner, and S. Palmer, Appl. Environ. Microbiol. 65, 4967–4972 (1999).
- 98 M. J. Grossman, M. K. Lee, R. C. Prince, V. Minak-Bernero, G. N. George, and I. J. Pickering, Appl. Environ. Micrbiol. 67, 1949–1952 (2001).
- 99 R. C. Prince and M. J. Grossman, Appl. Envrion. Micrbiol. 69, 5833–5838 (2003).
- 100 D. J. Monticello, Chem. Tech. 28 (7), 38–45 (1998).
- 101 B. L. McFarland, D. J. Boron, W. Deever, J. A. Meyer, A. R. Johnson, and R. M. Atlas, Crit. Rev. Microbiol. 24 (2), 99–147 (1998).
- 102 E. A. Greene, C. Hubert, M. Nemati, G. E. Jenneman, and G. Voordouw, Environ. Microbiol. 5 (7), 607–17 (2003).
- 103 J. C. Hulecki, J. M. Foght, M. R. Gray, and P. M. Fedorak, J. Ind. Microbiol. Biotechnol. 36 (12), 1499–1511 (2009).
- 104 H. Chen, Y-B. Cai, W.-J. Zhang, and W. Li, Bioresour. Technol. 100, 2085–2087 (2009).
- 105 U.S. Pat. 5,910,440 (June 8, 1999), M. J. Grossman, M. Siskin, D. T. Ferrughelli, M. K. Lee, and J. D. Senius (to Exxon Mobil Corp.).
- 106 F. Al-Shahrani, T. Xiao, and M. L. H. Green, Oil Gas J. 108 (18), 41–47 (2010).
- 107 U.S. Pat. 5,973,195 (Oct. 26, 1999), E. A. Lange, Q. Lin, K. R. Nielsen, and C. C. Dooyema (to Energy Biosystems Corp.).
- 108
A. M. Rouhi,
Chem. Eng. News
81
(18),
56–61
(2003).
10.1021/cen-v081n018.p045 Google Scholar