Thiazolidinediones as PPAR Agonists
Sunder Mudaliar
VA San Diego HealthCare System, San Diego, CA, USA
Search for more papers by this authorRobert R. Henry
University of California at San Diego, San Diego, CA, USA
Search for more papers by this authorSunder Mudaliar
VA San Diego HealthCare System, San Diego, CA, USA
Search for more papers by this authorRobert R. Henry
University of California at San Diego, San Diego, CA, USA
Search for more papers by this authorAbstract
Type 2 diabetes has now reached epidemic proportions across the world and is the cause of substantial morbidity and mortality. It is now well established that intensive control of blood glucose can significantly reduce and ameliorate the microvascular complications of retinopathy, nephropathy, and neuropathy. Unfortunately however, nearly 80% of type 2 diabetic patients die from macrovascular cardiovascular disease. This increased incidence of atherosclerotic disease is intricately associated with insulin resistance, which is a major pathophysiologic abnormality in type 2 diabetes. There is strong evidence that insulin resistance is intricately involved in the development of not only hyperglycemia, but also dyslipidemia, hypertension, hypercoagulation, vasculopathy, and ultimately atherosclerotic cardiovascular disease. This cluster of metabolic abnormalities has been termed the “insulin resistance or metabolic syndrome.” The thiazolidinediones (rosiglitazone and pioglitazone) constitute a new class of oral antidiabetic agents which are “insulin sensitizers” and exert direct effects on the mechanisms of insulin resistance. Through their PPAR-γ agonist effects, the thiazolidinediones not only improve insulin sensitivity and glycemic control with reduced insulin requirements, but also have potentially favorable effects on other components of the metabolic syndrome. These beneficial effects on lipid metabolism, vascular tone, and endothelial function might directly and indirectly influence cardiovascular risk by favorably altering several proatherogenic metabolic processes. Long-term studies are needed to determine whether the insulin-sensitizing effects of the thiazolidinediones have the potential to prevent or delay the development of type 2 diabetes as well as premature atherosclerotic cardiovascular disease, morbidity, and death.
References
- 1 Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782–7.
- 2 King H, Aubert RE, Herman W. Global Burden of Diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care 1998; 21: 1414–31.
- 3 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetologia 1992; 35: 389–97.
- 4 Fagan TC, Deedwania PC. The cardiovascular dysmetabolic syndrome. Am J Med 1998; 105 (1A): 77S–82S.
- 5 Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97.
- 6 Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM. The structure–activity relationship between peroxisome-proliferator-activated receptor and agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 1996; 39: 665–8.
- 7 Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-active receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996; 12: 335–63.
- 8 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20 (5): 649–88.
- 9 Kersten S, Desvergne B, Wahli W. Role of PPARs in health and disease. Nature 2000; 405: 421–4.
- 10 Duez H, Fruchart JC, Staels B. PPARs in inflammation, atherosclerosis and thrombosis. J Cardiovasc Risk 2001; 8 (4): 187–94.
- 11 Zhu Y. Structural organization of mouse peroxisome proliferator-activated receptor g gene: alternative promoter use and different splicing yield two PPAR γ isoforms. Proc Natl Acad Sci USA 1995; 92: 7921–5.
- 12 Loviscach M, Rehman N, Carter L, Mudaliar S, Mohideen P, Ciaraldi TP, Veerkamp JH, Henry RR. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 2000; 43: 304–11.
- 13 Mudaliar S, Henry RR. New oral therapies for type 2 diabetes—the thiazolidinediones or insulin sensitizers. Annu Rev Med 2001; 52: 239–57.
- 14 Sattiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45: 1661–9.
- 15 Okuno A, Tamemoto H, Tobe K. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101 (6): 1354–61.
- 16 Olefsky JM. The effects of spontaneous obesity on insulin binding, glucose transport and glucose oxidation of isolated rat adipocytes. J Clin Invest 1976; 57: 842–51.
- 17 Ciaraldi TP, Kong APS, Chu NV, Kim DD, Baxi S, Loviscach M, Plodkowski R, Reitz R, Caulfield M, Mudaliar S, Henry RR. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes 2002; 51 (1): 30–6.
- 18 Rieusset J, Auwerx J, Vidal H. Regulation of gene expression by activation of the peroxisome proliferator-activated receptor g with rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun 1999; 265 (1): 265–71.
- 19 Matsuda J, Hosoda K, Itoh H, Son C, Doi K, Hanaoka I, Inoue G, Nishimura H, Yoshimasa Y, Yamori Y, Odaka H, Nakao K. Increased adipose expression of the uncoupling protein-3 gene by thiazolidinediones in Wistar fatty rats and in cultured adipocytes. Diabetes 1998; 47 (11): 1809–14.
- 20 Brun S, Carmona MC, Mampel T, Vinas O, Giralt M, Iglesias R, Villarroya F. Activators of peroxisome proliferator-activated receptor-a induce the expression of the uncoupling protein-3 gene in skeletal muscle: a potential mechanism for the lipid intake-dependent activation of uncoupling protein-3 gene expression at birth. Diabetes 1999; 48 (6): 1217–22.
- 21 Fukui Y, Masui S, Osada S, Umesono K, Motojima K. A new thiazolidinedione, NC-2100, which is a weak PPAR-g activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice. Diabetes 2000; 49 (5): 759–67.
- 22 Park KS, Ciaraldi TP, Lindgren K, Abrams-Carter L, Mudaliar S, et al. Troglitazone effects on gene expression in human skeletal muscle of type 2 diabetic subjects involve upregulation of PPAR gamma. J Clin Endocrinol Metab 1998; 83 (8): 2830–5.
- 23 Park KS, Ciaraldi TP, Carter LA, Mudaliar S, Nikoulina SE, et al. Troglitazone regulation of glucose metabolism in human skeletal muscle cultures from obese type 2 diabetic subjects. J Clin Endocrinol Metab 1998; 83 (5): 1636–43.
- 24 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996; 271: 10697–703.
- 25 Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746–9.
- 26 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosler Thromb Vasc Biol 2000; 20: 1595–9.
- 27 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–5.
- 28 Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPAR[gamma] ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50: 2094–9.
- 29 Moore GB, Chapman H, Holder JC, Lister CA, Piercy V, Smith SA, Clapham JC. Differential regulation of adipocytokine mRNAs by rosiglitazone in db/db mice. Biochem Biophys Res Commun 2001; 286: 735–41.
- 30 Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, Ide T, Kubota N, Terauchi Y, Tobe K, Miki H, Tsuchida A, Akanuma Y, Nagai R, Kimura S, Kadowaki T. Mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPAR γ) deficiency and PPAR γ agonist improve insulin resistance. J Biol Chem 2001; 276: 41245–54.
- 31 Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB, Tanen M, Berg AH, O'Rahilly S, Savage DB, Chatterjee K, Weiss S, Larson PJ, Gottesdiener KM, Gertz BJ, Charron MJ, Scherer PE, Moller DE. Induction of adipocyte complement-related protein of 30 kilodaltons by PPAR γ agonists: a potential mechanism of insulin sensitization. Endocrinology 2002; 143: 998–1007.
- 32 Halleux CM, Takahashi M, Delporte ML, Detry R, Funahashi T, Matsuzawa Y, Brichard SM. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophys Res Commun 2001; 288: 1102–7.
- 33 Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, Wang JP, Chen CL, Tai TY, Chuang LM. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002; 25 (2): 376–80.
- 34 Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T. Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism 2002; 51 (3): 314–7.
- 35 Motoshima H, Wu X, Sinha MK, Hardy VE, Rosato EL, Barbot DJ, Rosato FE, Goldstein BJ. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clinical Endocrinol Metab December 2002; 87 (12): 5662–7.
- 36 Phillips SA, Ciaraldi TP, Kong AP, Bandukwala R, Aroda V, Carter L, Baxi S, Mudaliar SR, Henry RR. Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 2003; 52 (3): 667–74.
- 37 Saltiel AR. You are what you secrete. Nat Med 2001; 7 (8): 887–8.
- 38 Law RE, Goetze S, Xi XP, et al. Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation 2000; 101 (11): 1311–8.
- 39 Asano M, Nakajima T, Iwasawa K. Troglitazone and pioglitazone attenuate agonist-dependent Ca2+ mobilization and cell proliferation in vascular smooth muscle cells. Br J Pharmacol 1999; 128 (3): 673–83.
- 40 Benson S, Wu J, Padmanabhan S. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone. Am J Hypertens 2000; 13 (1, pt 1): 74–82.
- 41 Saleh YM, Mudaliar SR, Henry RR. Metabolic and vascular effects of the thiazolidinedione, troglitazone. Diabetes Rev 2000; 7 (2): 55–76.
- 42 Yamauchi T, Kamon J, Ito K, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423 (6941): 762–7.
- 43 Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI, for the Rosiglitazone Clinical Trials Study Group. Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab 2001; 86 (1): 280–8. [erratum appears in J Clin Endocrinol Metab April 2001; 86 (4): 1659].
- 44 Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL, for the Pioglitazone 001 Study Group. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. Diabetes Care 2000; 23 (11): 1605–11.
- 45 Rosenblatt S, Miskin B, Glazer NB, Prince MJ, Robertson KE, for the Pioglitazone 026 Study Group. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12 (5): 413–23.
- 46 Vongthavaravat V, Wajchenberg BL, Waitman JN, Quimpo JA, Menon PS, Ben Khalifa F, Chow WH, for the 125 Study Group. An international study of the effects of rosiglitazone plus sulphonylurea in patients with type 2 diabetes. Curr Med Res Opin 2002; 18 (8): 456–61.
- 47 Barnett AH, Grant PJ, Hitman GA, Mather H, Pawa M, Robertson L, Trelfa A, for the Indo-Asian Trial Investigators. Rosiglitazone in type 2 diabetes mellitus: an evaluation in British Indo-Asian patients. Diabet Med 2003; 20 (5): 387–93.
- 48 Kipnes MS, Krosnick A, Rendell MS, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Am J Med 2001; 111 (1): 10–7.
- 49 Fonseca V, Rosenstock J, Patwardhan R, Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283 (13): 1695–702.
- 50 Gomez-Perez FJ, Fanghanel-Salmon G, Antonio Barbosa J, Montes-Villarreal J, Berry RA, Warsi G, Gould EM. Efficacy and safety of rosiglitazone plus metformin in Mexicans with type 2 diabetes. Diabetes Metab Res Rev 2002; 18 (2): 127–34.
- 51 Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL, Schneider RL, for the Pioglitazone 027 Study Group. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. Clin Ther 2000; 22 (12): 1395–409.
- 52 Jones TA, Sautter M, Van Gaal LF, Jones NP. Addition of rosiglitazone to metformin is most effective in obese, insulin-resistant patients with type 2 diabetes. Diabetes Obes Metab 2003; 5 (3): 163–70.
- 53 Raskin P, Rendell M, Riddle MC, Dole JF, Freed MI, Rosenstock J, for the Rosiglitazone Clinical Trials Study Group. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001; 24 (7): 1226–32.
- 54 Rosenstock J, Einhorn D, Hershon K, Glazer NB, Yu S, for the Pioglitazone 014 Study Group. Efficacy and safety of pioglitazone in type 2 diabetes: a randomized, placebo-controlled study in patients receiving stable insulin therapy. Int J Clin Pract 2002; 56 (4): 251–7.
- 55 Viberti G, Kahn SE, Greene DA, Herman WH, Zinman B, Holman RR, Haffner SM, Levy D, Lachin JM, Berry RA, Heise MA, Jones NP, Freed MI. A diabetes outcome progression trial (ADOPT): an international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care 2002; 25 (10): 1737–43.
- 56 Buch HN, Baskar V, Barton DM, Kamalakannan D, Akarca C, Singh BM. Combination of insulin and thiazolidinedione therapy in massively obese patients with type 2 diabetes. Diabet Med 2002; 19 (7): 572–4.
- 57 Thompson-Culkin K, Zussman B, Miller AK, Freed MI. Pharmacokinetics of rosiglitazone in patients with end-stage renal disease. J Int Med Res 2002; 30 (4): 391–9.
- 58 Suter SL, Nolan JJ, Wallace P, Olefsky JM. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15: 193–203.
- 59 Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Eng J Med 1994; 331: 1188–98.
- 60 Berkowitz K, Peters R, Kjos SL, et al. Effect of troglitazone on insulin sensitivity and pancreatic beta-cell function in women at high risk for NIDDM. Diabetes 1996; 45: 1572–9.
- 61 Dunaif A, Scott D, Finegood D, et al. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996; 81: 3299–306.
- 62 Iuorno MJ, Nestler JE. Insulin-lowering drugs in polycystic ovary syndrome. Obstet Gynecol Clin North Am 2001; 28 (1): 153–64.
- 63 Takino H, Oghuni S, Uotani S, et al. Increased insulin responsiveness after C-045 treatment in diabetes associated with Werner's syndrome. Diabetes Res Clin Pract 1994; 24 (3): 167–72.
- 64 Iuorno MJ, Nestler JE. Insulin-lowering drugs in polycystic ovary syndrome. Obstet Gynecol Clin North Am 2001; 28 (1): 153–64.
- 65 Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, Cusi K, Mandarino LJ, DeFronzo RA. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 2001; 24 (4): 710–9.
- 66 Mudaliar S, Henry RR. The oral hypoglycemic agents. In D Porte, R Sherwin, A Baron (eds), Ellenberg and RifKin's Diabetes Mellitus, 3rd edn. New York: McGraw-Hill, 2002; p 539.
- 67 Pavo I, Jermendy G, Varkonyi TT, Kerenyi Z, Gyimesi A, Shoustov S, Shestakova M, Herz M, Johns D, Schluchter BJ, Festa A, Tan MH. Effect of pioglitazone compared with metformin on glycemic control and indicators of insulin sensitivity in recently diagnosed patients with type 2 diabetes. J Clin Endocrinol Metab 2003; 88 (4): 1637–45.
- 68 Kawamori R, Matsuhisa M, Kinoshita J, et al. for the AD-4833 Clamp-OGL Study Group. Pioglitazone enhances splanchnic glucose uptake as well as peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1998; 41 (1): 35–43.
- 69 Yamasaki Y, Kawamori R, Wasada T, for the AD-4833 Glucose Clamp Study Group, Japan. Pioglitazone (AD-4833) ameliorates insulin resistance in patients with NIDDM. Tohoku J Exp Med 1997; 183 (3): 173–83.
- 70 Miyazaki Y, Glass L, Triplitt C, Matsuda M, Cusi K, Mahankali A, Mahankali S, Mandarino LJ, DeFronzo RA. Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in type II diabetic patients. Diabetologia 2001; 44 (12): 2210–9.
- 71 Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, Enocksson S, Inzucchi SE, Shulman GI, Petersen KF. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51 (3): 797–802.
- 72 Virtanen KA, Hallsten K, Parkkola R, Janatuinen T, Lonnqvist F, Viljanen T, Ronnemaa T, Knuuti J, Huupponen R, Lonnroth P, Nuutila P. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects. Diabetes 2003; 52 (2): 283–90.
- 73 Hallsten K, Virtanen KA, Lonnqvist F, Sipila H, Oksanen A, Viljanen T, Ronnemaa T, Viikari J, Knuuti J, Nuutila P. Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes. Diabetes 2002; 51 (12): 3479–85.
- 74 Raji A, Seely EW, Bekins SA, Williams GH, Simonson DC. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care 2003; 26 (1): 172–8.
- 75 Fullert S, Schneider F, Haak E, Rau H, Badenhoop K, Lubben G, Usadel KH, Konrad T. Effects of pioglitazone in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. J Clin Endocrinol Metab 2002; 87 (12): 5503–6.
- 76 UK Prospective Diabetes Study Group. 1995 UK Prospective Diabetes Study 16. Overview of 6 years' therapy of type II diabetes: a progressive disease. Diabetes 1995; 44: 1249–58.
- 77
Levy J,
Atkinson AB,
Bell PM,
McCance DR,
Hadden DR.
1998 beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in Type 2 diabetes mellitus: the 10-year follow-up of the Belfast diet study.
Diabet Med
1998;
15:
290–6.
10.1002/(SICI)1096-9136(199804)15:4<290::AID-DIA570>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 78 Dubois M, Pattou F, Kerr-Conte J, Gmyr V, Vandewalle B, Desreumaux P, Auwerx J, Schoonjans K, Lefebvre J. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 2000; 43 (9): 1165–9.
- 79 Maggs DG, Buchanan TA, Burant CF, Cline G, Gumbiner B, Hsueh WA, Inzucchi S, Kelley D, Nolan J, Olefsky JM, Polonsky KS, Silver D, Valiquett TR, Shulman GI: Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus); a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1999; 128: 176–85.
- 80 Patel J, Anderson RJ, Rappaport EB: Rosiglitazone monotherapy improve glycaemic control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab 1999; 1: 165–72.
- 81 Inzucchi SE, Maggs D, Spollet GR, Page SL, Rife FS, Walton V, Shulman GI: Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338: 867–72.
- 82 Miyazaki Y, Matsuda M, DeFronzo RA. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care 2002; 25 (3): 517–23.
- 83 Rossetti L, Giacarri A, DeFronzo RA: Glucose toxicity. Diabetes Care 1990; 13: 610–30.
- 84 Diamond MP, Thornton K, Connoly-Diamond M, Sherwin RS, DeFronzo RA: Reciprocal variation in insulin-mediated glucose uptake and pancreatic insulin secretion in women with normal glucose tolerance. J Soc Gynecol Invest 1995; 2: 708–15.
- 85 Prigeon RL, Kahn SE, Porte D: Effect of troglitazone on B cell function, insulin sensitivity and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 1998; 83 (3): 819–923.
- 86 Kubo K. Effect of pioglitazone on blood proinsulin levels in patients with type 2 diabetes mellitus. Endocr J 2002; 49 (3): 323–8.
- 87 Yang C, Chang TJ, Chang JC, Liu MW, Tai TY, Hsu WH, Chuang LM. Rosiglitazone (BRL 49653) enhances insulin secretory response via phosphatidylinositol 3-kinase pathway. Diabetes 2001; 50 (11): 2598–602.
- 88 Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN, Azen SP. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 2002; 51 (9): 2796–803.
- 89 The Diabetes Prevention Program Research Group. The Diabetes Prevention Program. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346 (6): 393–403.
- 90 The Diabetes Prevention Program Group. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 2003; 52 (suppl 1): 251OR.
- 91 Garg A. Dyslipoproteinemia and diabetes. Endocr Metab Clin North Am 1998; 27 (3): 613–26.
- 92 Haffner SM, Miettinen H: Insulin resistance implications for type II diabetes and coronary artery disease. Am J Med 1997; 103: 152–62.
- 93 Actos (Prescribing information). Lincolnshire, IL: Takeda; Indianapolis, IN: Elli Lilly Company; July 2002.
- 94 Rosenblatt S, Miskin B, Glazer NB, Prince MJ, Robertson KE, for the Pioglitazone 026 Study Group. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12 (5): 413–23.
- 95 Fonseca VA, Valiquett TR, Huang SM, Ghazzi MN, Whitcomb RW, for the Troglitazone Study Group. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. J Clin Endocrinol Metab 1998; 83 (9): 3169–76.
- 96 Freed MI, Ratner R, Marcovina SM, Kreider MM, Biswas N, Cohen BR, Brunzell JD, for the Rosiglitazone Study 108 Investigators. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol 2002; 90 (9): 947–52.
- 97 Khan MA, St. Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002; 25: 708–11.
- 98 Boyle PJ, King AB, Olansky L, Marchetti A, Lau H, Magar R, Martin J. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective review of randomly selected medical records. Clin Ther 2002; 24 (3): 378–96.
- 99 Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL, for the Pioglitazone 001 Study Group. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. Diabetes Care 2000; 23 (11): 1605–11.
- 100 Tack CJJ, Smits P, Demacker PNM. Troglitazone decreases the proportion of small dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21 (5): 796–9.
- 101 Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129 (2): 162–3.
- 102 Matsumoto K, Miyake S, Yano M, et al. Increase of lipoprotein (a) with troglitazone. Lancet 1997; 350: 1748–9.
- 103 Ovalle F, Bell DSH. Troglitazone's effect on lipoprotein(a) levels (Letter). Diabetes Care 1999; 22: 859–60.
- 104 Nagai Y, Abe T, Nomura G. Does pioglitazone, like troglitazone, increase serum levels of lipoprotein(a) in diabetic patients? Diabetes Care 2001; 24: 408–9.
- 105 Spiegelman BM. PPARγ: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507–14.
- 106 Adams M, Montague CT, Prins JB, et al. Activators of peroxisome proliferator-activated receptor-γ have depot-specific effects on human preadipocyte differentiation. J Clin Invest 1997; 100: 3149–53.
- 107 van Harmelen V, Dicker A, Ryden M, Hauner H, Lonnqvist F, Naslund E, Arner P. Increased lipolysis and decreased leptin production by human omental as compared with subcutaneous preadipocytes. Diabetes 2002; 51 (7): 2029–36.
- 108 Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22 (6): 908–12.
- 109 Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22 (2): 288–93.
- 110 Carey DG, Cowin GJ, Galloway GJ, Jones NP, Richards JC, Biswas N, Doddrell DM. Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients. Obes Res 2002; 10 (10): 1008–15.
- 111 Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002; 87 (6): 2784–91.
- 112 Ghazzi MN, Perez JE, Antonucci TK, Driscoll JH, Huang SM, Faja BW, Whitcomb RW, for the Troglitazone Study Group. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. Diabetes 1997; 46: 433–9.
- 113 Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubota N, Saito T, Masuda Y, Kadowaki T, Komuro I. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002; 105 (10): 1240–6.
- 114 St John Sutton M, Rendell M, Dandona P, Dole JF, Murphy K, Patwardhan R, Patel J, Freed M. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002; 25 (11): 2058–64.
- 115 Shiomi T, Tsutsui H, Hayashidani S, Suematsu N, Ikeuchi M, Wen J, Ishibashi M, Kubota T, Egashira K, Takeshita A. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2002; 106 (24): 3126–32.
- 116 Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK, Thiemermann C. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J 2002; 16 (9): 1027–40.
- 117 Rizvi AA, Bowman MA. Thiazolidinedione therapy in a patient with diabetes after cardiac transplantation. Endocr Pract 2002; 8 (4): 287–91.
- 118 Simonson DC. Etiology and prevalence of hypertension in diabetic patients. Am J Hypertens 1995; 8: 316–20.
- 119 Baron AD. Hemodynamic actions of insulin. Am J Physiol 1994; 267: E187–202.
- 120 Laakso M, Edelman SV, Brechtel G, et al. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 1992; 41: 1076–83.
- 121 Anderson EA, Balon TW, Hoffman RP, et al. Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension 1992; 19: 621–7.
- 122 Bakris G, Viberti G, Weston WM, Heise M, Porter LE, Freed MI. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J Human Hypertens 2003; 17 (1): 7–12.
- 123 Fullert S, Schneider F, Haak E, Rau H, Badenhoop K, Lubben G, Usadel KH, Konrad T. Effects of pioglitazone in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. J Clin Endocrinol Metab 2002; 87 (12): 5503–6.
- 124 Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T. Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism 2002; 51 (3): 314–7.
- 125 American Diabetes Association. Position statement: diabetic nephropathy. Diabetes Care 2000; 23 (suppl 1): S69–72.
- 126 Yamashita H, Nagai Y, Takamura T, Nohara E, Kobayashi K. Thiazolidinedione derivatives ameliorate albuminuria in streptozotocin-induced diabetic spontaneous hypertensive rat. Metabolism 2002; 51 (4): 403–8.
- 127 Isshiki K, Haneda M, Koya D, Maeda S, Sugimoto T, Kikkawa R. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes 2000; 49 (6): 1022–32.
- 128 Nakamura T, Ushiyama C, Shimada N, Hayashi K, Ebihara I, Koide H. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients. J Diabetes Complications 2000; 14 (5): 250–4.
- 129 Lusis AJ. Atherosclerosis. Nature 2000; 407: 233–41.
- 130 Duez H, Fruchart JC, Staels B. PPARs in inflammation, atherosclerosis and thrombosis. J Cardiovasc Risk 2001; 8 (4): 187–94.
- 131 Hsueh WA, Javkson S, Law RE. Control of vascular cell proliferation and migration by PPARg. Diabetes Care 2001; 24 (2): 392–7.
- 132 Pasceri V, Wu HD, Willerson JT, Yeh ET. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-g activators. Circulation 2000; 101: 235–8.
- 133 Murao K, Imachi H, Momoi A, Sayo Y, Hosokawa H, Sato M, et al. Thiazolidinedione inhibits the production of monocyte chemoattractant protein-1 in cytokine-treated human vascular endothelial cells. FEBS Lett 1999; 454: 27–30.
- 134 Delerive P, Martin-Nizard F, Chinetti G, Trottein F, Fruchart JC, Najib J, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85: 394–402.
- 135 Fonseca VA, Reynolds T, Hemphill D, et al. Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus. J Diabetes Complications 1998; 12: 181–6.
- 136 Marx N, Libby P, Plutzky. Peroxisome proliferator-activated receptors (PPARs) and their role in the vessel wall:possible mediators of cardiovascular risk? J Cardiovasc Risk 2001; 8 (4): 203–10.
- 137 Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-g is a negative regulator of macrophage activation. Nature 1998; 391: 79–82.
- 138 Jiang C, Ting AT, Seed B. PPAR-g agonists inhibit production of monocyte inflammatory cytokines. Nature 2001; 391: 1998; 82–6.
- 139 Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A PPAR g-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7 (1): 161–71.
- 140 Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106 (6): 679–84.
- 141 Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, Scharnagl H, Hombach V, Koenig W. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23 (2): 283–8.
- 142 Ishibashi M, Egashira K, Hiasa K, Inoue S, Ni W, Zhao Q, Usui M, Kitamoto S, Ichiki T, Takeshita A. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40 (5): 687–93.
- 143 Hsueh WA, Javkson S, Law RE. Control of vascular cell proliferation and migration by PPARγ. Diabetes Care 2001; 24 (2): 392–7.
- 144 Marx N, Kehrle B, Kohlhammer K, Grub M, Koenig W, Hombach V, Libby P, Plutzky J. PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 2002; 90 (6): 703–10.
- 145 Folsom AR, Eckfeldt JH, Weitzman S. Relation of carotid artery wall thickness to diabetes mellitus, fasting glucose and insulin, body size, and physical activity. Stroke 1994; 25: 66–73.
- 146 Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83: 1818–20.
- 147 Koshiyama H, Shimono D, Kuwamura N, Minamikawa J, Nakamura Y. Inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86: 3452–6.
- 148 Takagi T, Akasaka T, Yamamuro A, Honda Y, Hozumi T, Morioka S, Yoshida K. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36 (5): 1529–35.
- 149 Choi SH, Choi DH, KO YK, Chang YS, Cho Yl, Cha BS. Preventive effects of rosiglitazone on restenosis after coronary stenting in patients with type 2 diabetes. Diabetes 2003; 52 (suppl 1): 82OR.
- 150 Sasaki T, Fujimoto Y, Tsuchida A, Kawasaki Y, Kuwada Y, Chayama K. Activation of peroxisome proliferator-activated receptor gamma inhibits the growth of human pancreatic cancer. Pathobiology 2001; 69 (5): 258–65.
- 151 Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman BM. Differentiation and reversal of malignant changes in colon cancer through PPAR[gamma]. Nat Med 1998; 4: 1046–52.
- 152 Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP. Ligands for peroxisome proliferator-activated receptor [gamma] and retinoic acid and receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 1998; 95: 8806–11.
- 153 Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab 2001; 86: 2170–7.
- 154 Fujiwara T, Horikoshi H. Troglitazone and related compounds: therapeutic potential beyond diabetes. Life Sci 2000; 67 (20): 2405–16.
- 155 Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, Fletcher JA, Hlatky L, Hahnfeldt P, Folkman J, Kaipainen A. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 2002; 110 (7): 923–32.
- 156 Kulke MH, Demetri GD, Sharpless NE, Ryan DP, Shivdasani R, Clark JS, Spiegelman BM, Kim H, Mayer RJ, Fuchs CS. A phase II study of troglitazone, an activator of the PPARgamma receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J 2002; 8 (5): 395–9.
- 157 Seed B. PPAR- and colorectal carcinoma: conflicts in a nuclear family. Nat Med 1998; 4: 1004–5.
- 158 Dunaif A, Scott D, Finegood D, Quintana B, Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996; 81 (9): 3299–306.
- 159 Azziz R, Ehrmann D, Legro RS, Whitcomb RW, Hanley R, Fereshetian AG, O'Keefe M, Ghazzi MN, for the PCOS/Troglitazone Study Group. Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab 2001; 86 (4): 1626–32.
- 160 Azziz R, Ehrmann DA, Legro RS, Fereshetian AG, O'Keefe M, Ghazzi MN, for the PCOS/Troglitazone Study Group. Troglitazone decreases adrenal androgen levels in women with polycystic ovary syndrome. Fertil Steril 2003; 79 (4): 932–7.
- 161 Paradisi G, Steinberg HO, Shepard MK, Hook G, Baron AD. Troglitazone therapy improves endothelial function to near normal levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003; 88 (2): 576–80.
- 162 Ghazeeri G, Kutteh WH, Bryer-Ash M, Haas D, Ke RW. Effect of rosiglitazone on spontaneous and clomiphene citrate-induced ovulation in women with polycystic ovary syndrome. Fertil Steril 2003; 79 (3): 562–6.
- 163 Gasic S, Nagamani M, Green A, Urban RJ. Troglitazone is a competitive inhibitor of 3beta-hydroxysteroid dehydrogenase enzyme in the ovary. Am J Obstet Gynecol 2001; 184 (4): 575–9.
- 164 Hadigan C, Miller K, Corcoran C. Fasting hyperinsulinemia and changes in regional body composition in human immunodeficiency virus-infected women. J Clin Endocrinol Metab 1999; 84: 1932–7.
- 165 Gelato MC, Mynarcik DC, Quick JL, Steigbigel RT, Fuhrer J, Brathwaite CE, Brebbia JS, Wax MR, McNurlan MA. Improved insulin sensitivity and body fat distribution in HIV-infected patients treated with rosiglitazone: a pilot study. J Acquir Immune Defic Syndr JAIDS 2002; 31 (2): 163–70.
- 166 Walli R, Michl GM, Muhlbayer D, Brinkmann L, Goebel FD. Effects of troglitazone on insulin sensitivity in HIV-infected patients with protease inhibitor-associated diabetes mellitus. Res Exp Med 2000; 199 (5): 253–62.
- 167 Clark RB. The role of PPARs in inflammation and immunity. J Leukoc Biol 2002; 71 (3): 388–400.
- 168 Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49 (10): 497–505.
- 169 Shiojiri T, Wada K, Nakajima A, Katayama K, Shibuya A, Kudo C, Kadowaki T, Mayumi T, Yura Y, Kamisaki Y. PPAR gamma ligands inhibit nitrotyrosine formation and inflammatory mediator expressions in adjuvant-induced rheumatoid arthritis mice. Eur J Pharmacol 2002; 448 (2/3): 231–8.
- 170 Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD. A novel therapy for colitis utilizing PPAR-ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999; 104: 383–9.
- 171 Kawahito Y, Kondo M, Tsubouchhi Y, Hashiramoto A, Bishop-Bailey D, Inoue K, Kohno M,t Yamada R, Hla T, Sano H. 15-Deoxy-delta (12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest 2000; 106: 189–97.
- 172 Lewis JD, Lichtenstein GR, Stein RB, Deren JJ, Judge TA, Fogt F, Furth EE, Demissie EJ, Hurd LB, Su CG, Keilbaugh SA, Lazar MA, Wu GD. An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis. Am J Gastroenterol 2001; 96 (12): 3323–8.
- 173 Avandia (Prescribing information). Philadelphia, PA: Smith Kline Beecham Pharmaceuticals, April 2000.
- 174 Mudaliar S, Henry RR. Thiazolidinediones, peripheral edema and type 2 diabetes: incidence, pathophysiology and clinical implications. Endocr Pract 2003; 9 (5): 406–16.
- 175 Wang F, Aleksunes LM, Reagan LA, Vergara CM. Management of rosiglitazone-induced edema: two case reports and a review of the literature. Diabetes Technol Thera 2002; 4 (4): 505–14.
- 176 Hirsch IB, Kelley J, Cooper S. Pulmonary edema associated with troglitazone therapy. Arch Intern Med 1999; 159 (5): 1811–2.
- 177 Thomas ML, Lloyd SJ. Pulmonary edema associated with rosiglitazone and troglitazone. Ann Pharmacother 2001; 35: 123–4.
- 178 Al-Salman J, Arjomand H, Kemp DG. Hepatocellular injury in a patient receiving rosiglitazone. A case report. Ann Intern Med 2000; 132 (2): 121–4.
- 179 Forman LM, Simmons DA, Diamond RH. Hepatic failure in a patient taking rosiglitazone. Ann Intern Med 2000; 132 (2): 118–21.
- 180 Chase MP, Yarze JC. Pioglitazone-associated fulminant hepatic failure. [Letter]. Am J Gastroenterol 2002; 97 (2): 502–3.
- 181 Pinto AG, Cummings OW, Chalasani N. Severe but reversible cholestatic liver injury after pioglitazone therapy. Ann Intern Med 2002; 137 (10): 857.
- 182 Maeda K. Hepatocellular injury in a patient receiving pioglitazone [Letter]. Ann Intern Med 2001; 135: 306.
- 183 May LD, Lefkowitch JH, Kram MT, Rubin DE. Mixed hepatocellular-cholestatic liver injury after pioglitazone therapy. Ann Intern Med 2002; 136: 449–52.
- 184 Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25 (5): 815–21.
- 185 Nowak SN, Edwards DJ, Clarke A, Anderson GD, Jaber LA. Pioglitazone: effect on CYP3A4 activity. J Clin Pharmacol 2002; 42 (12): 1299–302.