Asymptotic Relative Efficiency (ARE)
1
First published: 15 July 2005
Abstract
The efficiencies of two consistent estimators of a parameter may be compared by the ratio of their asymptotic variances. Alternative measures are the Pitman and Bahadur measures, which relate to the ratio of sample sizes needed to achieve equivalent asymptotic power. Topics examined are the relevance for finite samples, sensitivity to the underlying distribution, higher-order efficiency (to compare different fully efficient estimators), and efficiency estimation in complex models.
References
- 1
Akahira, M. &
Takeuchi, K.
(1981).
Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency.
Springer-Verlag,
New York.
10.1007/978-1-4612-5927-5 Google Scholar
- 2 Albers, W. (1974). Asymptotic Expansions and the Deficiency Concept in Statistics, Mathematical Centre Tract, Vol. 58, Amsterdam.
- 3 Bahadur, R. R. (1960). Stochastic comparison of tests, Annals of Mathematical Statistics 31, 276–295.
- 4 Begun, J. M., Hall, W. J., Huang, W. M. & Wellner, J. A. (1983). Information and asymptotic efficiency in parametric–semiparametric models, Annals of Statistics 11, 432–452.
- 5 Beran, J. (1995). Statistics for Long Memory Processes. Chapman & Hall, New York.
- 6 Bickel, P. J. & Lehmann, E. L. (1976). Descriptive statistics for nonparametric models, Annals of Statistics 4, 1139–1158.
- 7 Bickel, P. J. & Ritov, Y. (1987). Efficient estimation in the errors in variables model, Annals of Statistics 15, 513–540.
- 8 Bickel, P. J. & Ritov, Y. (1988). Estimating integrated squared density derivatives: sharp best order of convergence estimates, Sankhyā, Series A 50, 381–393.
- 9 Bickel, P. J., Chibisov, D. M. & van Zwet, W. R. (1981). On efficiency of first and second order, International Statistical Review 49, 169–175.
- 10 Bickel, P. J., Klassen, C. A. J., Ritov, Y. & Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore.
- 11 Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods. Springer-Verlag, New York.
- 12 Chandra, T. & Ghosh, J. K. (1978). Comparison of tests with same Bahadur efficiency, Sankhyā, Series A 40, 253–277.
- 13 Chen, H. (1995). Asymptotically efficient estimation in semiparametric generalized linear models, Annals of Statistics 23, 1102–1129.
- 14 Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order efficiency), Annals of Statistics 3, 1189–1242.
- 15 Ghosh, J. K. (1994). Higher Order Asymptotics. Institute of Mathematical Statistics, Hayward.
- 16 Ghosh, J. K., Sinha, B. K. & Wieand, H. S. (1980). Second order efficiency of mle with respect to a bounded bowl-shaped loss function, Annals of Statistics 8, 506–521.
- 17 Grenander, U. & Rosenblatt, M. (1957). Statistical Analysis of Stationary Time Series. Wiley, New York.
- 18 Groenboom, P. & Oosterhoff, J. (1980). Bahadur Efficiency and Small Sample Efficiency: A Numerical Study, Report SW 68–80. Mathematische Centrum, Amsterdam.
- 19
Groenboom, P. &
Wellner, J. A.
(1992).
Information Bounds and Nonparametric Maximum Likelihood Estimation.
Birkhauser,
Boston.
10.1007/978-3-0348-8621-5 Google Scholar
- 20 Hall, P. & Marron, J. S. (1987). Estimation of integrated squared density derivatives, Statistics & Probability Letters 6, 109–115.
- 21 Hasminskii, R. Z. & Ibragimov, I. A. (1983). On asymptotic efficiency in the presence of an infinite dimensional nuisance parameter, in USSR—Japan Symposium. Springer-Verlag, New York, pp. 195–229.
- 22 Hodges, J. L. Jr & Lehmann, E. L. (1976). Deficiency, Annals of Mathematical Statistics 41, 783–801.
- 23 Huber, P. J. (1981). Robust Statistics. Wiley, New York.
- 24
Pfanzagl, J.
(1979).
First order efficiency implies second order efficiency, in
Contributions to Statistics,
J. Hajek Memorial Volume,
J. Jureckova, ed.
Academia,
Prague,
pp. 167–196.
10.1007/978-94-009-9362-4_17 Google Scholar
- 25 Rao, C. R. (1961). Asymptotic efficiency and limiting information, in Proceedings of Fourth Berkeley Symposium, Vol. I, pp. 531–545.
- 26
Rao, C. R.
(1962).
Efficient estimates and optimum inference procedures in large samples (with discussion),
Journal of the Royal Statistical Society, Series B
24,
46–72.
10.1111/j.2517-6161.1962.tb00436.x Google Scholar
- 27 Sievers, G. L. (1969). On the probability of large deviations and exact slopes, Annals of Mathematical Statistics 40, 1908–1921.
- 28 Staudte, R. G. & Sheather, S. S. (1990). Robust Estimation and Testing. Wiley, New York.
- 29
van der Vaart, A.
(1996).
Efficient maximum likelihood estimation in semiparametric mixture models,
Annals of Statistics
24,
862–878.
10.1214/aos/1032894470 Google Scholar