Abstract
Clinical signals are obtained when human activity is monitored, usually electronically. Typical examples are brain activity via the EEG, and heart activity from the ECG. Other signals include blood pressure and measures of lung function. The signals can be sampled at short time intervals, such as 0.1 s for measuring autonomic function, or a longer periods such as every 2 hrs for measuring circadian activity. Techniques of analysis include spectral analysis, and time-varying spectral analysis. Examples are given for heart rate and blood pressure variability, the EEG, and human luteinizing hormone levels.
References
- 1 Bianchi, A., Bontempi, B., Cerutti, S., Gianoglio, P., Comi, G. & Sora M. G. N. (1990). Spectral analysis of heart rate variability signal and respiration in diabetic subjects, Medical and Biological Engineering and Computing 28, 205–211.
- 2
Campbell, M. J.
(1983).
Spectral analysis applied to physiological signals in human subjects,
Bulletin of Applied Statistics
10,
175–193.
10.1080/02664768300000016 Google Scholar
- 3 Campbell, M. J. (1996). Spectral analysis of clinical signals: an interface between medical statisticians and medical engineers, Statistical Methods in Medical Research 5, 51–66.
- 4 Charnock, D. M. & Manenica, A. (1978). Spectral analysis of R–R intervals under different work conditions, Ergonomics 21, 103–108.
- 5 Chen, J. D. Z., Stewart, W. R. & McCallum, R. W. (1993). Spectral analysis of episodic rhythmic variations in the cutaneous electrogastrogram, IEEE Transactions on Biomedical Engineering 40, 128–135.
- 6 Chen, J., Vandewalle, J., Sansen, W., Vantrappen, G. & Janssen, J. (1990). Adaptive spectral analysis of cutaneous electrogastric signals using autoregressive moving average modelling, Medical and Biological Engineering and Computing 28, 531–536.
- 7 Cohen, L. (1989). Time frequency distributions—a review, 8 Proceedings of the IEEE 77, 941–981.
- 8 Diggle P. J. & al Wasel, I. (1997). Spectral analysis of replicated biomedical time series, Applied Statistics 46, 31–71.
- 9 Doust, J. S. L. (1978). A free running endogenous rhythm of the resting heart rate in man, Canadian Journal of Physiology and Pharmacology 56, 83–86.
- 10 Duchêne, J., Devedeux, D., Mansour, S. & Marque, C. (1995). Analyzing uterine EMG: tracking instantaneous burst frequency, IEEE Engineering in Medicine and Biology March/April, 124–140.
- 11 Ettema, J. H. & Zielhuis, R. L. (1971). Physiological parameters of mental load, Ergonomics 14, 137–144.
- 12 French, A. S. & Holden, A. V. (1971). Alias free sampling of neuronal spike trains, Kybernetik 8, 165–171.
- 13 Furlan, R., Guzzetti, S., Crivellaro, W., Dassi, S., Tinelli, M., Baselli, G., Cerutti, S., Lombardi, F., Pagani, M. & Malliani, A. (1990). Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects, Circulation 81, 537–547.
- 14 Hammond, J. K., Harrison, R. F., Tsao, Y. H. & Lee, J. S. (1993). The prediction of time-frequency spectra using covariance-equivalent models, in Developments in Time Series Analysis. In Honour of Maurice B. Priestley, T. Subba Rao, ed. Chapman & Hall, London.
- 15 Hyndman, B. W. (1974). The role of rhythms in homeostasis, Kybernetik 15, 227–236.
- 16 Hyndman, B. W., Kitney, R. I. & Sayers, B. McA. (1971). Spontaneous rhythms in physiological control systems, Nature 233, 339–341.
- 17 Jervis, B. W., Coellio, M. & Morgan, G. W. (1989). Spectral analysis of EEG responses, Medical and Biological Engineering and Computing 27, 230–238.
- 18 Kitney, R. I. & Rompelman, O. (1987). New trends in the application of heart-rate variability analysis, in The Beat-by-Beat Investigation of Cardiovascular Function, R. I. Kitney & O. Rompelman, eds. Clarendon Press, Oxford.
- 19 Larsen, H. & Lai, D. C. (1980). Walsh spectral estimates with applications to the classification of EEG signals, IEEE Transactions on Biomedical Engineering 27, 485–492.
- 20 Lincoln, D. W., Fraser, H. M., Lincoln, G. A., Martin, G. B. & McNeilly, A. (1985). Hypothalmic pulse generators, Recent Progress in Hormone Research 41, 369–419.
- 21 Murdoch, A. P., Diggle, P. J., Dunlop, W. & Kendall-Taylor, P. (1985). Determination of the frequency of pulsatile luteinizing hormone secretion by time series analysis, Clinical Endocrinology 22, 341–346.
- 22 Novak, P. & Novak, V. (1993). Time/frequency mapping of the heart rate, blood pressure and respiratory signals, Medical and Biological Engineering and Computing 31, 103–110.
- 23 Orr, W. E. & Hoffman, J. H. (1974). A 90 min biorhythm: methodology and data analysis using modified periodograms and complex demodulation, Transactions on Biomedical Engineering 21, 130–143.
- 24 Palus, M. (1996). Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos, Biological Cybernetics 75, 389–396.
- 25 Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes, Journal of the Royal Statistical Society, Series B 27, 204–237.
- 26 Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press, London.
- 27
Priestley, M. B.
(1996).
Wavelets and time-dependent spectral analysis,
Journal of Time Series Analysis
17,
85–105.
10.1111/j.1467-9892.1996.tb00266.x Google Scholar
- 28 Sayers, B. McA. (1973). Analysis of heart rate variability, Ergonomics 16, 17–32.
- 29 Thakar, N. V., Guo, X., Vaz, C. A., Laguna, P., June, R., Caminal, P., Rix, H. & Hanley, D. F. (1993). Orthonormal (Fourier and Walsh) methods of time-varying evoked potentials in neurological injury, IEEE Transactions on Biomedical Engineering 40, 213–221.
- 30 Van der Schee, E. J. & Grashuis, J. L. (1987). Running spectrum analysis as an aid in the representation and interpretation of electrogastric signals, Medical and Biological Engineering and Computing 25, 57–62.