Switching and Mating
David R. Soll
Department of Biology, The University of Iowa, Iowa City, IA, 52242
Search for more papers by this authorDavid R. Soll
Department of Biology, The University of Iowa, Iowa City, IA, 52242
Search for more papers by this authorRichard A. Calderone
Georgetown University Medical Center, Washington, DC
Search for more papers by this authorCornelius J. Clancy
Department of Medicine, Infectious Diseases Division, University of Pittsburgh, Pittsburgh, PA
Search for more papers by this authorSummary
The chapter focuses on the switching and mating processes of Candida species. Hull and Johnson found orthologs of three Saccharomyces cerevisiae mating-type genes in the Candida albicans mating type-like (MTL) locus. Although the scheme for mating and the regulation of the response to the mating pheromones proved in subsequent studies to be in general similar to that of S. cerevisiae and hence that of the hemiascomycetes in general, the biggest surprise was the fundamental and unique role that white-opaque switching played in the mating process of C. albicans. The response of an opaque cell to pheromone produced by the opposite mating type was shown to be highly similar to that of S. cerevisiae, including the components of the major regulatory pathway that transduces the pheromone signal. The spontaneous transition between the white and opaque phenotypes by a selected group of strains had been shown to affect a number of phenotypic and virulence traits before the discovery by Miller and Johnson that it was an essential step in the mating process. The sensitivity of the opaque phenotype to high temperature caused a conundrum regarding the relationship of host and mating. The host signals that have been identified stimulate the rate of white-to-opaque switching, but switching occurs spontaneously and in both directions. Gradients of pheromone would be extremely prone to mechanical disruption and dissipation by diffusion if in a purely liquid environment. A biofilm would provide a protective environment against disruption, and a porous matrix would reduce diffusion.
References
- Alby, K., D. Schaefer, and R. J. Bennett 2009. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans . Nature 460: 890–893.
- Anderson, J., L. Cundiff, B. Schnars, M. X. Gao, I. Mackenzie, and D. R. Soll 1989. Hypha formation in the white-opaque transition of Candida albicans . Infect. Immun. 57: 458–467.
- Anderson, J., R. Mihalik, and D. R. Soll 1990. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J. Bacteriol. 172: 224–235.
- Anderson, J. M., and D. R. Soll 1987. Unique phenotype of opaque cells in the white-opaque transition of Candida albicans . J. Bacteriol. 169: 5579–5588.
- Aparicio, O. M., B. L. Billington, and D. E. Gottschling 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae . Cell 66: 1279–1287.
-
Barbour, A. G.
2003. Antigenic variation in Borrelia: relapsing fever and Lyme borreliosis, p. 319–356. In A. Craig and A. Scherf (ed.), Antigenic Variation. Academic Press Elsevier,
London, United Kingdom.
10.1016/B978-012194851-1/50040-8 Google Scholar
-
Barry, J. D., and R. McCulloch
2003. Trypanosome antigenic variation—a heavy investment in the evasion of immunity, p. 224–242. In
A. Craig and A. Scherf (ed.), Antigenic Variation. Academic Press Elsevier,
London, United Kingdom.
10.1016/B978-012194851-1/50036-6 Google Scholar
- Bennett, R. J., M. A. Uhl, M. G. Miller, and A. D. Johnson 2003. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell. Biol. 23: 8189–8201.
- Bennett, R. J., M. G. Miller, P. R. Chua, M. E. Maxon, and A. D. Johnson 2005. Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol. Microbiol. 55: 1046–1059.
- Bennett, R. J., and A. D. Johnson 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22: 2505–2515.
- Bennett, R. J., and A. D. Johnson 2006. The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans . Mol. Microbiol. 62: 100–119.
- Bergen, M. S., E. Voss, and D. R. Soll 1990. Switching at the cellular level in the white-opaque transition of Candida albicans . J. Gen. Microbiol. 136: 1925–1936.
- Borneman, A. R., T. A. Gianoulis, Z. D. Zhang, H. Yu, J. Rozowsky, M. R. Seringhaus, L. Y. Wang, M. Gerstein, and M. Snyder 2007. Divergence of transcription factor binding sites across related yeast species. Science 317: 815–819.
- Borst, P. 2003. Mechanisms of antigenic variation: an overview, p. 1–15. In A. Craig and A. Scherf (ed.), Antigenic Variation. Academic Press Elsevier, London, United Kingdom.
- Bougnoux, M. E., C. Pujol, D. Diogo, C. Bouchier, D. R. Soll, and C. d'Enfert 2008. Mating is rare within as well as between clades of the human pathogen Candida albicans . Fungal Genet. Biol. 45: 221–231.
- Braun, B. R., H. M. van Het, C. d'Enfert, M. Martchenko, J. Dungan, A. Kuo, D. O. Inglis, M. A. Uhl, H. Hogues, M. Berriman, M. Lorenz, A. Levitin, U. Oberholzer, C. Bachewich, D. Harcus, A. Marcil, D. Dignard, T. Iouk, R. Zito, L. Frangeul, F. Tekaia, K. Rutherford, E. Wang, C. A. Munro, S. Bates, N. A. Gow, L. L. Hoyer, G. Kohler, J. Morschhauser, G. Newport, S. Znaidi, M. Raymond, B. Turcotte, G. Sherlock, M. Costanzo, J. Ihmels, J. Berman, D. Sanglard, N. Agabian, A. P. Mitchell, A. D. Johnson, M. White-way, and A. Nantel 2005. A human-curated annotation of the Candida albicans genome. PLoS Genet. 1: 36–57.
- Butler, G., M. D. Rasmussen, M. F. Lin, M. A. Santos, S. Sakthikumar, C. A. Munro, E. Rheinbay, M. Grabherr, A. Forche, J. L. Reedy, I. Agrafioti, M. B. Arnaud, S. Bates, A. J. Brown, S. Brunke, M. C. Costanzo, D. A. Fitzpatrick, P. W. de Groot, D. Harris, L. L. Hoyer, B. Hube, F. M. Klis, C. Kodira, N. Lennard, M. E. Logue, R. Martin, A. M. Neiman, E. Nikolaou, M. A. Quail, J. Quinn, M. C. Santos, F. F. Schmitzberger, G. Sherlock, P. Shah, K. A. Silverstein, M. S. Skrzypek, D. Soll, R. Staggs, I. Stansfield, M. P. Stumpf, P. E. Sudbery, T. Srikantha, Q. Zeng, J. Berman, M. Berriman, J. Heitman, N. A. Gow, M. C. Lorenz, B. W. Birren, M. Kellis, and C. A. Cuomo 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657–662.
- Chen, J., J. Chen, S. Lane, and H. Liu 2002. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans . Mol. Microbiol. 46: 1335–1344.
- Chen, P., S. K. Sapperstein, J. D. Choi, and S. Michaelis 1997. Biogenesis of the Saccharomyces cerevisiae mating pheromone a-factor. J. Cell Biol. 136: 251–269.
- Cherkasova, V., D. M. Lyons, and E. A. Elion 1999. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Genetics 151: 989–1004.
- Cote, P., and M. Whiteway 2008. The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest. Mol. Microbiol. 68: 392–404.
- Daniels, K. J., T. Srikantha, S. R. Lockhart, C. Pujol, and D. R. Soll 2006. Opaque cells signal white cells to form biofilms in Candida albicans . EMBO J. 25: 2240–2252.
- Dignard, D., and M. Whiteway 2006. SST2, a regulator of G-protein signaling for the Candida albicans mating response pathway. Eukaryot. Cell 5: 192–202.
- Dignard, D., A. L. El-Naggar, M. E. Logue, G. Butler, and M. Whiteway 2007. Identification and characterization of MFA1, the gene encoding Candida albicans a-factor pheromone. Eukaryot. Cell 6: 487–494.
- Dranginis, A. M. 1990. Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature 347: 682–685.
- Dumitru, R., D. H. Navarathna, C. P. Semighini, C. G. Elowsky, R. V. Dumitru, D. Dignard, M. Whiteway, A. L. Atkin, and K. W. Nickerson 2007. In vivo and in vitro anaerobic mating in Candida albicans . Eukaryot. Cell 6: 465–472.
- Forche, A., G. Schonian, Y. Graser, R. Vilgalys, and T. G. Mitchell 1999. Genetic structure of typical and atypical populations of Candida albicans from Africa. Fungal Genet. Biol. 28: 107–125.
- Forche, A., K. Alby, D. Schaefer, A. D. Johnson, J. Berman, and R. J. Bennett 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6: e110.
- Gartner, A., A. Jovanović, D.-I. Jeoung, S. Bourlat, F. R. Cross, and G. Ammerer 1998. Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo. Mol. Cell. Biol. 18: 3681–3691.
- Geiger, J., D. Wessels, S. R. Lockhart, and D. R. Soll 2004. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans . Infect. Immun. 72: 667–677.
- Goldman, G. H., M. E. da Silva Ferreira, M. E. dos Reis, M. Savoldi, D. Perlin, S. Park, P. C. Godoy Martinez, M. H. Goldman, and A. L. Colombo 2004. Evaluation of fluconazole resistance mechanisms in Candida albicans clinical isolates from HIV-infected patients in Brazil. Diagn. Microbiol. Infect. Dis. 50: 25–32.
- Gottschling, D. E., O. M. Aparicio, B. L. Billington, and V. A. Zakian 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762.
- Graser, Y., M. Volovsek, J. Arrington, G. Schonian, W. Presber, T. G. Mitchell, and R. Vilgalys 1996. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93: 12473–12477.
- Heitman, J. 2009. Microbial genetics: love the one you're with. Nature 460: 807–808.
- Hnisz, D., T. Schwarzmuller, and K. Kuchler 2009. Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans . Mol. Microbiol. 74: 1–15.
- Huang, G., H. Wang, S. Chou, X. Nie, J. Chen, and H. Liu 2006. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans . Proc. Natl. Acad. Sci. USA 103: 12813–12818.
- Huang, G., T. Srikantha, N. Sahni, S. Yi, and D. R. Soll 2009. CO2 regulates white-to-opaque switching in Candida albicans . Curr. Biol. 19: 330–334.
- Huang, G., S. Yi, N. Sahni, K. J. Daniels, T. Srikantha, and D. R. Soll 2010. N-Acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans . PLoS Pathog. 6: e1000806.
- Hube, B., M. Monod, D. A. Schofield, A. J. Brown, and N. A. Gow 1994. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans . Mol. Microbiol. 14: 87–99.
- Hull, C. M., and A. D. Johnson 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans . Science 285: 1271–1275.
- Hull, C. M., R. M. Raisner, and A. D. Johnson 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289: 307–310.
- Ibrahim, A. S., B. B. Magee, D. C. Sheppard, M. Yang, S. Kauffman, J. Becker, J. E. Edwards, Jr., and P. T. Magee 2005. Effects of ploidy and mating type on virulence of Candida albicans . Infect. Immun. 73: 7366–7374.
- Joly, S., C. Pujol, and D. R. Soll 2002. Microevolutionary changes and chromosomal translocations are more frequent at RPS loci in Candida dubliniensis than in Candida albicans . Infect. Genet. Evol. 2: 19–37.
- Jones, T., N. A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B. B. Magee, G. Newport, Y. R. Thorstenson, N. Agabian, P. T. Magee, R. W. Davis, and S. Scherer 2004. The diploid genome sequence of Candida albicans . Proc. Natl. Acad. Sci. USA 101: 7329–7334.
- Kennedy, M. J., A. L. Rogers, L. R. Hanselmen, D. R. Soll, and R. J. Yancey, Jr. 1988. Variation in adhesion and cell surface hydrophobicity in Candida albicans white and opaque phenotypes. Mycopathologia 102: 149–156.
- Klar, A. J., T. Srikantha, and D. R. Soll 2001. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans . Genetics 158: 919–924.
- Kvaal, C., S. A. Lachke, T. Srikantha, K. Daniels, J. McCoy, and D. R. Soll 1999. Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun. 67: 6652–6662.
- Kvaal, C. A., T. Srikantha, and D. R. Soll 1997. Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect. Immun. 65: 4468–4475.
- Lachke, S. A., S. R. Lockhart, K. J. Daniels, and D. R. Soll 2003. Skin facilitates Candida albicans mating. Infect. Immun. 71: 4970–4976.
- Lan, C. Y., G. Newport, L. A. Murillo, T. Jones, S. Scherer, R. W. Davis, and N. Agabian 2002. Metabolic specialization associated with phenotypic switching in Candida albicans . Proc. Natl. Acad. Sci. USA 99: 14907–14912.
- Legrand, M., P. Lephart, A. Forche, F. M. Mueller, T. Walsh, P. T. Magee, and B. B. Magee 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52: 1451–1462.
- Lo, H. J., J. R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, and G. R. Fink 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939–949.
- Lockhart, S. R., C. Pujol, K. J. Daniels, M. G. Miller, A. D. Johnson, M. A. Pfaller, and D. R. Soll 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162: 737–745.
- Lockhart, S. R., K. J. Daniels, R. Zhao, D. Wessels, and D. R. Soll 2003. Cell biology of mating in Candida albicans . Eukaryot. Cell 2: 49–61.
- Lockhart, S. R., R. Zhao, K. J. Daniels, and D. R. Soll 2003. Alpha-pheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot. Cell 2: 847–855.
- Lohse, M. B., and A. D. Johnson 2009. White-opaque switching in Candida albicans . Curr. Opin. Microbiol. 12: 650–654.
- Madhani, H. D., and G. R. Fink 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275: 1314–1317.
- Magee, B. B., and P. T. Magee 2000. Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289: 310–313.
- Magee, B. B., M. Legrand, A. M. Alarco, M. Raymond, and P. T. Magee 2002. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans . Mol. Microbiol. 46: 1345–1351.
- Magee, B. B., M. D. Sanchez, D. Saunders, D. Harris, M. Berriman, and P. T. Magee 2008. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans . Fungal Genet. Biol. 45: 338–350.
- Manoharlal, R., J. Gorantala, M. Sharma, D. Sanglard, and R. Prasad 2010. PAP1 [poly(A) polymerase 1] homozygosity and hyperadenylation are major determinants of increased mRNA stability of CDR1 in azole-resistant clinical isolates of Candida albicans . Microbiology 156: 313–326.
- Miller, M. G., and A. D. Johnson 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293–302.
- Mishra, P. K., M. Baum, and J. Carbon 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics 278: 455–465.
- Moran, G., C. Stokes, S. Thewes, B. Hube, D. C. Coleman, and D. Sullivan 2004. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis . Microbiology 150: 3363–3382.
- Moran, G. P., D. J. Sullivan, M. C. Henman, C. E. McCreary, B. J. Harrington, D. B. Shanley, and D. C. Coleman 1997. Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrob. Agents Chemother. 41: 617–623.
- Morrow, B., J. Anderson, J. Wilson, and D. R. Soll 1989. Bidirectional stimulation of the white-opaque transition of Candida albicans by ultraviolet irradiation. J. Gen. Microbiol. 135: 1201–1208.
- Morrow, B., T. Srikantha, and D. R. Soll 1992. Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans . Mol. Cell. Biol. 12: 2997–3005.
- Morrow, B., T. Srikantha, J. Anderson, and D. R. Soll 1993. Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans . Infect. Immun. 61: 1823–1828.
- Nasmyth, K. A. 1982. Molecular genetics of yeast mating type. Annu. Rev. Genet. 16: 439–500.
- Nielsen, K., and J. Heitman 2007. Sex and virulence of human pathogenic fungi. Adv. Genet. 57: 143–173.
- Odds, F. C. 1987. Candida infection: an overview. Crit. Rev. Microbiol. 15: 1–5.
- Odds, F. C., M. E. Bougnoux, D. J. Shaw, J. M. Bain, A. D. Davidson, D. Diogo, M. D. Jacobsen, M. Lecomte, S. Y. Li, A. Tavanti, M. C. Maiden, N. A. Gow, and C. d'Enfert 2007. Molecular phylogenetics of Candida albicans . Eukaryot. Cell 6: 1041–1052.
- Oehlen, L., and F. R. Cross 1998. The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae . FEBS Lett. 429: 83–88.
- Panwar, S. L., M. Legrand, D. Dignard, M. Whiteway, and P. T. Magee 2003. MFα1, the gene encoding the α mating pheromone of Candida albicans . Eukaryot. Cell 2: 1350–1360.
- Peter, M., A. Gartner, J. Horecka, G. Ammerer, and I. Herskowitz 1993. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73: 747–760.
- Pillus, L., and J. Rine 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae . Cell 59: 637–647.
- Pujol, C., J. Reynes, F. Renaud, M. Raymond, M. Tibayrenc, F. J. Ayala, F. Janbon, M. Mallie, and J. M. Bastide 1993. The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. Proc. Natl. Acad. Sci. USA 90: 9456–9459.
- Pujol, C., S. Joly, B. Nolan, T. Srikantha, and D. R. Soll 1999. Microevolutionary changes in Candida albicans identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive sequence RPS at specific genomic sites. Microbiology 145 (Pt. 10):2635–2646.
- Pujol, C., K. J. Daniels, S. R. Lockhart, T. Srikantha, J. B. Radke, J. Geiger, and D. R. Soll 2004. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3: 1015–1027.
- Pujol, C., A. Dodgson, and D. R. Soll 2005. Population genetics of ascomycetes pathogenic to humans and animals, p. 149–188. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Scientific Press, Norfolk, United Kingdom.
- Ramirez-Zavala, B., O. Reuss, Y. N. Park, K. Ohlsen, and J. Morschhauser 2008. Environmental induction of white-opaque switching in Candida albicans . PLoS Pathog. 4: e1000089.
- Reedy, J. L., A. M. Floyd, and J. Heitman 2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19: 891–899.
- Remenyi, A., M. C. Good, R. P. Bhattacharyya, and W. A. Lim 2005. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Mol. Cell 20: 951–962.
- Rikkerink, E. H., B. B. Magee, and P. T. Magee 1988. Opaque-white phenotype transition: a programmed morphological transition in Candida albicans . J. Bacteriol. 170: 895–899.
- Roberts, C. J., B. Nelson, M. J. Marton, R. Stoughton, M. R. Meyer, H. A. Bennett, Y. D. He, H. Dai, W. L. Walker, T. R. Hughes, M. Tyers, C. Boone, and S. H. Friend 2000. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287: 873–880.
- Robles, J. C., L. Koreen, S. Park, and D. S. Perlin 2004. Multilocus sequence typing is a reliable alternative method to DNA fingerprinting for discriminating among strains of Candida albicans . J. Clin. Microbiol. 42: 2480–2488.
- Rustad, T. R., D. A. Stevens, M. A. Pfaller, and T. C. White 2002. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 148: 1061–1072.
- Sadhu, C., D. Hoekstra, M. J. McEachern, S. I. Reed, and J. B. Hicks 1992. A G-protein α subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-α2 repressor. Mol. Cell. Biol. 12: 1977–1985.
- Sahni, N., S. Yi, K. J. Daniels, T. Srikantha, C. Pujol, and D. R. Soll 2009. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans . PLoS Pathog. 5: e1000601.
- Sahni, N., S. Yi, C. Pujol, and D. R. Soll 2009. The white cell response to pheromone is a general characteristic of Candida albicans strains. Eukaryot. Cell 8: 251–256.
- Sahni, N., S. Yi, K. J. Daniels, G. Huang, T. Srikantha, and D. R. Soll 2010. Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways. PLoS Biol. 8: e1000363.
- Sánchez-Martínez, C., and J. Pérez-Martín 2002. Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans . Eukaryot Cell 1: 865–874.
- Schaefer, D., P. Cote, M. Whiteway, and R. J. Bennett 2007. Barrier activity in Candida albicans mediates pheromone degradation and promotes mating. Eukaryot. Cell 6: 907–918.
- Schwartz, M. A., and H. D. Madhani 2004. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae . Annu. Rev. Genet. 38: 725–748.
- Schweizer, A., S. Rupp, B. N. Taylor, M. Röllinghoff, and K. Schröppel 2000. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans . Mol. Microbiol. 38: 435–445.
- Slutsky, B., M. Staebell, J. Anderson, L. Risen, M. Pfaller, and D. R. Soll 1987. “White-opaque transition”: a second high-frequency switching system in Candida albicans . J. Bacteriol. 169: 189–197.
- Soll, D. R., C. J. Langtimm, J. McDowell, J. Hicks, and R. Galask 1987. High-frequency switching in Candida strains isolated from vaginitis patients. J. Clin. Microbiol. 25: 1611–1622.
- Soll, D. R. 1992. High-frequency switching in Candida albicans . Clin. Microbiol. Rev. 5: 183–203.
- Soll, D. R. 1995. The use of computers in understanding how animal cells crawl. Int. Rev. Cytol. 163: 43–104.
- Soll, D. R. 2002. Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop. 81: 101–110.
- Soll, D. R. 2009. Why does Candida albicans switch? FEMS Yeast Res. 9: 973–989.
- Soll, D. R., C. Pujol, and T. Srikantha 2009. Sex: deviant mating in yeast. Curr. Biol. 19: R509–R511.
- Sonneborn, A., B. Tebarth, and J. F. Ernst 1999. Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect. Immun. 67: 4655–4660.
- Srikantha, T., and D. R. Soll 1993. A white-specific gene in the white-opaque switching system of Candida albicans . Gene 131: 53–60.
- Srikantha, T., L. K. Tsai, K. Daniels, and D. R. Soll 2000. EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J. Bacteriol. 182: 1580–1591.
- Srikantha, T., L. Tsai, K. Daniels, A. J. Klar, and D. R. Soll 2001. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans . J. Bacteriol. 183: 4614–4625.
- Srikantha, T., A. R. Borneman, K. J. Daniels, C. Pujol, W. Wu, M. R. Seringhaus, M. Gerstein, S. Yi, M. Snyder, and D. R. Soll 2006. TOS9 regulates white-opaque switching in Candida albicans . Eukaryot. Cell 5: 1674–1687.
- Stokes, C., G. P. Moran, M. J. Spiering, G. T. Cole, D. C. Coleman, and D. J. Sullivan 2007. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans . Fungal Genet. Biol. 44: 920–931.
- Stoldt, V. R., A. Sonneborn, C. E. Leuker, and J. F. Ernst 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16: 1982–1991.
- Sullivan, D. J., T. J. Westerneng, K. A. Haynes, D. E. Bennett, and D. C. Coleman 1995. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141(Pt. 7): 1507–1521.
- Sullivan, D. J., G. P. Moran, and D. C. Coleman 2005. Candida dubliniensis: ten years on. FEMS Microbiol. Lett. 253: 9–17.
- Tavanti, A., N. A. Gow, M. C. Maiden, F. C. Odds, and D. J. Shaw 2004. Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genet. Biol. 41: 553–562.
- Tavanti, A., A. D. Davidson, M. J. Fordyce, N. A. Gow, M. C. Maiden, and F. C. Odds 2005. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J. Clin. Microbiol. 43: 5601–5613.
- Tsong, A. E., M. G. Miller, R. M. Raisner, and A. D. Johnson 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389–399.
- Tzung, K. W., R. M. Williams, S. Scherer, N. Federspiel, T. Jones, N. Hansen, V. Bivolarevic, L. Huizar, C. Komp, R. Surzycki, R. Tamse, R. W. Davis, and N. Agabian 2001. Genomic evidence for a complete sexual cycle in Candida albicans . Proc. Natl. Acad. Sci. USA 98: 3249–3253.
- Vargas, K., P. W. Wertz, D. Drake, B. Morrow, and D. R. Soll 1994. Differences in adhesion of Candida albicans 3153A cells exhibiting switch phenotypes to buccal epithelium and stratum corneum. Infect. Immun. 62: 1328–1335.
- Vinces, M. D., and C. A. Kumamoto 2007. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans . Microbiology 153: 2877–2884.
- White, T. C., S. H. Miyasaki, and N. Agabian 1993. Three distinct secreted aspartyl proteinases in Candida albicans . J. Bacteriol. 175: 6126–6133.
- Wu, W., C. Pujol, S. R. Lockhart, and D. R. Soll 2005. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans . Genetics 169: 1311–1327.
- Wu, W., S. R. Lockhart, C. Pujol, T. Srikantha, and D. R. Soll 2007. Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol. Microbiol. 64: 1587–1604.
- Yi, S., N. Sahni, K. J. Daniels, C. Pujol, T. Srikantha, and D. R. Soll 2008. The same receptor, G protein, and mitogen-activated protein kinase pathway activate different downstream regulators in the alternative white and opaque pheromone responses of Candida albicans . Mol. Biol. Cell 19: 957–970.
- Yi, S., N. Sahni, C. Pujol, K. J. Daniels, T. Srikantha, N. Ma, and D. R. Soll 2009. A Candida albicans-specific region of the alpha-pheromone receptor plays a selective role in the white cell pheromone response. Mol. Microbiol. 71: 925–947.
- Zhao, R., K. J. Daniels, S. R. Lockhart, K. M. Yeater, L. L. Hoyer, and D. R. Soll 2005. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Eukaryot. Cell 4: 1175–1190.
- Zordan, R. E., D. J. Galgoczy, and A. D. Johnson 2006. Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc. Natl. Acad. Sci. USA 103: 12807–12812.
- Zordan, R. E., M. G. Miller, D. J. Galgoczy, B. B. Tuch, and A. D. Johnson 2007. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans . PLoS Biol. 5: e256.