Transcutaneous Auricular Vagus Nerve Stimulation Does Not Accelerate Fear Extinction: A Randomized, Sham-Controlled Study
Corresponding Author
Martina D'Agostini
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Emotion Cognition Lab, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
Correspondence:
Martina D'Agostini ([email protected])
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Software, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorLucas Vanden Bossche
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Contribution: Data curation, Investigation, Project administration, Software, Writing - review & editing
Search for more papers by this authorAndreas M. Burger
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Contribution: Conceptualization, Funding acquisition, Methodology, Software, Writing - review & editing
Search for more papers by this authorIlse Van Diest
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Contribution: Conceptualization, Funding acquisition, Methodology, Writing - review & editing
Search for more papers by this authorCorresponding Author
Martina D'Agostini
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Emotion Cognition Lab, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
Correspondence:
Martina D'Agostini ([email protected])
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Software, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorLucas Vanden Bossche
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Contribution: Data curation, Investigation, Project administration, Software, Writing - review & editing
Search for more papers by this authorAndreas M. Burger
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Contribution: Conceptualization, Funding acquisition, Methodology, Software, Writing - review & editing
Search for more papers by this authorIlse Van Diest
Research Group Health Psychology, KU Leuven, Leuven, Belgium
Contribution: Conceptualization, Funding acquisition, Methodology, Writing - review & editing
Search for more papers by this authorFunding: This work was supported by postdoctoral mandates PDM/19/051 (A.M.B.) and PDMT2/22/020 (M.D.) of KU Leuven; the Asthenes long-term structural funding (METH/15/011)—Methusalem grant of the Flemish Government (I.V.D., AvL); FWO Strategic basic research PhD fellowship [1SC1719N] (M.D., I.V.D.); by an infrastructure grant from FWO [AKUL/19/06] (AvL, I.V.D.); and by the FWO-sponsored European Research network on tVNS (Wetenschappelijke Onderzoeksgemeenschap WOG W001520N) (I.V.D., A.M.B.).
ABSTRACT
Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a strategy to facilitate fear extinction learning based on the hypothesis that taVNS increases central noradrenergic activity. Four studies out of six found taVNS to enhance extinction learning especially at the beginning of extinction. Facilitatory effects of taVNS were mainly observed in US expectancy, less in fear-potentiated startle (FPS), and not in the skin conductance response (SCR). Suboptimal stimulation parameters may explain the reported mixed results. Also, variability in selected fear conditioning paradigms and statistical power impedes the comparability between studies. This study sought to further test whether taVNS accelerates fear extinction learning as indexed by US expectancy, FPS, and SCR. Similar to most previous studies, we employed a differential fear conditioning paradigm. The left ear of 79 healthy participants was stimulated with either sham (earlobe) or taVNS (cymba concha) during extinction learning. To maximize the beneficial effects of taVNS, the stimulation of the left cymba concha was administered continuously at the maximum level below the pain threshold. Results of the pre-registered frequentist and exploratory Bayesian analyses indicate that taVNS did not accelerate extinction learning in any of the outcomes. The null results indicate that taVNS with commonly used stimulation parameters does not reliably optimize fear extinction learning. More research is needed to test if the stimulation protocol determines the efficacy of taVNS in optimizing fear extinction learning.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
psyp14754-sup-0001-supinfo.docxWord 2007 document , 24.2 KB |
Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Aston-Jones, G., and J. D. Cohen. 2005. “An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance.” Annual Review of Neuroscience 28, no. 1: 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709.
- Bierwirth, P., and U. Stockhorst. 2022. “Role of Noradrenergic Arousal for Fear Extinction Processes in Rodents and Humans.” Neurobiology of Learning and Memory 194: 107660. https://doi.org/10.1016/j.nlm.2022.107660.
- Blumenthal, T. D., B. N. Cuthbert, D. L. Filion, S. Hackley, O. V. Lipp, and A. van Boxtel. 2005. “Committee Report: Guidelines for Human Startle Eyeblink Electromyographic Studies.” Psychophysiology 42, no. 1: 1–15. https://doi.org/10.1111/J.1469-8986.2005.00271.X.
- Boucsein, W., D. C. Fowles, S. Grimnes, et al. 2012. “Publication Recommendations for Electrodermal Measurements.” Psychophysiology 49, no. 8: 1017–1034. https://doi.org/10.1111/J.1469-8986.2012.01384.X.
- Bouton, M. E. 1988. “Context and Ambiguity in the Extinction of Emotional Learning: Implications for Exposure Therapy.” Behaviour Research and Therapy 26, no. 2: 137–149. https://doi.org/10.1016/0005-7967(88)90113-1.
- Bradley, M. M., and P. J. Lang. 1994. “Measuring Emotion: The Self-Assessment Manikin and the Semantic Differential.” Journal of Behavior Therapy and Experimental Psychiatry 25, no. 1: 49–59. https://doi.org/10.1016/0005-7916(94)90063-9.
- Burger, A. M., M. D'Agostini, B. Verkuil, and I. Van Diest. 2020. “Moving Beyond Belief: A Narrative Review of Potential Biomarkers for Transcutaneous Vagus Nerve Stimulation.” Psychophysiology 57, no. 6: e13571. https://doi.org/10.1111/psyp.13571.
- Burger, A. M., W. Van der Does, J. F. Brosschot, and B. Verkuil. 2020. “From Ear to Eye? No Effect of Transcutaneous Vagus Nerve Stimulation on Human Pupil Dilation: A Report of Three Studies.” Biological Psychology 152: 107863. https://doi.org/10.1016/j.biopsycho.2020.107863.
- Burger, A. M., I. Van Diest, W. van der Does, et al. 2018. “Transcutaneous Vagus Nerve Stimulation and Extinction of Prepared Fear: A Conceptual Non-replication.” Scientific Reports 8, no. 1: 11471. https://doi.org/10.1038/s41598-018-29561-w.
- Burger, A. M., I. Van Diest, W. Van der Does, et al. 2019. “The Effect of Transcutaneous Vagus Nerve Stimulation on Fear Generalization and Subsequent Fear Extinction.” Neurobiology of Learning and Memory 161: 192–201. https://doi.org/10.1016/J.NLM.2019.04.006.
- Burger, A. M., B. Verkuil, H. Fenlon, et al. 2017. “Mixed Evidence for the Potential of Non-invasive Transcutaneous Vagal Nerve Stimulation to Improve the Extinction and Retention of Fear.” Behaviour Research and Therapy 97: 64–74. https://doi.org/10.1016/j.brat.2017.07.005.
- Burger, A. M., B. Verkuil, I. Van Diest, W. Van der Does, J. F. Thayer, and J. F. Brosschot. 2016. “The Effects of Transcutaneous Vagus Nerve Stimulation on Conditioned Fear Extinction in Humans.” Neurobiology of Learning and Memory 132: 49–56. https://doi.org/10.1016/J.NLM.2016.05.007.
- Button, K. S., J. P. A Ioannidis, C. Mokrysz, et al. 2013. “Power Failure: Why Small Sample Size Undermines the Reliability of Neuroscience.” Nature Reviews Neuroscience 14: 365–376. https://doi.org/10.1038/nrn3475.
- Craske, M. G., D. Hermans, and B. Vervliet. 2018. “State-Of-The-Art and Future Directions for Extinction as a Translational Model for Fear and Anxiety.” Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1742: 20170025. https://doi.org/10.1098/rstb.2017.0025.
- Craske, M. G., M. Treanor, C. C. Conway, T. Zbozinek, and B. Vervliet. 2014. “Maximizing Exposure Therapy: An Inhibitory Learning Approach.” Behaviour Research and Therapy 58: 10–23. https://doi.org/10.1016/j.brat.2014.04.006.
- D'Agostini, M., A. M. Burger, M. Franssen, et al. 2022. “Short Bursts of Transcutaneous Auricular Vagus Nerve Stimulation Enhance Evoked Pupil Dilation as a Function of Stimulation Parameters.” Cortex 159: 233–253. https://doi.org/10.1016/J.CORTEX.2022.11.012.
- D'Agostini, M., A. M. Burger, G. Villca Ponce, S. Claes, A. Leupoldt, and I. Van Diest. 2022. “No Evidence for a Modulating Effect of Continuous Transcutaneous Auricular Vagus Nerve Stimulation on Markers of Noradrenergic Activity.” Psychophysiology 59: e13984. https://doi.org/10.1111/psyp.13984.
- D'Agostini, M., N. Claes, M. Franssen, A. von Leupoldt, and I. Van Diest. 2022. “Learn to breathe, breathe to learn? No evidence for effects of slow deep breathing at a 0.1 Hz frequency on reversal learning.” International journal of psychophysiology : official journal of the International Organization of Psychophysiology 174: 92–107.
- Dalal, D. K., and M. J. Zickar. 2011. “Some Common Myths About Centering Predictor Variables in Moderated Multiple Regression and Polynomial Regression.” Organizational Research Methods 15, no. 3: 339–362. https://doi.org/10.1177/1094428111430540.
- de Bruin, G. O., E. Rassin, C. van der Heiden, and P. Muris. 2006. “Psychometric Properties of a Dutch Version of the Intolerance of Uncertainty Scale.” Netherlands Journal of Psychology 62, no. 2: 87–92. https://doi.org/10.1007/BF03061055.
10.1007/BF03061055 Google Scholar
- Duits, P., J. M. P. Baas, I. M. Engelhard, et al. 2021. “Latent Class Growth Analyses Reveal Overrepresentation of Dysfunctional Fear Conditioning Trajectories in Patients With Anxiety-Related Disorders Compared to Controls.” Journal of Anxiety Disorders 78: 102361. https://doi.org/10.1016/j.janxdis.2021.102361.
- Duits, P., D. C. Cath, S. Lissek, et al. 2015. “Updated Meta-Analysis of Classical Fear Conditioning in the Anxiety Disorders.” Depression and Anxiety 32, no. 4: 239–253. https://doi.org/10.1002/da.22353.
- Fitch, W. H., J. E. Bolin, and K. Kelley. 2019. Multilevel Modelling Using R. 2nd ed. Boca Raton: Chapman & Hall/CRC.
- Frangos, E., J. Ellrich, and B. R. Komisaruk. 2015. “Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans.” Brain Stimulation 8, no. 3: 624–636. https://doi.org/10.1016/j.brs.2014.11.018.
- Galatzer-Levy, I. R., R. Andero, T. Sawamura, et al. 2017. “A Cross Species Study of Heterogeneity in Fear Extinction Learning in Relation to FKBP5 Variation and Expression: Implications for the Acute Treatment of Posttraumatic Stress Disorder.” Neuropharmacology 116: 188–195. https://doi.org/10.1016/j.neuropharm.2016.12.023.
- Genheimer, H., M. Andreatta, E. Asan, and P. Pauli. 2017. “Reinstatement of Contextual Conditioned Anxiety in Virtual Reality and the Effects of Transcutaneous Vagus Nerve Stimulation in Humans.” Scientific Reports 7, no. 1: 17886. https://doi.org/10.1038/s41598-017-18183-3.
- Grimonprez, A., R. Raedt, C. Baeken, P. Boon, and K. Vonck. 2015. “The Antidepressant Mechanism of Action of Vagus Nerve Stimulation: Evidence From Preclinical Studies.” Neuroscience and Biobehavioral Reviews 56: 26–34. https://doi.org/10.1016/j.neubiorev.2015.06.019.
- Hox, J., M. Moerbeek, and R. van de Schoot. 2010. Multilevel Analysis. New York: Routledge. https://doi.org/10.4324/9780203852279.
10.4324/9780203852279 Google Scholar
- Hulsey, D. R., J. R. Riley, K. W. Loerwald, et al. 2017. “Parametric Characterization of Neural Activity in the Locus Coeruleus in Response to Vagus Nerve Stimulation.” Experimental Neurology 289: 21–30. https://doi.org/10.1016/j.expneurol.2016.12.005.
- Leng, L., and B. Vervliet. 2022. “More Engagement in Inefficient Avoidance Through Partial Reinforcement.” Journal of Behavior Therapy and Experimental Psychiatry 76: 101751. https://doi.org/10.1016/J.JBTEP.2022.101751.
- Lloyd, B., F. Wurm, R. de Kleijn, and S. Nieuwenhuis. 2023. “Short-Term Transcutaneous Vagus Nerve Stimulation Increases Pupil Size But Does Not Affect EEG Alpha Power: A Replication of Sharon et al. (2021, Journal of Neuroscience).” Brain Stimulation 16, no. 4: 1001–1008. https://doi.org/10.1016/J.BRS.2023.06.010.
- Lonsdorf, T. B., M. M. Menz, M. Andreatta, et al. 2017. “Don't Fear ‘Fear Conditioning’: Methodological Considerations for the Design and Analysis of Studies on Human Fear Acquisition, Extinction, and Return of Fear.” Neuroscience and Biobehavioral Reviews 77: 247–285. https://doi.org/10.1016/J.NEUBIOREV.2017.02.026.
- Maren, S., and A. Holmes. 2016. “Stress and Fear Extinction.” Neuropsychopharmacology 41, no. 1: 58–79. https://doi.org/10.1038/npp.2015.180.
- McIntyre, C. K. 2018. “Is There a Role for Vagus Nerve Stimulation in the Treatment of Posttraumatic Stress Disorder?” Bioelectronics in Medicine 1, no. 2: 95–99. https://doi.org/10.2217/bem-2018-0002.
10.2217/bem-2018-0002 Google Scholar
- Mridha, Z., J. W. de Gee, Y. Shi, et al. 2021. “Graded Recruitment of Pupil-Linked Neuromodulation by Parametric Stimulation of the Vagus Nerve.” Nature Communications 12, no. 1: 1539. https://doi.org/10.1038/s41467-021-21730-2.
- Mueller, D., and S. P. Cahill. 2010. “Noradrenergic Modulation of Extinction Learning and Exposure Therapy.” Behavioural Brain Research 208, no. 1: 1–11. https://doi.org/10.1016/j.bbr.2009.11.025.
- Noble, L. J., I. J. Gonzalez, V. B. Meruva, et al. 2017. “Effects of Vagus Nerve Stimulation on Extinction of Conditioned Fear and Post-Traumatic Stress Disorder Symptoms in Rats.” Translational Psychiatry 7, no. 8: e1217. https://doi.org/10.1038/TP.2017.191.
- Peirce, J., J. R. Gray, S. Simpson, et al. 2019. “PsychoPy2: Experiments in Behavior Made Easy.” Behavior Research Methods 51, no. 1: 195–203. https://doi.org/10.3758/S13428-018-01193-Y/FIGURES/3.
- Peña, D. F., N. D. Engineer, and C. K. McIntyre. 2013. “Rapid Remission of Conditioned Fear Expression With Extinction Training Paired With Vagus Nerve Stimulation.” Biological Psychiatry 73, no. 11: 1071–1077. https://doi.org/10.1016/j.biopsych.2012.10.021.
- Pervaz, I., L. Thurn, C. Vezzani, L. Kaluza, A. Kühnel, and N. B. Kroemer. 2024. “Does Transcutaneous Vagus Nerve Stimulation Alter Pupil Dilation? A Living Bayesian Meta-Analysis.” BioRxiv. https://doi.org/10.1101/2024.09.02.610851.
10.1101/2024.09.02.610851 Google Scholar
- Peuker, E. T., and T. J. Filler. 2002. “The Nerve Supply of the Human Auricle.” Clinical Anatomy 15, no. 1: 35–37. https://doi.org/10.1002/ca.1089.
- Raftery, A. E. 1995. “Bayesian Model Selection in Social Research.” Sociological Methodology 25: 111. https://doi.org/10.2307/271063.
- Rosenthal, R., and M. R. DiMatteo. 2001. “Meta-Analysis: Recent Developments in Quantitative Methods for Literature Reviews.” Annual Review of Psychology 52, no. 1: 59–82. https://doi.org/10.1146/annurev.psych.52.1.59.
- Ruffoli, R., F. S. Giorgi, C. Pizzanelli, L. Murri, A. Paparelli, and F. Fornai. 2011. “The Chemical Neuroanatomy of Vagus Nerve Stimulation.” Journal of Chemical Neuroanatomy 42, no. 4: 288–296. https://doi.org/10.1016/J.JCHEMNEU.2010.12.002.
- Sadacca, B. F., A. M. Wikenheiser, and G. Schoenbaum. 2017. “Toward a Theoretical Role for Tonic Norepinephrine in the Orbitofrontal Cortex in Facilitating Flexible Learning.” Neuroscience 345: 124–129. https://doi.org/10.1016/j.neuroscience.2016.04.017.
- Sara, S. J. 2009. “The Locus Coeruleus and Noradrenergic Modulation of Cognition.” Nature Reviews Neuroscience 10, no. 3: 211–223. https://doi.org/10.1038/nrn2573.
- Sharon, O., F. Fahoum, and Y. Nir. 2020. “Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations.” Journal of Neuroscience 41: 320–330. https://doi.org/10.1523/JNEUROSCI.1361-20.2020.
- Skora, L., A. Marzecová, and G. Jocham. 2024. “Tonic and Phasic Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) Both Evoke Rapid and Transient Pupil Dilation.” Brain Stimulation 17, no. 2: 233–244. https://doi.org/10.1016/j.brs.2024.02.013.
- Souza, R. R., M. B. Powers, R. L. Rennaker, C. K. McIntyre, S. A. Hays, and M. P. Kilgard. 2022. “Timing of Vagus Nerve Stimulation During Fear Extinction Determines Efficacy in a Rat Model of PTSD.” Scientific Reports 12, no. 1: 16526. https://doi.org/10.1038/s41598-022-20301-9.
- Souza, R. R., N. M. Robertson, E. Mathew, et al. 2020. “Efficient Parameters of Vagus Nerve Stimulation to Enhance Extinction Learning in an Extinction-Resistant Rat Model of PTSD.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 99: 109848. https://doi.org/10.1016/J.PNPBP.2019.109848.
- Souza, R. R., N. M. Robertson, C. K. McIntyre, R. L. Rennaker, S. A. Hays, and M. P. Kilgard. 2021. “Vagus Nerve Stimulation Enhances Fear Extinction as an Inverted-U Function of Stimulation Intensity.” Experimental Neurology 341: 113718. https://doi.org/10.1016/j.expneurol.2021.113718.
- Souza, R. R., N. M. Robertson, D. T. Pruitt, et al. 2019. “Vagus Nerve Stimulation Reverses the Extinction Impairments in a Model of PTSD With Prolonged and Repeated Trauma.” Stress 22, no. 4: 509–520. https://doi.org/10.1080/10253890.2019.1602604.
- Spruyt, A., J. Clarysse, D. Vansteenwegen, F. Baeyens, and D. Hermans. 2010. “Affect 4.0: A Free Software Package for Implementing Psychological and Psychophysiological Experiments.” Experimental Psychology 57, no. 1: 36–45. https://doi.org/10.1027/1618-3169/a000005.
- Szeska, C., J. Richter, J. Wendt, M. Weymar, and A. O. Hamm. 2020. “Promoting Long-Term Inhibition of Human Fear Responses by Non-invasive Transcutaneous Vagus Nerve Stimulation During Extinction Training.” Scientific Reports 10, no. 1: 1529. https://doi.org/10.1038/s41598-020-58412-w.
- Taylor, S., M. J. Zvolensky, B. J. Cox, et al. 2007. “Robust Dimensions of Anxiety Sensitivity: Development and Initial Validation of the Anxiety Sensitivity Index-3.” Psychological Assessment 19, no. 2: 176–188. https://doi.org/10.1037/1040-3590.19.2.176.
- Urbin, M. A., C. W. Lafe, T. W. Simpson, G. F. Wittenberg, B. Chandrasekaran, and D. J. Weber. 2021. “Electrical Stimulation of the External Ear Acutely Activates Noradrenergic Mechanisms in Humans.” Brain Stimulation 14, no. 4: 990–1001. https://doi.org/10.1016/j.brs.2021.06.002.
- Vespa, S., L. Stumpp, G. Liberati, et al. 2022. “Characterization of Vagus Nerve Stimulation-Induced Pupillary Responses in Epileptic Patients.” Brain Stimulation 15, no. 6: 1498–1507. https://doi.org/10.1016/J.BRS.2022.11.002.
- Villani, V., G. Finotti, D. Di Lernia, M. Tsakiris, and R. T. Azevedo. 2022. “Event-Related Transcutaneous Vagus Nerve Stimulation Modulates Behaviour and Pupillary Responses During an Auditory Oddball Task.” Psychoneuroendocrinology 140: 105719. https://doi.org/10.1016/j.psyneuen.2022.105719.
- Wagenmakers, E.-J. 2007. “A Practical Solution to the Pervasive Problems of p Values.” Psychonomic Bulletin & Review 14, no. 5: 779–804. https://doi.org/10.3758/BF03194105.
- Wienke, C., M. Grueschow, A. Haghikia, and T. Zaehle. 2023. “Phasic, Event-Related Transcutaneous Auricular Vagus Nerve Stimulation Modifies Behavioral, Pupillary, and Low-Frequency Oscillatory Power Responses.” Journal of Neuroscience 43, no. 36: 6306–6319. https://doi.org/10.1523/JNEUROSCI.0452-23.2023.
- Xia, W., S. Dymond, K. Lloyd, and B. Vervliet. 2017. “Partial Reinforcement of Avoidance and Resistance to Extinction in Humans.” Behaviour Research and Therapy 96: 79–89. https://doi.org/10.1016/J.BRAT.2017.04.002.
- Yakunina, N., S. S. Kim, and E.-C. Nam. 2017. “Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI.” Neuromodulation: Technology at the Neural Interface 20, no. 3: 290–300. https://doi.org/10.1111/ner.12541.
- Zaman, J., I. van de Pavert, L. van Oudenhove, and I. van Diest. 2020. “The Use of Stimulus Perception to Account for Variability in Skin Conductance Responses to Interoceptive Stimuli.” Psychophysiology 57, no. 3: e13494. https://doi.org/10.1111/PSYP.13494.