Attending to the heart is associated with posterior alpha band increase and a reduction in sensitivity to concurrent visual stimuli
Mario Villena-González
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
These authors contributed equally to this work.
Search for more papers by this authorCristóbal Moënne-Loccoz
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Computer Sciences, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
These authors contributed equally to this work.
Search for more papers by this authorRodrigo A. Lagos
Universidad Autónoma de Chile, Santiago, Chile
School of Public Health, Universidad de Chile, Santiago, Chile
Search for more papers by this authorLuz M. Alliende
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorPablo Billeke
Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
Search for more papers by this authorFrancisco Aboitiz
Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorVladimir López
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorCorresponding Author
Diego Cosmelli
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Correspondence Diego Cosmelli, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile. Email: [email protected]Search for more papers by this authorMario Villena-González
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
These authors contributed equally to this work.
Search for more papers by this authorCristóbal Moënne-Loccoz
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Computer Sciences, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
These authors contributed equally to this work.
Search for more papers by this authorRodrigo A. Lagos
Universidad Autónoma de Chile, Santiago, Chile
School of Public Health, Universidad de Chile, Santiago, Chile
Search for more papers by this authorLuz M. Alliende
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorPablo Billeke
Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
Search for more papers by this authorFrancisco Aboitiz
Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorVladimir López
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorCorresponding Author
Diego Cosmelli
School of Psychology, Faculty of Social Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Interdisciplinary Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Correspondence Diego Cosmelli, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile. Email: [email protected]Search for more papers by this authorFunding information: PhD CONICYT-PFCHA/Doctorado Nacional 21140290 fellowship (to M. V.) and 21110823 (to C. M.), FONDECYT (grants No. 1130758 and No. 1090612) (to D.C. and V.L.), (grant No. 1150241) (to V. L.), Fund for Innovation and Competitiveness (FIC) of the Chilean Ministry of Economy, Development and Tourism, through the Millennium Scientific Initiative (grant No. IS130005) (to D. C.)
Abstract
Attentional mechanisms have been studied mostly in specific sensory domains, such as auditory, visuospatial, or tactile modalities. In contrast, attention to internal interoceptive visceral targets has only recently begun to be studied, despite its potential importance in emotion, empathy, and self-awareness. Here, we studied the effects of shifting attention to the heart using a cue-target detection paradigm during continuous EEG recordings. Subjects were instructed to count either a series of visual stimuli (visual condition) or their own heartbeats (heart condition). Visual checkerboard stimuli were used as attentional probes throughout the task. Consistent with previous findings, attention modulated the amplitude of the heartbeat-evoked potentials. Directing attention to the heart significantly reduced the visual P1/N1 amplitude evoked by the attentional probe. ERPs locked to the attention-directing cue revealed a novel frontal positivity around 300 ms postcue. Finally, spectral power in the alpha band over parieto-occipital regions was higher while attending to the heart—when compared to the visual task—and correlated with subject's performance in the interoceptive task. These results are consistent with a shared, resource-based attentional mechanism whereby allocating attention to bodily signals can affect early responses to visual stimuli.
Supporting Information
Additional Supporting Information may be found online in the supporting information tab for this article.
Filename | Description |
---|---|
psyp12894-sup-0001-suppinfo01.docx13.2 KB |
Appendix S1 |
psyp12894-sup-0002-suppinfo02.pdf61.5 KB |
Figure S1 |
psyp12894-sup-0003-suppinfo03.pdf23.2 KB |
Figure S2 |
psyp12894-sup-0004-suppinfo04.pdf602.9 KB |
Figure S3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Aarts, E., Roelofs, A., & van Turennout, M. (2008). Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood. Journal of Neuroscience, 28(18), 4671–4678. doi:10.1523/JNEUROSCI.4400-07.2008
- Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74(1), 146–162. doi:10.3758/s13414-011-0218-3
- Babiloni, C., Miniussi, C., Babiloni, F., Carducci, F., Cincotti, F., Del Percio, C., … Rossini, P. M. (2004). Sub-second “temporal attention” modulates alpha rhythms. A high-resolution EEG study. Brain Research. Cognitive Brain Research, 19(3), 259–268. doi:10.1016/j.cogbrainres.2003.12.010
- Baird, B., Smallwood, J., Lutz, A., & Schooler, J. W. (2014). The decoupled mind: Mind-wandering disrupts cortical phase-locking to perceptual events. Journal of Cognitive Neuroscience, 25(11), 2596–2697. doi:10.1162/jocn_a_00656
- Bechara, A., & Naqvi, N. (2004). Listening to your heart: Interoceptive awareness as a gateway to feeling. Nature Neuroscience, 7(2), 102–103. doi:10.1038/nn0204-102
- Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Science, 18(8), 414–421. doi:10.1016/j.tics.2014.04.012
- Cooper, N. R., Croft, R. J., Dominey, S. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47(1), 65–74. doi:10.1016/S0167-8760(02)00107-1
- Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. doi:10.1016/j.neuron.2008.04.017
- Cosmelli, D., Lopez, V., Lachaux, J. P., Lopez-Calderon, J., Renault, B., Martinerie, J., & Aboitiz, F. (2011). Shifting visual attention away from fixation is specifically associated with alpha band activity over ipsilateral parietal regions. Psychophysiology, 48(3), 312–322. doi:10.1111/j.1469-8986.2010.01066.x
- Couto, B., Adolfi, F., Velasquez, M., Mesow, M., Feinstein, J., Canales-Johnson, A., … Ibanez, A. (2015). Heart evoked potential triggers brain responses to natural affective scenes: A preliminary study. Autonomic Neuroscience, 193, 132–137. doi:10.1016/j.autneu.2015.06.006
- Couto, B., Salles, A., Sedeno, L., Peradejordi, M., Barttfeld, P., Canales-Johnson, A., … Ibanez, A. (2014). The man who feels two hearts: The different pathways of interoception. Social Cognitive and Affective Neuroscience, 9(9), 1253–1260. doi:10.1093/scan/nst108
- Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189–195. doi:10.1038/nn1176
- Daubenmier, J., Sze, J., Kerr, C. E., Kemeny, M. E., & Mehling, W. (2013). Follow your breath: Respiratory interoceptive accuracy in experienced meditators. Psychophysiology, 50(8), 777–789. doi:10.1111/psyp.12057
- Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. doi:10.1016/j.jneumeth.2003.10.009
- Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15(2), 95–111. doi:10.1002/hbm.10010
- Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., … Petersen, S. E. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812. doi:10.1016/j.neuron.2006.04.031
- Eimer, M., & Van Velzen, J. (2002). Crossmodal links in spatial attention are mediated by supramodal control processes: Evidence from event-related potentials. Psychophysiology, 39(4), 437–449. doi:10.1017.S0048577201393162
- Eimer, M., van Velzen, J., & Driver, J. (2002). Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations. Journal of Cognitive Neuroscience, 14(2), 254–271. doi:10.1162/089892902317236885
- Farah, M. J., Wong, A. B., Monheit, M. A., & Morrow, L. A. (1989). Parietal lobe mechanisms of spatial attention: Modality-specific or supramodal? Neuropsychologia, 27(4), 461–470. doi:10.1016/0028-3932(89)90051-1
- Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. doi:10.3389/fpsyg.2011.00154
- Frey, J. N., Ruhnau, P., & Weisz, N. (2015). Not so different after all: The same oscillatory processes support different types of attention. Brain Research, 1626, 183–197. doi:10.1016/j.brainres.2015.02.017
- Fu, K. M., Foxe, J. J., Murray, M. M., Higgins, B. A., Javitt, D. C., & Schroeder, C. E. (2001). Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations. Brain Research. Cognitive Brain Research, 12(1), 145–152. doi:10.1016/S0926-6410(01)00034-9
- Fukushima, H., Terasawa, Y., & Umeda, S. (2011). Association between interoception and empathy: Evidence from heartbeat-evoked brain potential. International Journal of Psychophysiology, 79(2), 259–265. doi:10.1016/j.ijpsycho.2010.10.015
- Green, J. J., Teder-Salejarvi, W. A., & McDonald, J. J. (2005). Control mechanisms mediating shifts of attention in auditory and visual space: A spatio-temporal ERP analysis. Experimental Brain Research, 166(3–4), 358–369. doi:10.1007/s00221-005-2377-8
- Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176–1194. doi:10.1162/089892903322598139
- Handy, T. C., & Kam, J. W. (2015). Mind wandering and selective attention to the external world. Canadian Journal of Experimental Psychology, 69(2), 183–189. doi:10.1037/cep0000051
- Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67(1–2), 331–343. doi:10.1016/j.brainresrev.2011.04.002
- Harter, M. R., Miller, S. L., Price, N. J., Lalonde, M. E., & Keyes, A. L. (1989). Neural processes involved in directing attention. Journal of Cognitive Neuroscience, 1(3), 223–237. doi:10.1162/jocn.1989.1.3.223
- Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences USA, 95(3), 781–787. doi:10.1073/pnas.95.3.781
- Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 1257–1270. doi:10.1098/rstb.1998.0281
- Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186. doi:10.3389/fnhum.2010.00186
- Kam, J. W., Dao, E., Farley, J., Fitzpatrick, K., Smallwood, J., Schooler, J. W., & Handy, T. C. (2011). Slow fluctuations in attentional control of sensory cortex. Journal of Cognitive Neuroscience, 23(2), 460–470. doi:10.1162/jocn.2010.21443
- Keil, A., Debener, S., Gratton, G., Junghofer, M., Kappenman, E. S., Luck, S. J., … Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 1–21. doi:10.1111/psyp.12147
- Keil, A., Mussweiler, T., & Epstude, K. (2006). Alpha-band activity reflects reduction of mental effort in a comparison task: A source space analysis. Brain Research, 1121(1), 117–127. doi:10.1016/j.brainres.2006.08.118
- Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844–3851. doi:10.1152/jn.01234.2005
- Kleint, N. I., Wittchen, H. U., & Lueken, U. (2015). Probing the interoceptive network by listening to heartbeats: An fMRI study. PLOS ONE, 10(7), e0133164. doi:10.1371/journal.pone.0133164
- Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research. Brain Research Reviews, 29(2–3), 169–195.
- Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Science, 16(12), 606–617. doi:10.1016/j.tics.2012.10.007
- Lenggenhager, B., Azevedo, R. T., Mancini, A., & Aglioti, S. M. (2013) Listening to your heart and feeling yourself: Effects of exposure to interoceptive signals during the ultimatum game. Experimental Brain Research, 230(2), 233–241. doi:10.1007/s00221-013-3647-5
- Limmer, J., Kornhuber, J., & Martin, A. (2015). Panic and comorbid depression and their associations with stress reactivity, interoceptive awareness and interoceptive accuracy of various bioparameters. Journal of Affective Disorders, 185, 170–179. doi:10.1016/j.jad.2015.07.010
- Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.
- Luck, S. J., & Hillyard, S. A. (1995). The role of attention in feature detection and conjunction discrimination: An electrophysiological analysis. International Journal of Neuroscience, 80(1–4), 281–297. doi:10.3109/00207459508986105
- Luck, S. J., Hillyard, S. A., Mouloua, M., & Hawkins, H. L. (1996). Mechanisms of visual-spatial attention: Resource allocation or uncertainty reduction? Journal of Experimental Psychology: Human Perception and Performance, 22(3), 725–737. doi:10.1037/0096-1523.22.3.725
- Luft, C. D., & Bhattacharya, J. (2015). Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Scientific Reports, 5, 15717. doi:10.1038/srep15717
- Mangun, G. R., & Hillyard, S. A. (1988). Spatial gradients of visual attention: Behavioral and electrophysiological evidence. Electroencephalography and Clinical Neurophysiology, 70(5), 417–428. doi:10.1016/0013-4694(88)90019-3
- Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. doi:10.1016/j.jneumeth.2007.03.024
- Matthias, E., Schandry, R., Duschek, S., & Pollatos, O. (2009). On the relationship between interoceptive awareness and the attentional processing of visual stimuli. International Journal of Psychophysiology, 72(2), 154–159. doi:10.1016/j.ijpsycho.2008.12.001
- Montoya, P., Schandry, R., & Muller, A. (1993). Heartbeat evoked potentials (HEP): Topography and influence of cardiac awareness and focus of attention. Electroencephalography and Clinical Neurophysiology, 88(3), 163–172. doi:10.1016/0168-5597(93)90001-6
- Morillon, B., & Barbot, A. (2013). Attention in the temporal domain: A phase-coding mechanism controls the gain of sensory processing. Frontiers in Human Neuroscience, 7, 480. doi:10.3389/fnhum.2013.00480
- Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R., & Mesulam, M. M. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16(3), 363–373. doi:10.1162/089892904322926700
- Nobre, A. C., Sebestyen, G. N., & Miniussi, C. (2000). The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia, 38(7), 964–974. doi:10.1016/S0028-3932(00)00015-4
- Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi:10.1146/annurev-neuro-062111-150525
- Pollatos, O., Gramann, K., & Schandry, R. (2007). Neural systems connecting interoceptive awareness and feelings. Human Brain Mapping, 28(1), 9–18. doi:10.1002/hbm.20258
- Pollatos, O., Kirsch, W., & Schandry, R. (2005). On the relationship between interoceptive awareness, emotional experience, and brain processes. Brain Research. Cognitive Brain Research, 25(3), 948–962. doi:10.1016/j.cogbrainres.2005.09.019
- Pollatos, O., Matthias, E., & Schandry, R. (2007). Heartbeat perception and P300 amplitude in a visual oddball paradigm. Clinical Neurophysiology, 118(10), 2248–2253. doi:10.1016/j.clinph.2007.06.057
- Pollatos, O., & Schandry, R. (2004). Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology, 41(3), 476–482. doi:10.111/1469-8986.2004.00170.x
- Pollatos, O., Traut-Mattausch, E., & Schandry, R. (2009). Differential effects of anxiety and depression on interoceptive accuracy. Depression and Anxiety, 26(2), 167–173. doi:10.1002/da.20504
- Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. doi:10.1080/00335558008248231
- Praamstra, P., Boutsen, L., & Humphreys, G. W. (2005). Frontoparietal control of spatial attention and motor intention in human EEG. Journal of Neurophysiology, 94(1), 764–774. doi:10.1152/jn.01052.2004
- Ray, W. J., & Cole, H. W. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228(4700), 750–752. doi:10.1126/science.3992243
- Romei, V., Gross, J., & Thut, G. (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation? Journal of Neuroscience, 30(25), 8692–8697. doi:10.1523/JNEUROSCI.0160-10.2010
- Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., … Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22(11), 2917–2926. doi:10.1111/j.1460-9568.2005.04482.x
- Schandry, R. (1981). Heart beat perception and emotional experience. Psychophysiology, 18(4), 483–488. doi:10.1111/j.1469-8986.1981.tb02486.x
- Schandry, R., Sparrer, B., & Weitkunat, R. (1986). From the heart to the brain: A study of heartbeat contingent scalp potentials. International Journal of Neuroscience, 30(4), 261–275. doi:10.3109/00207458608985677
- Schulz, A., & Vögele, C. (2015). Interoception and stress. [Review]. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00993
- Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. doi:10.1016/j.neuron.2013.07.007
- Shrem, T., & Deouell, L. Y. (2017). Hierarchies of attention and experimental designs: Effects of spatial and intermodal attention revisited. Journal of Cognitive Neuroscience, 29(1), 203–219. doi:10.1162/jocn_a_01030
- Spagna, A., Mackie, M.-A., & Fan, J. (2015). Supramodal executive control of attention. Frontiers in Psychology, 6, 65. doi:10.3389/fpsyg.2015.00065
- Terasawa, Y., Moriguchi, Y., Tochizawa, S., & Umeda, S. (2014). Interoceptive sensitivity predicts sensitivity to the emotions of others. Cognitive Emotions, 28(8), 1435–1448. doi:10.1080/02699931.2014.888988
- Terhaar, J., Viola, F. C., Bar, K. J., & Debener, S. (2012). Heartbeat evoked potentials mirror altered body perception in depressed patients. Clinical Neurophysiology, 123(10), 1950–1957. doi:10.1016/j.clinph.2012.02.086
- Villena-González, M., López, V., & Rodríguez, E. (2016). Orienting attention to visual or verbal/auditory imagery differentially impairs the processing of visual stimuli. NeuroImage, 132, 71–78. doi:10.1016/j.neuroimage.2016.02.013
- Viola, F. C., Thorne, J., Edmonds, B., Schneider, T., Eichele, T., & Debener, S. (2009). Semi-automatic identification of independent components representing EEG artifact. Clinical Neurophysiology, 120(5), 868–877. doi:10.1016/j.clinph.2009.01.015
- Wang, W., Viswanathan, S., Lee, T., & Grafton, S. T. (2016). Coupling between theta oscillations and cognitive control network during cross-modal visual and auditory attention: Supramodal vs modality-specific mechanisms. PLOS ONE, 11(7), e0158465. doi:10.1371/journal.pone.0158465
- Ward, L. M. (1994). Supramodal and modality-specific mechanisms for stimulus-driven shifts of auditory and visual attention. Canadian Journal of Experimental Psychology, 48(2), 242–259. doi:10.1037/1196-1961.48.2.242
- Werner, N. S., Mannhart, T., Reyes Del Paso, G. A., & Duschek, S. (2014). Attention interference for emotional stimuli in cardiac interoceptive awareness. Psychophysiology, 51(6), 573–578. doi:10.1111/psyp.12200
- Wiebking, C., & Northoff, G. (2015). Neural activity during interoceptive awareness and its associations with alexithymia—An fMRI study in major depressive disorder and non-psychiatric controls. Frontiers in Psychology, 6, 589. doi:10.3389/fpsyg.2015.00589
- Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20(6), RC63.
- Yuan, H., Yan, H. M., Xu, X. G., Han, F., & Yan, Q. (2007). Effect of heartbeat perception on heartbeat evoked potential waves. Neuroscience Bulletin, 23(6), 357–362. doi:10.1007/s12264-007-0053-7