Reliability of event-related EEG functional connectivity during visual entrainment: Magnitude squared coherence and phase synchrony estimates
Corresponding Author
Vladimir Miskovic
Department of Psychology, State University of New York at Binghamton, Binghamton, New York, USA
Address correspondence to: Vladimir Miskovic, Department of Psychology, State University of New York at Binghamton, Clearview Hall, 4400 Vestal Parkway East, Binghamton, NY 13902, USA. E-mail: [email protected]Search for more papers by this authorAndreas Keil
Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
Search for more papers by this authorCorresponding Author
Vladimir Miskovic
Department of Psychology, State University of New York at Binghamton, Binghamton, New York, USA
Address correspondence to: Vladimir Miskovic, Department of Psychology, State University of New York at Binghamton, Clearview Hall, 4400 Vestal Parkway East, Binghamton, NY 13902, USA. E-mail: [email protected]Search for more papers by this authorAndreas Keil
Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
Search for more papers by this authorAbstract
There is an increasing trend towards using noninvasive electroencephalography (EEG) to quantify functional brain connectivity. However, little is known about the psychometrics of commonly used functional connectivity indices. We examined the internal consistency of two different connectivity metrics: magnitude squared coherence and phase synchrony. EEG was recorded during visual entrainment to elicit a strong oscillatory component of known frequency. We found acceptable to good split-half reliability for the connectivity metrics when computing all possible pairwise interactions and after selecting an a priori seed reference. We also compared reliability estimates when using average referenced sensor versus reference independent current source density EEG data. Additional considerations were given to determining how reliability was influenced by factors including trial number, signal-to-noise ratio, and frequency content.
References
- Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
- Cannon, R. L., Baldwin, D. R., Shaw, T. L., Diloreto, D. J., Phillips, S. M., Scruggs, A. M., … Riehl, T. C. (2012). Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neuroscience Letters, 518, 27–31. doi: 10.1016/j.neulet.2012.04.035
- Cassidy, S. M., Robertson, I. H., & O'Connell, R. G. (2012). Retest reliability of event-related potentials: Evidence from a variety of paradigms. Psychophysiology, 49, 659–664. doi: 10.1111/j.1469-8986.2011.01349.x
- Cohen, M. X. (2011). It's about time. Frontiers in Human Neuroscience, 5, 2. doi: 10.3389/fnhum.2011.00002
- Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. Cambridge, MA: MIT Press.
10.7551/mitpress/9609.001.0001 Google Scholar
- Cosmelli, D., David, O., Lachaux, J. P., Martinerie, J., Garnero, L., Renault, B., … Varela, F. (2004). Waves of consciousness: Ongoing cortical patterns during binocular rivalry. NeuroImage, 23, 128–140. doi: 10.1016/j.neuroimage.2004.05.008
- Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 213, 525–533. doi: 10.1007/s00429-009-0208-6
- Donner, T. H., & Siegel, M. (2011). A framework for local cortical oscillation patterns. Trends in Cognitive Sciences, 15, 191–199. doi: 10.1016/j.tics.2011.03.007
- Fabiani, M., Gratton, G., Karis, D., & Donchin, E. (1987). Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential. In P. Ackles (Ed.), Advances in psychophysiology (pp. 1–78). New York, NY: JAI Press.
- Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480. doi: 10.1016/j.tics.2005.08.011
- Fuster, J. M. (2003). Cortex and mind: Unifying cognition. New York, NY: Oxford University Press.
- Helmstadter, G. C. (1964). Principles of psychological measurement. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Herrmann, C. S., Grigutsch, M., & Busch, N. A. (2005). EEG oscillations and wavelet analysis. In T. Handy (Ed.), Event-related potentials: A methods handbook. Cambridge, MA: MIT Press.
- Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378. doi: 10.1016/j.neuroimage.2013.05.079
- Junghöfer, M., Elbert, T., Leiderer, P., Berg, P., & Rockstroh, B. (1997). Mapping EEG-potentials on the surface of the brain: A strategy for uncovering cortical sources. Brain Topography, 9, 203–217.
- Junghöfer, M., Elbert, T., Tucker, D. M., & Rockstroh, B. (2000). Statistical control of artifacts in dense array EEG/MEG studies. Psychophysiology, 37, 523–532. doi: 10.1111/1469-8986.3740523
- Junghöfer, M., Peyk, P., Flaisch, T., & Schupp, H. T. (2006). Neuroimaging methods in affective neuroscience: Selected methodological issues. Progress in Brain Research, 156, 123–143.
- Keil, A., Costa, V., Smith, J. C., Sabatinelli, D., McGinnis, E. M., Bradley, M. M., … Lang, P. J. (2012). Tagging cortical networks in emotion: A topographical analysis. Human Brain Mapping, 33, 2920–2931. doi: 10.1002/hbm.21413
- Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., … Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51, 1–21. doi: 10.1111/psyp.12147
- Keil, A., Smith, J. C., Wangelin, B. C., Sabatinelli, D., Bradley, M. M., & Lang, P. J. (2008). Electrocortical and electrodermal responses covary as a function of emotional arousal: A single-trial analysis. Psychophysiology, 45, 516–523. doi: 10.1111/j.1469-8986.2008.00667.x
- Lachaux, J. P., Rodriguez, E., Le Van Quyen, M., Lutz, A., Martinerie, J., & Varela, F. (2002). Studying single trials of phase synchronous activity in the brain. International Journal of Bifurcation and Chaos, 10, 2429–2439. doi: 10.1142/S0218127400001560
- Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194–208. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
- Le Van Quyen, M. (2011). The brainweb of cross-scale interactions. New Ideas in Psychology, 29, 57–63. doi: 10.1016/j.newideapsych.2010.11.001
- Le Van Quyen, M., & Bragin, A. (2007). Analysis of dynamic brain oscillations: Methodological advances. Trends in Neurosciences, 30, 365–373. doi: 10.1016/j.tins.2007.05.006
- McIntosh, A. R. (2000). Towards a network theory of cognition. Neural Networks, 13, 861–870. doi: 10.1016/S0893-6080(00)00059-9
- Miskovic, V., & Keil, A. (2013). Visuocortical changes during delay and trace aversive conditioning: Evidence from steady-state visual evoked potentials. Emotion, 13, 554–561. doi: 10.1037/a0031323
- Montez, T., Linkenkaer-Hansen, K., van Dijk, B. W., & Stam, C. J. (2006). Synchronization likelihood with explicit time-frequency priors. NeuroImage, 33, 1117–1125. doi: 10.1016/j.neuroimage.2006.06.066
- Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115, 2292–2307. doi: 10.1016/j.clinph.2004.04.029
- Nunez, P. L. (2000). Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behavioral and Brain Sciences, 23, 371–398. doi: 10.1017/S0140525X00003253
- Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG ( 2nd ed.). New York, NY: Oxford University Press.
10.1093/acprof:oso/9780195050387.001.0001 Google Scholar
- Nunez, P. L., & Srinivasan, R. (2010). Scale and frequency chauvinism in brain dynamics: Too much emphasis on γ band oscillations. Brain Structure & Function, 215, 67–71. doi: 10.1007/s00429-010-0277-6
- Palva, S., & Palva, J. M. (2012). Discovering oscillatory interaction networks with M/EEG: Challenges and breakthroughs. Trends in Cognitive Sciences, 16, 219–230. doi: 10.1016/j.tics.2012.02.004
- Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.
- Pereda, E., Quiroga, R. Q., & Bhattacharya, J. (2005). Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology, 77, 1–37. doi: 10.1016/j.pneurobio.2005.10.003
- Peyk, P., De Cesarei, A., & Junghöfer, M. (2011). ElectroMagnetoEncephalography software: Overview and integration with other EEG/MEG toolboxes. Computational Intelligence and Neuroscience, 2011, 861705. doi: 10.1155/2011/861705
- Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization. A universal concept in nonlinear sciences. Cambridge, MA: Cambridge University Press.
10.1017/CBO9780511755743 Google Scholar
- Plewnia, C., Rilk, A. J., Soekadar, S. R., Arfeller, C., Huber, H. S., Sauseng, P., … Gerloff, C. (2008). Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. European Journal of Neuroscience, 27, 1577–1583. doi: 10.1111/j.1460-9568.2008.06124.x
- Roach, B. J., & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34, 907–925. doi: 10.1093/schbul/sbn093
- Rosenberg, J. R., Amjad, A. M., Breeze, P., Brillinger, D. R., & Halliday, D. M. (1989). The Fourier approach to the identification of functional coupling between neuronal spike trains. Progress in Biophysics and Molecular Biology, 53, 1–31.
- Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience and Biobehavioral Reviews, 32, 1001–1013. doi: 10.1016/j.neubiorev.2008.03.014
- Schlee, W., Weisz, N., Bertrand, O., Hartmann, T., & Elbert, T. (2008) Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE, 3, e3720. doi: 10.1371/journal.pone.0003720
- Schoffelen, J. M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30, 1857–1867. doi: 10.1002/hbm.20745
- Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 121–134. doi: 10.1038/nrn3137
- Singh, K. D. (2012). Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters. NeuroImage, 62, 1121–1130. doi: 10.1016/j.neuroimage.2012.01.028
- Smith, M. A., Jia, X., Zandvakili, A., & Kohn, A. (2013). Laminar dependence of neuronal correlations in visual cortex. Journal of Neurophysiology, 109, 940–947. doi: 10.1152/jn.00846.2012
- Sporns, O. (2010). Networks of the brain. Cambridge, MA: MIT Press.
10.7551/mitpress/8476.001.0001 Google Scholar
- Srinivasan, R., Russell, D. P., Edelman, G. M., & Tononi, G. (1999). Increased synchronization of neuromagnetic responses during conscious perception. Journal of Neuroscience, 19, 5435–5448.
- Srinivasan, R., Winter, W. R., Ding, J., & Nunez, P. L. (2007). EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. Journal of Neuroscience Methods, 166, 41–52. doi: 10.1016/j.jneumeth.2007.06.026
- Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28, 1178–1193. doi: 10.1002/hbm.20346
- Strube, M. J., & Newman, L. C. (2007). Psychometrics. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology ( 3rd ed.). London, UK: Cambridge University Press.
- Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences USA, 91, 5033–5037.
- Towers, D. N., & Allen, J. J. B. (2009). A better estimate of the internal consistency reliability of frontal EEG asymmetry scores. Psychophysiology, 46, 132–142. doi: 10.1111/j.1469-8986.2008.00759.x
- Uttal. W. R. (2013). Reliability in cognitive neuroscience: A meta-meta-analysis. Cambridge, MA: MIT Press.
- Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239. doi: 10.1038/35067550
- Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313. doi: 10.1016/S0167-8760(00)00172-0
- Walter, D. O., & Adey, W. R. (1963). Spectral analysis of electroencephalograms recorded during learning in the cat, before and after subthalamic lesions. Experimental Neurology, 7, 481–501.
- Ward, L. M., & Doesburg, S. M. (2009). Synchronization analysis in EEG and MEG. In T. Handy (Ed.), Brain signal analysis: Advances in neuroelectric and neuromagnetic methods. Cambridge, MA: MIT Press.