Multidisciplinary and multidimensional approaches to transplantation in children with rare genetic kidney diseases
This article relates to:
-
Kidney paired donation
- Volume 28Issue 1Pediatric Transplantation
- First Published online: December 6, 2023
Corresponding Author
Roshan P. George
Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
Correspondence
Roshan P. George, Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 2015 Uppergate Dr. Atlanta, GA 30322-1014, USA.
Email: [email protected]
Search for more papers by this authorPamela D. Winterberg
Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
Search for more papers by this authorRouba Garro
Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
Search for more papers by this authorCorresponding Author
Roshan P. George
Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
Correspondence
Roshan P. George, Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 2015 Uppergate Dr. Atlanta, GA 30322-1014, USA.
Email: [email protected]
Search for more papers by this authorPamela D. Winterberg
Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
Search for more papers by this authorRouba Garro
Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
Search for more papers by this authorAbstract
In this review, we describe the multidisciplinary, multidimensional care required to optimize outcomes for pediatric transplant recipients with rare genetic kidney diseases. Transplant success, recipient survival, and improvement in quality of life depend on collaboration between patients, families, and a team of specialists with medical, as well as nonmedical expertise. A multidisciplinary transplant team composed of experts from medicine, surgery, nursing, nutrition, social services, transplant coordination, psychology, and pharmacology, is now standard in most transplant centers and is critical to the success of a transplant. In addition to these professionals, other specialists, such as cardiologists, urologists, geneticists, metabolic disease specialists, occupational therapists, case management, child life, chaplain, and palliative care services, have a crucial role to play in the preparation, surgery, and follow-up care, especially when a pediatric patient has a rare genetic disorder leading to renal involvement, and the need for transplantation. In order to describe this multidisciplinary care, we divide the genetic renal diseases into five subgroups—metabolic and tubular disorders, glomerular diseases, congenital anomalies of the kidney and urinary tract, ciliopathies including cystic diseases, and miscellaneous renal conditions; and describe for each, the need for care beyond that provided by the standard transplant team members.
REFERENCES
- 1Accessed June 16, 2018. https://www.usrds.org/2018/view/Default.aspx
- 2Arora V, Anand K, Chander Verma I. Genetic testing in pediatric kidney disease. Indian J Pediatr. 2020; 87: 706-715.
- 3Accessed March 12, 2020. https://optn.transplant.hrsa.gov/learn/about-transplantation/the-transplant-team/
- 4Medicare program; hospital conditions of participation: requirements for approval and re-approval of transplant centers to perform organ transplants. Fed Reg. 2007; 72: 15197-15280.
- 5Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med. 2002; 347(2): 111-121.
- 6Town M, Jean G, Cherqui S, et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet. 1998; 18(4): 319-324.
- 7Ebbesen F, Mygind KI, Holck F. Infantile nephropatic cystinosis in Denmark. Dan Med Bull. 1976; 23(5): 216-222.
- 8Manz F, Gretz N. Cystinosis in the Federal Republic of Germany. Coordination and analysis of the data. J Inherit Metab Dis. 1985; 8(1): 2-4.
- 9Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA. 1999; 281(3): 249-254.
- 10Hult M, Darin N, von Dobeln U, Mansson JE. Epidemiology of lysosomal storage diseases in Sweden. Acta Paediatr. 2014; 103(12): 1258-1263.
- 11Lemire J, Kaplan BS. The various renal manifestations of the nephropathic form of cystinosis. Am J Nephrol. 1984; 4(2): 81-85.
- 12Kaiser-Kupfer MI, Caruso RC, Minkler DS, Gahl WA. Long-term ocular manifestations in nephropathic cystinosis. Arch Ophthalmol. 1986; 104(5): 706-711.
- 13Levtchenko E. Endocrine complications of cystinosis. J Pediatr. 2017; 183S: S5-S8.
- 14Burke JR, El-Bishti MM, Maisey MN, Chantler C. Hypothyroidism in children with cystinosis. Arch Dis Child. 1978; 53(12): 947-951.
- 15Fivush B, Green OC, Porter CC, Balfe JW, O'Regan S, Gahl WA. Pancreatic endocrine insufficiency in posttransplant cystinosis. Am J Dis Child. 1987; 141(10): 1087-1089.
- 16Robert JJ, Tete MJ, Guest G, Gagnadoux MF, Niaudet P, Broyer M. Diabetes mellitus in patients with infantile cystinosis after renal transplantation. Pediatr Nephrol. 1999; 13(6): 524-529.
- 17Gahl WA, Dalakas MC, Charnas L, et al. Myopathy and cystine storage in muscles in a patient with nephropathic cystinosis. N Engl J Med. 1988; 319(22): 1461-1464.
- 18Anikster Y, Lacbawan F, Brantly M, et al. Pulmonary dysfunction in adults with nephropathic cystinosis. Chest. 2001; 119(2): 394-401.
- 19Simon RH. Pulmonary complications of cystinosis. J Pediatr. 2017; 183S: S9-S14.
- 20Sonies BC, Ekman EF, Andersson HC, et al. Swallowing dysfunction in nephropathic cystinosis. N Engl J Med. 1990; 323(9): 565-570.
- 21Trauner D. Neurocognitive complications of cystinosis. J Pediatr. 2017; 183S: S15-S18.
- 22Langman CB. Bone complications of cystinosis. J Pediatr. 2017; 183S: S2-S4.
- 23Elmonem MA, Veys KR, Soliman NA, van Dyck M, van den Heuvel LP, Levtchenko E. Cystinosis: a review. Orphanet J Rare Dis. 2016; 11: 47.
- 24Bendavid C, Kleta R, Long R, et al. FISH diagnosis of the common 57-kb deletion in CTNS causing cystinosis. Hum Genet. 2004; 115(6): 510-514.
- 25Gahl WA, Balog JZ, Kleta R. Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy. Ann Intern Med. 2007; 147(4): 242-250.
- 26Kopp N, Leumann E. Changing pattern of primary hyperoxaluria in Switzerland. Nephrol Dial Transplant. 1995; 10(12): 2224-2227.
- 27Cochat P, Deloraine A, Rotily M, Olive F, Liponski I, Deries N. Epidemiology of primary hyperoxaluria type 1. Societe de Nephrologie and the Societe de Nephrologie Pediatrique. Nephrol Dial Transplant. 1995; 10(Suppl 8): 3-7.
- 28Levy M, Feingold J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 2000; 58(3): 925-943.
- 29Danpure CJ. Advances in the enzymology and molecular genetics of primary hyperoxaluria type 1. Prospects for gene therapy. Nephrol Dial Transplant. 1995; 10(Suppl 8): 24-29.
- 30Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int. 2009; 75(12): 1264-1271.
- 31Mookadam F, Smith T, Jiamsripong P, et al. Cardiac abnormalities in primary hyperoxaluria. Circ J. 2010; 74(11): 2403-2409.
- 32Cochat P, Liutkus A, Fargue S, Basmaison O, Ranchin B, Rolland MO. Primary hyperoxaluria type 1: still challenging! Pediatr Nephrol. 2006; 21(8): 1075-1081.
- 33Bacchetta J, Boivin G, Cochat P. Bone impairment in primary hyperoxaluria: a review. Pediatr Nephrol. 2016; 31(1): 1-6.
- 34Small KW, Scheinman J, Klintworth GK. A clinicopathological study of ocular involvement in primary hyperoxaluria type I. Br J Ophthalmol. 1992; 76(1): 54-57.
- 35Blackmon JA, Jeffy BG, Malone JC, Knable AL Jr. Oxalosis involving the skin: case report and literature review. Arch Dermatol. 2011; 147(11): 1302-1305.
- 36Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med. 1994; 331(23): 1553-1558.
- 37Hoyer-Kuhn H, Kohbrok S, Volland R, et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol. 2014; 9(3): 468-477.
- 38Bergstralh EJ, Monico CG, Lieske JC, et al. Transplantation outcomes in primary hyperoxaluria. Am J Transplant. 2010; 10(11): 2493-2501.
- 39Illies F, Bonzel KE, Wingen AM, Latta K, Hoyer PF. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int. 2006; 70(9): 1642-1648.
- 40Al-Abadi E, Hulton SA. Extracorporal shock wave lithotripsy in the management of stones in children with oxalosis–still the first choice? Pediatr Nephrol. 2013; 28(7): 1085-1089.
- 41Liebow A, Li X, Racie T, et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol. 2017; 28(2): 494-503.
- 42Garrelfs SF, Frishberg Y, Hulton SA, et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl J Med. 2021; 384(13): 1216-1226.
- 43Manoli I, Sloan J, Venditti C. Isolated methylmalonic acidemia. In: MP Adam, H Ardinger, RA Pagon, et al., eds. GeneReviews® [Internet]. University of Washington; 2005 [Updated 2016 Dec 1] Ed: 1993-2020.
- 44Baumgartner MR, Horster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014; 9: 130.
- 45Horster F, Baumgartner MR, Viardot C, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, Mut-, cblA, cblB). Pediatr Res. 2007; 62(2): 225-230.
- 46Manoli I, Sysol JR, Li L, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci USA. 2013; 110(33): 13552-13557.
- 47Zsengeller ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014; 29(11): 2139-2146.
- 48Noone D, Riedl M, Atkison P, et al. Kidney disease and organ transplantation in methylmalonic acidaemia. Pediatr Transplant. 2019; 23(4):e13407.
- 49Yap S, Vara R, Morais A. Post-transplantation outcomes in patients with PA or MMA: a review of the literature. Adv Ther. 2020; 37: 1866-1896.
- 50Niemi AK, Kim IK, Krueger CE, et al. Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr. 2015; 166(6): 1455-1461.e1.
- 51Chandler RJ, Sloan J, Fu H, et al. Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle. BMC Med Genet. 2007; 8: 64.
- 52Vernon HJ, Sperati CJ, King JD, et al. A detailed analysis of methylmalonic acid kinetics during hemodialysis and after combined liver/kidney transplantation in a patient with Mut (0) methylmalonic acidemia. J Inherit Metab Dis. 2014; 37(6): 899-907.
- 53Traber G, Baumgartner MR, Schwarz U, Pangalu A, Donath MY, Landau K. Subacute bilateral visual loss in methylmalonic acidemia. J Neuroophthalmol. 2011; 31(4): 344-346.
- 54de Baulny HO, Benoist JF, Rigal O, Touati G, Rabier D, Saudubray JM. Methylmalonic and propionic acidaemias: management and outcome. J Inherit Metab Dis. 2005; 28(3): 415-423.
- 55Loi M. Lowe syndrome. Orphanet J Rare Dis. 2006; 1: 16.
- 56Lewis RA, Nussbaum RL, Brewer ED. Lowe syndrome. In: MP Adam, GM Mirzaa, RA Pagon, et al., eds. GeneReviews® [Internet]. University ofWashington, Seattle; 1993-2023.
- 57Branton MH, Schiffmann R, Sabnis SG, et al. Natural history of Fabry renal disease: influence of alpha-galactosidase a activity and genetic mutations on clinical course. Medicine (Baltimore). 2002; 81(2): 122-138.
- 58Houge G, Skarbovik AJ. Fabry disease – a diagnostic and therapeutic challenge. Tidsskr Nor Laegeforen. 2005; 125(8): 1004-1006.
- 59Germain DP, Fouilhoux A, Decramer S, et al. Consensus recommendations for diagnosis, management and treatment of Fabry disease in paediatric patients. Clin Genet. 2019; 96(2): 107-117.
- 60Toyooka K. Fabry disease. Curr Opin Neurol. 2011; 24(5): 463-468.
- 61Ramaswami U, Whybra C, Parini R, et al. Clinical manifestations of Fabry disease in children: data from the Fabry outcome survey. Acta Paediatr. 2006; 95(1): 86-92.
- 62Biegstraaten M, Hollak CE, Bakkers M, Faber CG, Aerts JM, van Schaik IN. Small fiber neuropathy in Fabry disease. Mol Genet Metab. 2012; 106(2): 135-141.
- 63Eng CM, Fletcher J, Wilcox WR, et al. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry registry. J Inherit Metab Dis. 2007; 30(2): 184-192.
- 64Maron MS, Xin W, Sims KB, et al. Identification of Fabry disease in a tertiary referral cohort of patients with hypertrophic cardiomyopathy. Am J Med. 2018; 131(2): 200.e1-200.e8.
- 65Weidemann F, Sommer C, Duning T, et al. Department-related tasks and organ-targeted therapy in Fabry disease: an interdisciplinary challenge. Am J Med. 2010; 123(7): 658.e1-658.e10.
- 66Zarate YA, Hopkin RJ. Fabry's disease. Lancet. 2008; 372(9647): 1427-1435.
- 67Kashtan CE, Ding J, Garosi G, et al. Alport syndrome: a unified classification of genetic disorders of collagen IV alpha345: a position paper of the Alport syndrome classification working group. Kidney Int. 2018; 93(5): 1045-1051.
- 68Kashtan CE. Alport syndrome. An inherited disorder of renal, ocular, and cochlear basement membranes. Medicine (Baltimore). 1999; 78(5): 338-360.
- 69Gubler MC. Inherited diseases of the glomerular basement membrane. Nat Clin Pract Nephrol. 2008; 4(1): 24-37.
- 70Izzedine H, Tankere F, Launay-Vacher V, Deray G. Ear and kidney syndromes: molecular versus clinical approach. Kidney Int. 2004; 65(2): 369-385.
- 71Gubler M, Levy M, Broyer M, et al. Alport's syndrome. A report of 58 cases and a review of the literature. Am J Med. 1981; 70(3): 493-505.
- 72Grunfeld JP. The clinical spectrum of hereditary nephritis. Kidney Int. 1985; 27(1): 83-92.
- 73Byrne MC, Budisavljevic MN, Fan Z, Self SE, Ploth DW. Renal transplant in patients with Alport's syndrome. Am J Kidney Dis. 2002; 39(4): 769-775.
- 74Perrin D, Jungers P, Grunfeld JP, Delons S, Noel LH, Zenatti C. Perimacular changes in Alport's syndrome. Clin Nephrol. 1980; 13(4): 163-167.
- 75Shah SN, Weinberg DV. Giant macular hole in Alport syndrome. Ophthalmic Genet. 2010; 31(2): 94-97.
- 76Dahan K, Heidet L, Zhou J, et al. Smooth muscle tumors associated with X-linked Alport syndrome: carrier detection in females. Kidney Int. 1995; 48(6): 1900-1906.
- 77Uliana V, Marcocci E, Mucciolo M, et al. Alport syndrome and leiomyomatosis: the first deletion extending beyond COL4A6 intron 2. Pediatr Nephrol. 2011; 26(5): 717-724.
- 78Vaicys C, Hunt CD, Heary RF. Ruptured intracranial aneurysm in an adolescent with Alport's syndrome – a new expression of type IV collagenopathy: case report. Surg Neurol. 2000; 54(1): 68-72.
- 79Lyons OT, St John ER, Morales JP, Chan YC, Taylor PR. Ruptured thoracoabdominal aortic aneurysm in a renal transplant patient with Alport's syndrome. Ann Vasc Surg. 2007; 21(6): 816-818.
- 80Kashtan CE, Segal Y, Flinter F, Makanjuola D, Gan JS, Watnick T. Aortic abnormalities in males with Alport syndrome. Nephrol Dial Transplant. 2010; 25(11): 3554-3560.
- 81Pirson Y. Making the diagnosis of Alport's syndrome. Kidney Int. 1999; 56(2): 760-775.
- 82Shah B, First MR, Mendoza NC, Clyne DH, Alexander JW, Weiss MA. Alport's syndrome: risk of glomerulonephritis induced by anti-glomerular-basement-membrane antibody after renal transplantation. Nephron. 1988; 50(1): 34-38.
- 83Olaru F, Luo W, Wang XP, et al. Quaternary epitopes of alpha345(IV) collagen initiate Alport post-transplant anti-GBM nephritis. J Am Soc Nephrol. 2013; 24(6): 889-895.
- 84Hinkes BG, Mucha B, Vlangos CN, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007; 119(4): e907-e919.
- 85Jalanko H. Congenital nephrotic syndrome. Pediatr Nephrol. 2009; 24(11): 2121-2128.
- 86Cil O, Besbas N, Duzova A, et al. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol. 2015; 30(8): 1279-1287.
- 87Denys P, Malvaux P, Van Den Berghe H, Tanghe W, Proesmans W. Association of an anatomo-pathological syndrome of male pseudohermaphroditism, Wilms' tumor, parenchymatous nephropathy and XX/XY mosaicism. Arch Fr Pediatr. 1967; 24(7): 729-739.
- 88Drash A, Sherman F, Hartmann WH, Blizzard RM. A syndrome of pseudohermaphroditism, Wilms' tumor, hypertension, and degenerative renal disease. J Pediatr. 1970; 76(4): 585-593.
- 89Roca N, Munoz M, Cruz A, Vilalta R, Lara E, Ariceta G. Long-term outcome in a case series of Denys-Drash syndrome. Clin Kidney J. 2019; 12(6): 836-839.
- 90VanDeVoorde R, Witte D, Kogan J, Goebel J. Pierson syndrome: a novel cause of congenital nephrotic syndrome. Pediatrics. 2006; 118(2): e501-e505.
- 91Bredrup C, Matejas V, Barrow M, et al. Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol. 2008; 146(4): 602-611.
- 92Bongers EM, Huysmans FT, Levtchenko E, et al. Genotype-phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur J Hum Genet. 2005; 13(8): 935-946.
- 93Sweeney E, Fryer A, Mountford R, Green A, McIntosh I. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet. 2003; 40(3): 153-162.
- 94Towers AL, Clay CA, Sereika SM, McIntosh I, Greenspan SL. Skeletal integrity in patients with nail patella syndrome. J Clin Endocrinol Metab. 2005; 90(4): 1961-1965.
- 95Lemley KV. Kidney disease in nail-patella syndrome. Pediatr Nephrol. 2009; 24(12): 2345-2354.
- 96Sanyanusin P, Schimmenti LA, McNoe LA, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet. 1995; 9(4): 358-364.
- 97Barua M, Stellacci E, Stella L, et al. Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol. 2014; 25(9): 1942-1953.
- 98Vivante A, Chacham OS, Shril S, et al. Dominant PAX2 mutations may cause steroid-resistant nephrotic syndrome and FSGS in children. Pediatr Nephrol. 2019; 34(9): 1607-1613.
- 99Fraser FC, Ling D, Clogg D, Nogrady B. Genetic aspects of the BOR syndrome – branchial fistulas, ear pits, hearing loss, and renal anomalies. Am J Med Genet. 1978; 2(3): 241-252.
- 100Rodriguez Soriano J. Branchio-oto-renal syndrome. J Nephrol. 2003; 16(4): 603-605.
- 101Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011; 364(16): 1533-1543.
- 102Chebib FT, Torres VE. Recent advances in the management of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2018; 13(11): 1765-1776.
- 103Zerres K, Hansmann M, Mallmann R, Gembruch U. Autosomal recessive polycystic kidney disease. Problems of prenatal diagnosis. Prenat Diagn. 1988; 8(3): 215-229.
- 104Guay-Woodford LM, Bissler JJ, Braun MC, et al. Consensus expert recommendations for the diagnosis and management of autosomal recessive polycystic kidney disease: report of an international conference. J Pediatr. 2014; 165(3): 611-617.
- 105Davis ID, MacRae Dell K, Sweeney WE, Avner ED. Can progression of autosomal dominant or autosomal recessive polycystic kidney disease be prevented? Semin Nephrol. 2001; 21(5): 430-440.
- 106Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. 2003; 111(5 Pt 1): 1072-1080.
- 107Roy S, Dillon MJ, Trompeter RS, Barratt TM. Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol. 1997; 11(3): 302-306.
- 108Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics. 2014; 134(3): e833-e845.
- 109Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol. 2009; 20(1): 23-35.
- 110Alexander SR, Sullivan EK, Harmon WE, Stablein DM, Tejani A. Maintenance dialysis in North American children and adolescents: a preliminary report. North American pediatric renal transplant cooperative study (NAPRTCS). Kidney Int Suppl. 1993; 43: S104-S109.
- 111Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol. 2007; 18(6): 1855-1871.
- 112Srivastava S, Sayer JA. Nephronophthisis. J Pediatr Genet. 2014; 3(2): 103-114.
- 113Otto EA, Schermer B, Obara T, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003; 34(4): 413-420.
- 114Anadoliiska A, Roussinov D. Clinical aspects of renal involvement in Bardet-Biedl syndrome. Int Urol Nephrol. 1993; 25(5): 509-514.
- 115Marion V, Schlicht D, Mockel A, et al. Bardet-Biedl syndrome highlights the major role of the primary cilium in efficient water reabsorption. Kidney Int. 2011; 79(9): 1013-1025.
- 116Caridi G, Murer L, Bellantuono R, et al. Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am J Kidney Dis. 1998; 32(6): 1059-1062.
- 117Tory K, Lacoste T, Burglen L, et al. High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol. 2007; 18(5): 1566-1575.
- 118Caridi G, Dagnino M, Rossi A, et al. Nephronophthisis type 1 deletion syndrome with neurological symptoms: prevalence and significance of the association. Kidney Int. 2006; 70(7): 1342-1347.
- 119Hamiwka LA, Midgley JP, Wade AW, Martz KL, Grisaru S. Outcomes of kidney transplantation in children with nephronophthisis: an analysis of the North American pediatric renal trials and collaborative studies (NAPRTCS) registry. Pediatr Transplant. 2008; 12(8): 878-882.
- 120Braun DA, Lawson JA, Gee HY, et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin J Am Soc Nephrol. 2016; 11(4): 664-672.