Induction and maintenance immunosuppression in pediatric kidney transplantation—Advances and controversies
Shanthi S. Balani
Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorChelsey J. Jensen
Solid Organ Transplant, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorAnne M. Kouri
Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorCorresponding Author
Sarah J. Kizilbash
Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
Correspondence
Sarah J. Kizilbash, University of Minnesota, 2450 Riverside Avenue, 55454 Minneapolis, MN, USA.
Email: [email protected]
Search for more papers by this authorShanthi S. Balani
Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorChelsey J. Jensen
Solid Organ Transplant, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorAnne M. Kouri
Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorCorresponding Author
Sarah J. Kizilbash
Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
Correspondence
Sarah J. Kizilbash, University of Minnesota, 2450 Riverside Avenue, 55454 Minneapolis, MN, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Advances in immunosuppression have improved graft survival in pediatric kidney transplant recipients; however, treatment-related toxicities need to be balanced against the possibility of graft rejection. Several immunosuppressive agents are available for use in transplant recipients; however, the optimal combinations of agents remain unclear, resulting in variations in institutional protocols. Lymphocyte-depleting antibodies, specifically ATG, are the most common induction agent used for pediatric kidney transplantation in the US. Basiliximab may be used for induction in immunologically low-risk children; however, pediatric data are scarce. CNIs and antiproliferative agents (mostly Tac and mycophenolate in recent years) constitute the backbone of maintenance immunosuppression. Steroid-avoidance maintenance regimens remain controversial. Belatacept and mTOR inhibitors are used in children under specific circumstances such as non-adherence or CNI toxicity. This article reviews the indications, mechanism of action, efficacy, dosing, and side effect profiles of various immunosuppressive agents available for pediatric kidney transplantation.
Open Research
DATA AVAILABILITY STATEMENT
As this is a review article, data availability statement is not applicable.
REFERENCES
- 1Barker CF, Markmann JF. Historical overview of transplantation. Cold Spring Harb Perspect Med. 2013; 3: a014977.
- 2Najarian JS, Simmons Rl, Tallest MB, et al. Renal transplantation in infants and children. Ann Surg. 1971; 174: 583-601.
- 3Hart A, Smith JM, Skeans MA. OPTN/SRTR 2018 annual data report: preface. Am J Transplant. 2020; 20(Suppl s1): 20-130. https://doi.org/10.1111/ajt.15672
- 4 Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009; 9(Suppl 3): S1-S155.
- 5Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005; 353: 1711-1723.
- 6Steiner RW, Awdishu L. Steroids in kidney transplant patients. Semin Immunopathol. 2011; 33: 157-167.
- 7Kumar S, Allen DA, Kieswich JE, et al. Dexamethasone ameliorates renal ischemia-reperfusion injury. J Am Soc Nephrol. 2009; 20: 2412-2425.
- 8Schmidt SC, Hamann S, Langrehr JM, et al. Preoperative high-dose steroid administration attenuates the surgical stress response following liver resection: results of a prospective randomized study. J Hepatobiliary Pancreat Surg. 2007; 14: 484-492.
- 9Chapman TM, Keating GM. Basiliximab. Drugs. 2003; 63: 2803-2835.
- 10McKeage K, McCormack PL. Basiliximab: a review of its use as induction therapy in renal transplantation. BioDrugs. 2010; 24: 55-76.
- 11 Simulect (basiliximab). In: Corp NP, ed. Package Insert2003.
- 12Mincham CM, Wong G, Teixeira-Pinto A, et al. Induction therapy, rejection, and graft outcomes in pediatric and adolescent kidney transplant recipients. Transplantation. 2017; 101: 2146-2151.
- 13Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 international study group. Lancet. 1997; 350(9086): 1193-1198.
- 14Kahan BD, Rajagopalan PR, Hall M. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. United States simulect renal study group. Transplantation. 1999; 67: 276-284.
- 15Ponticelli C, Yussim A, Cambi V, et al. A randomized, double-blind trial of basiliximab immunoprophylaxis plus triple therapy in kidney transplant recipients. Transplantation. 2001; 72: 1261-1267.
- 16Lawen JG, Davies EA, Mourad G, et al. Randomized double-blind study of immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with mycophenolate mofetil-containing triple therapy in renal transplantation. Transplantation. 2003; 75: 37-43.
- 17Thomusch O, Wiesener M, Opgenoorth M, et al. Rabbit-ATG or basiliximab induction for rapid steroid withdrawal after renal transplantation (Harmony): an open-label, multicentre, randomised controlled trial. Lancet. 2016; 388: 3006-3016.
- 18Brennan DC, Daller JA, Lake KD, Cibrik D, Del Castillo D. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med. 2006; 355: 1967-1977.
- 19Goumard A, Sautenet B, Bailly E, et al. Increased risk of rejection after basiliximab induction in sensitized kidney transplant recipients without pre-existing donor-specific antibodies - a retrospective study. Transplant Int. 2019; 32: 820-830.
- 20Offner G, Toenshoff B, Höcker B, et al. Efficacy and safety of basiliximab in pediatric renal transplant patients receiving cyclosporine, mycophenolate mofetil, and steroids. Transplantation. 2008; 86: 1241-1248.
- 21Webb NJ, Prokurat S, Vondrak K, et al. Multicentre prospective randomised trial of tacrolimus, azathioprine and prednisolone with or without basiliximab: two-year follow-up data. Pediatr Nephrol. 2009; 24: 177-182.
- 22Grenda R, Watson A, Vondrak K, et al. A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. Am J Transplant. 2006; 6: 1666-1672.
- 23Sampaio MS, Poommipanit N, Kuo HT, et al. Induction therapy in pediatric kidney transplant recipients discharged with a triple drug immunosuppressive regimen. Pediatr Transplant. 2010; 14: 770-778.
- 24Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation. 1999; 67: 1011-1018.
- 25Hardinger KL, Rhee S, Buchanan P, et al. A prospective, randomized, double-blinded comparison of thymoglobulin versus Atgam for induction immunosuppressive therapy: 10-year results. Transplantation. 2008; 86: 947-952.
- 26Ault BH, Honaker MR, Osama Gaber A, et al. Short-term outcomes of thymoglobulin induction in pediatric renal transplant recipients. Pediatric Nephrol. 2002; 17: 815-818.
- 27Khositseth S, Matas A, Cook ME, Gillingham KJ, Chavers BM. Thymoglobulin versus ATGAM induction therapy in pediatric kidney transplant recipients: a single-center report. Transplantation. 2005; 79: 958-963.
- 28Brophy PD, Thomas SE, McBryde KD, Bunchman TE. Comparison of polyclonal induction agents in pediatric renal transplantation. Pediatr Transplant. 2001; 5: 174-178.
- 29Bonnefoy-bérard N, Vincent C, Revillard J-P. Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins. Transplantation. 1991; 51: 669-673.
- 30Merion RM, Howell T, Bromberg JS. Partial T-cell activation and anergy induction by polyclonal antithymocyte globulin. Transplantation. 1998; 65: 1481-1489.
- 31Beiras-Fernandez A, Chappell D, Hammer C, Beiras A, Reichart B, Thein E. Impact of polyclonal anti-thymocyte globulins on the expression of adhesion and inflammation molecules after ischemia-reperfusion injury. Transpl Immunol. 2009; 20: 224-228.
- 32Mehrabi A, Mood ZHA, Sadeghi M, et al. Thymoglobulin and ischemia reperfusion injury in kidney and liver transplantation. Nephrol Dial Transplant. 2007; 22(Suppl 8): viii54-viii60.
- 33Opelz G, Unterrainer C, Süsal C, Döhler B. Efficacy and safety of antibody induction therapy in the current era of kidney transplantation. Nephrol Dial Transplant. 2016; 31: 1730-1738.
- 34Colleen Hastings M, Wyatt RJ, Lau KK, et al. Five years’ experience with thymoglobulin induction in a pediatric renal transplant population. Pediatr Transplant. 2006; 10: 805-810.
- 35Warejko JK, Hmiel SP. Single-center experience in pediatric renal transplantation using thymoglobulin induction and steroid minimization. Pediatr Transplant. 2014; 18: 816-821.
- 36Crowson CN, Reed RD, Shelton BA, MacLennan PA, Locke JE. Lymphocyte-depleting induction therapy lowers the risk of acute rejection in African American pediatric kidney transplant recipients. Pediatr Transplant. 2017; 21:e12823.
- 37Agha IA, Rueda J, Alvarez A, et al. Short course induction immunosuppression with thymoglobulin for renal transplant recipients. Transplantation. 2002; 73: 473-475.
- 38Ashoor IF, Martz K, Galbiati S, Beyl RA, Dharnidharka VR. Reassessing rabbit antithymocyte globulin induction in kidney transplantation (RETHINK): an analysis of the north american pediatric renal trials and collaborative studies (NAPRTCS) registry. Transplant Direct. 2020; 6: e598.
- 39Barlow AD, Metcalfe MS, Johari Y, Elwell R, Veitch PS, Nicholson ML. Case-matched comparison of long-term results of non-heart beating and heart-beating donor renal transplants. Br J Surg. 2009; 96: 685-691.
- 40Puliyanda DP, Stablein DM, Dharnidharka VR. Younger age and antibody induction increase the risk for infection in pediatric renal transplantation: a NAPRTCS report. Am J Transplant. 2007; 7: 662-666.
- 41Clesca P, Dirlando M, Park SI, et al. Thymoglobulin and rate of infectious complications after transplantation. Transplant Proc. 2007; 39: 463-464.
- 42Bustami RT, Ojo AO, Wolfe RA, et al. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am J Transplant. 2004; 4: 87-93.
- 43Cherikh WS, Kauffman HM, McBride MA, Maghirang J, Swinnen LJ, Hanto DW. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. Transplantation. 2003; 76: 1289-1293.
- 44Dharnidharka VR, Stevens G. Risk for post-transplant lymphoproliferative disorder after polyclonal antibody induction in kidney transplantation. Pediatr Transplant. 2005; 9: 622-626.
- 45 CAMPATH® (alemtuzumab) injection Package insert. Genzyme Corporation; 2020.
- 46 Alemtuzumab. Micromedex solutions. IBM Corporation 2021 Accessed 2/5/2021
- 47Bartosh SM, Knechtle SJ, Sollinger HW. Campath-1H use in pediatric renal transplantation. Am J Transplant. 2005; 5: 1569-1573.
- 48Riad S, Jackson S, Chinnakotla S, Verghese P. Primary pediatric deceased-donor kidney transplant recipients outcomes by immunosuppression induction received in the United States. Pediatr Transplant. 2020:e13928. https://doi.org/10.1111/petr.13928. [Online ahead of print].
- 49Riad S, Jackson S, Chinnakotla S, Verghese P. Primary pediatric live-donor-kidney transplant-recipients’ outcomes by immunosuppression induction received in the United States. Pediatr Transplant. 2020:e13925. https://doi.org/10.1111/petr.13925. [Online ahead of print].
- 50Heidt S, Hester J, Shankar S, Friend PJ, Wood KJ. B cell repopulation after alemtuzumab induction-transient increase in transitional B cells and long-term dominance of naïve B cells. Am J Transplant. 2012; 12: 1784-1792.
- 51van der Zwan M, Baan CC, van Gelder T, Hesselink DA. Review of the clinical pharmacokinetics and pharmacodynamics of alemtuzumab and its use in kidney transplantation. Clin Pharmacokinet. 2018; 57: 191-207.
- 52Kaabak MM, Babenko NN, Samsonov DV, Sandrikov VA, Maschan AA, Zokoev AK. Alemtuzumab induction in pediatric kidney transplantation. Pediatr Transplant. 2013; 17: 168-178.
- 53Supe-Markovina K, Melquist JJ, Connolly D, et al. Alemtuzumab with corticosteroid minimization for pediatric deceased donor renal transplantation: a seven-yr experience. Pediatr Transplant. 2014; 18: 363-368.
- 54Tan HP, Donaldson J, Ellis D, et al. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience. Transplantation. 2008; 86: 1725-1731.
- 55Puliyanda DP, Pizzo H, Rodig N, Somers MJG. Early outcomes comparing induction with antithymocyte globulin vs alemtuzumab in two steroid-avoidance protocols in pediatric renal transplantation. Pediatr Transplant. 2020; 24:e13685.
- 56Hamawy MM. Molecular actions of calcineurin inhibitors. Drug News Perspect. 2003; 16: 277-282.
- 57Neu AM, Martin Ho Pl, Fine RN, Furth SL, Fivush BA. Tacrolimus vs. cyclosporine A as primary immunosuppression in pediatric renal transplantation: a NAPRTCS study. Pediatr Transplant. 2003; 7: 217-222.
- 58Jones-Hughes T, Snowsill T, Haasova M, et al. Immunosuppressive therapy for kidney transplantation in adults: a systematic review and economic model. Health Technol Assess. 2016; 20: 1-594.
- 59Haasova M, Snowsill T, Jones-Hughes T, et al. Immunosuppressive therapy for kidney transplantation in children and adolescents: systematic review and economic evaluation. Health Technol Assess. 2016; 20: 1-324.
- 60Webster AC, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ. 2005; 331: 810.
- 61Liu JY, You RX, Guo M, et al. Tacrolimus versus cyclosporine as primary immunosuppressant after renal transplantation: a meta-analysis and economics evaluation. Am J Ther. 2016; 23: e810-e824.
- 62Trompeter R, Filler G, Webb NJ, et al. Randomized trial of tacrolimus versus cyclosporin microemulsion in renal transplantation. Pediatr Nephrol. 2002; 17: 141-149.
- 63Vacher-Coponat H, Moal V, Indreies M, et al. A randomized trial with steroids and antithymocyte globulins comparing cyclosporine/azathioprine versus tacrolimus/mycophenolate mofetil (CATM2) in renal transplantation. Transplantation. 2012; 93: 437-443.
- 64Garcia CD, Schneider L, Barros VR, Guimarães PC, Garcia VD. Pediatric renal transplantation under tacrolimus or cyclosporine immunosuppression and basiliximab induction. Transpl Proc. 2002; 34: 2533-2534.
- 65Lehner LJ, Reinke P, Hörstrup JH, et al. Evaluation of adherence and tolerability of prolonged-release tacrolimus (Advagraf™) in kidney transplant patients in Germany: a multicenter, noninterventional study. Clin Transplant. 2018; 32:e13142.
- 66Fellström B, Holmdahl J, Sundvall N, Cockburn E, Kilany S, Wennberg L. Adherence of renal transplant recipients to once-daily, prolonged-release and twice-daily, immediate-release tacrolimus-based regimens in a real-life setting in Sweden. Transpl Proc. 2018; 50: 3275-3282.
- 67Mathis AS, Egloff G, Ghin HL. Calcineurin inhibitor sparing strategies in renal transplantation, part one: late sparing strategies. World J Transplantat. 2014; 4: 57-80.
- 68Min S, Papaz T, Lafreniere-Roula M, et al. A randomized clinical trial of age and genotype-guided tacrolimus dosing after pediatric solid organ transplantation. Pediatr Transplant. 2018; 22:e13285.
- 69Danovitch GM. Handbook of kidney transplantation, Sixth edn. Philadelphia, PA: Wolters Kluwer; 2017.
- 70Lemahieu W, Maes B, Verbeke K, Rutgeerts P, Geboes K, Vanrenterghem Y. Cytochrome P450 3A4 and P-glycoprotein activity and assimilation of tacrolimus in transplant patients with persistent diarrhea. Am J Transplant. 2005; 5: 1383-1391.
- 71Maes BD, Lemahieu W, Kuypers D, et al. Differential effect of diarrhea on FK506 versus cyclosporine A trough levels and resultant prevention of allograft rejection in renal transplant recipients. Am J of Transplant. 2002; 2: 989-992.
- 72 fda, cder. Imuran product information.
- 73Dean L. Azathioprine therapy and TPMT genotype. National Center for Biotechnology Information (US); 2012. http://www.ncbi.nlm.nih.gov/pubmed/28520349. Accessed February 25, 2021.
- 74Relling MV, Schwab M, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019; 105: 1095-1105.
- 75Bunchman T, Navarro M, Broyer M, et al. The use of mycophenolate mofetil suspension in pediatric renal allograft recipients. Pediatr Nephrol. 2001; 16: 978-984.
- 76 Fda, Cder. Cellcept package insert. www.fda.gov/medwatch.com. Accessed February 25, 2021.
- 77Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998; 34: 429-455.
- 78Wagner M, Earley AK, Webster AC, Schmid CH, Balk EM, Uhlig K. Mycophenolic acid versus azathioprine as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev. 2015;(12): Cd007746. https://doi.org/10.1002/14651858.CD007746.pub2
- 79Cransberg K, Marlies Cornelissen EA, Davin JC, et al. Improved outcome of pediatric kidney transplantations in the Netherlands – effect of the introduction of mycophenolate mofetil? Pediatr Transplant. 2005; 9: 104-111.
- 80Höcker B, Weber LT, Bunchman T, Rashford M, Tönshoff B. Mycophenolate mofetil suspension in pediatric renal transplantation: three-year data from the tricontinental trial. Pediatr Transplant. 2005; 9: 504-511.
- 81Jungraithmayr TC, Wiesmayr S, Staskewitz A, et al. Five-year outcome in pediatric patients with mycophenolate mofetil-based renal transplantation. Transplantation. 2007; 83: 900-905.
- 82Schold JD, Kaplan B. AZA/tacrolimus is associated with similar outcomes as MMF/tacrolimus among renal transplant recipients. Am J Transplant. 2009; 9: 2067-2074.
- 83Al-Mowaina S. Azathioprine versus mycophenolate mofetil in combination with tacrolimus and steroids maintenance in pediatric kidney transplantation. Transplantation. 2018; 102: S839.
- 84Kuypers DRJ, Meur YLe, Cantarovich M, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol. 2010; 5: 341-358.
- 85Le Meur Y, Büchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007; 7: 2496-2503.
- 86Gaston RS, Kaplan B, Shah T, et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. Am J Transplant. 2009; 9: 1607-1619.
- 87Weber LT, Hoecker B, Armstrong VW, Oellerich M, Tönshoff B. Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit. 2008; 30: 570-575.
- 88Kuypers DR, Ekberg H, Grinyó J, et al. Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet. 2009; 48: 329-341.
- 89van Gelder T, Klupp J, Barten MJ, Christians U, Morris RE. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit. 2001; 23: 119-128.
- 90Höcker B, van Gelder T, Martin-Govantes J, et al. Comparison of MMF efficacy and safety in paediatric vs. adult renal transplantation: subgroup analysis of the randomised, multicentre FDCC trial. Nephrol Dial Transplant. 2011; 26(3): 1073-1079.
- 91Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol. 2000; 14: 100-104.
- 92 HHS, Fda. Myfortic ® (Mycophenolic Acid*) delayed-release tablets. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/050791s019lbl.pdf. Accessed March 29, 2021.
- 93Davies NM, Grinyó J, Heading R, Maes B, Meier-Kriesche HU, Oellerich M. Gastrointestinal side effects of mycophenolic acid in renal transplant patients: a reappraisal. Nephrol Dial. 2007; 22: 2440-2448.
- 94Pape L, Ahlenstiel T, Kreuzer M, Ehrich JH. Improved gastrointestinal symptom burden after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in kidney transplanted children. Pediatr Transplant. 2008; 12: 640-642.
- 95Pape L, Ahlenstiel T. mTOR inhibitors in pediatric kidney transplantation. Pediatr Nephrol. 2014; 29: 1119-1129.
- 96 FDA Package Insert Rapamune (sirolimus). 2017.
- 97 FDA Package Insert Zortress (everolimus). 2018.
- 98Hahn D, Hodson EM, Hamiwka LA, et al. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev. 2019; 12: Cd004290.
- 99Harmon W, Meyers K, Ingelfinger J, et al. Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation. J Am Soc Nephrol. 2006; 17: 1735-1745.
- 100Höcker B, Feneberg R, Köpf S, et al. SRL-based immunosuppression vs. CNI minimization in pediatric renal transplant recipients with chronic CNI nephrotoxicity. Pediatr Transplant. 2006; 10: 593-601.
- 101Hymes LC, Warshaw BL, Amaral SG, Greenbaum LA. Tacrolimus withdrawal and conversion to sirolimus at three months post-pediatric renal transplantation. Pediatr Transplant. 2008; 12: 773-777.
- 102Tönshoff B, Ettenger R, Dello Strologo L, et al. Early conversion of pediatric kidney transplant patients to everolimus with reduced tacrolimus and steroid elimination: results of a randomized trial. Am J Transplant. 2019; 19: 811-822.
- 103Weintraub L, Li L, Kambham N, et al. Patient selection critical for calcineurin inhibitor withdrawal in pediatric kidney transplantation. Pediatr Transplant. 2008; 12: 541-549.
- 104Schachter AD, Meyers KE, Spaneas LD, et al. Short sirolimus half-life in pediatric renal transplant recipients on a calcineurin inhibitor-free protocol. Pediatr Transplant. 2004; 8: 171-177.
- 105Hoyer PF, Ettenger R, Kovarik JM, et al. Everolimus in pediatric de nova renal transplant patients. Transplantation. 2003; 75: 2082-2085.
- 106Brunkhorst LC, Fichtner A, Höcker B, et al. Efficacy and safety of an everolimus- vs. a mycophenolate mofetil-based regimen in pediatric renal transplant recipients. PLoS One. 2015; 10(9):e0135439.
- 107Benfield MR, Bartosh S, Ikle D, et al. A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant. 2010; 10: 81-88.
- 108McDonald RA, Smith JM, Ho M, et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant. 2008; 8: 984-989.
- 109Archdeacon P, Dixon C, Belen O, Albrecht R, Meyer J. Summary of the US FDA approval of belatacept. Am J Transplant. 2012; 12: 554-562.
- 110Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005; 5: 443-453.
- 111Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005; 353: 770-781.
- 112Vincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010; 10: 535-546.
- 113Durrbach A, Pestana JM, Pearson T, et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant. 2010; 10: 547-557.
- 114Vincenti F, Larsen CP, Alberu J, et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant. 2012; 12: 210-217.
- 115Medina Pestana JO, Grinyo JM, Vanrenterghem Y, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012; 12: 630-639.
- 116Rostaing L, Vincenti F, Grinyó J, et al. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant. 2013; 13: 2875-2883.
- 117Charpentier B, Medina Pestana J o, del C. Rial M, et al. Long-term exposure to belatacept in recipients of extended criteria donor kidneys. Am J Transplant. 2013; 13: 2884-2891.
- 118Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016; 374: 333-343.
- 119Nair V, Liriano-Ward L, Kent R, et al. Early conversion to belatacept after renal transplantation. Clin Transplant. 2017; 31:e12951.
- 120Le Meur Y, Aulagnon F, Bertrand D, et al. Effect of an early switch to belatacept among calcineurin inhibitor-intolerant graft recipients of kidneys from extended-criteria donors. Am J Transplant. 2016; 16: 2181-2186.
- 121Wojciechowski D, Chandran S, Vincenti F. Early post-transplant conversion from tacrolimus to belatacept for prolonged delayed graft function improves renal function in kidney transplant recipients. Clin Transplant. 2017; 31:e12930.
- 122Brakemeier S, Kannenkeril D, Dürr M, et al. Experience with belatacept rescue therapy in kidney transplant recipients. Transpl Int. 2016; 29: 1184-1195.
- 123Woodle ES, Kaufman DB, Shields AR, et al. Belatacept-based immunosuppression with simultaneous calcineurin inhibitor avoidance and early corticosteroid withdrawal: a prospective, randomized multicenter trial. Am J Transplant. 2020; 20: 1039-1055.
- 124Lerch C, Kanzelmeyer NK, Ahlenstiel-Grunow T, et al. Belatacept after kidney transplantation in adolescents: a retrospective study. Transpl Int. 2017; 30: 494-501.
- 125Blew KH, Chua A, Foreman J, et al. Tailored use of belatacept in adolescent kidney transplantation. Am J Transplant. 2020; 20: 884-888.
- 126 Nulojix - FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125288s070lbl.pdf. Accessed March 23, 2021.
- 127Dowd JB, Palermo T, Brite J, McDade TW, Aiello A. Seroprevalence of Epstein-Barr virus infection in U.S. children ages 6-19, 2003-2010. PLoS One. 2013; 8:e64921.
- 128Tsampalieros A, Knoll GA, Molnar AO, Fergusson N, Fergusson DA. Corticosteroid use and growth after pediatric solid organ transplantation: a systematic review and meta-analysis. Transplantation. 2017; 101: 694-703.
- 129Webb NJ, Douglas SE, Rajai A, et al. Corticosteroid-free kidney transplantation improves growth: 2-year follow-up of the TWIST randomized controlled trial. Transplantation. 2015; 99: 1178-1185.
- 130Grenda R, Watson A, Trompeter R, et al. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant. 2010; 10: 828-836.
- 131Sarwal MM, Ettenger RB, Dharnidharka V, et al. Complete steroid avoidance is effective and safe in children with renal transplants: a multicenter randomized trial with three-year follow-up. Am J Transplant. 2012; 12: 2719-2729.
- 132Hocker B, Weber LT, Feneberg R, et al. Improved growth and cardiovascular risk after late steroid withdrawal: 2-year results of a prospective, randomised trial in paediatric renal transplantation. Nephrol Dial Transplant. 2010; 25: 617-624.
- 133Zhang H, Zheng Y, Liu L, et al. Steroid avoidance or withdrawal regimens in paediatric kidney transplantation: a meta-analysis of randomised controlled trials. PLoS One. 2016; 11:e0146523.
- 134Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2018 annual data report: kidney. Am J Transplant. 2020; 20(Suppl s1): 20-130.
- 135Cooper JE. Evaluation and treatment of acute rejection in kidney allografts. Clin J Am Soc Nephrol. 2020; 15: 430-438.
- 136Schinstock CA, Mannon RB, Budde K, et al. Recommended treatment for antibody-mediated rejection after kidney transplantation: the 2019 expert consensus from the transplantion society working group. Transplantation. 2020; 104: 911-922.
- 137Burroughs TE, Swindle JP, Salvalaggio PR, et al. Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. Transplantation. 2009; 88: 367-373.
- 138Al-Uzri A, Stablein DM, A Cohn R. Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American pediatric renal transplant cooperative study (NAPRTCS). Transplantation. 2001; 72: 1020-1024.
- 139Li L, Chang A, Naesens M, et al. Steroid-free immunosuppression since 1999: 129 pediatric renal transplants with sustained graft and patient benefits. Am J Transplant. 2009; 9: 1362-1372.
- 140Sarwal MM, Ettenger RB, Dharnidharka V, et al. Complete steroid avoidance is effective and safe in children with renal transplants: a multicenter randomized trial with three-year follow-up. Am J Transplant. 2012; 12: 2719-2729.
- 141Chanchlani R, Kim SJ, Dixon SN, et al. Incidence of new-onset diabetes mellitus and association with mortality in childhood solid organ transplant recipients: a population-based study. Nephrol Dial Transplant. 2019; 34: 524-531.
- 142Franke D, Thomas L, Steffens R, et al. Patterns of growth after kidney transplantation among children with ESRD. Clin J Am Soc Nephrol. 2015; 10: 127-134.
- 143Jabs K, Sullivan EK, Avner ED, Harmon WE. Alternate-day steroid dosing improves growth without adversely affecting graft survival or long-term graft function. A report of the North American pediatric renal transplant cooperative study. Transplantation. 1996; 61: 31-36.
- 144Offner G, Hoyer PF, Ehrich JH, Pichlmayr R, Brodehl J. Paediatric aspects of renal transplantation: experience of a single centre. Eur J Pediatr. 1992; 151(Suppl 1): S16-S22.
- 145Alvarez-Garcia O, Carbajo-Pérez E, Garcia E, et al. Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol. 2007; 22: 954-961.
- 146Rangel GA, Ariceta G. Growth failure associated with sirolimus: case report. Pediatr Nephrol. 2009; 24: 2047-2050.