Living-donor liver transplantation for mild Zellweger spectrum disorder: Up to 17 years follow-up
Tanguy Demaret
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorSharat Varma
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorXavier Stephenne
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorFrançoise Smets
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorIsabelle Scheers
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorRonald Wanders
Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, the Netherlands
Search for more papers by this authorLionel Van Maldergem
Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire de Besançon, Université de Franche-Comté, Besançon, France
Search for more papers by this authorRaymond Reding
Unité de Chirurgie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorCorresponding Author
Etienne Sokal
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Correspondence
Etienne Sokal, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
Email: [email protected]
Search for more papers by this authorTanguy Demaret
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorSharat Varma
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorXavier Stephenne
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorFrançoise Smets
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorIsabelle Scheers
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorRonald Wanders
Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, the Netherlands
Search for more papers by this authorLionel Van Maldergem
Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire de Besançon, Université de Franche-Comté, Besançon, France
Search for more papers by this authorRaymond Reding
Unité de Chirurgie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Search for more papers by this authorCorresponding Author
Etienne Sokal
Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Correspondence
Etienne Sokal, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
Email: [email protected]
Search for more papers by this authorAbstract
Mild Zellweger spectrum disorder, also described as Infantile Refsum disease, is attributable to mutations in PEX genes. Its clinical course is characterized by progressive hearing and vision loss, and neurodevelopmental regression. Supportive management is currently considered the standard of care, as no treatment has shown clinical benefits. LT was shown to correct levels of circulating toxic metabolites, partly responsible for chronic neurological impairment. Of three patients having undergone LT for mild ZSD, one died after LT, while the other two displayed significant neurodevelopmental improvement on both the long-term (17 years post-LT) and short-term (9 months post-LT) follow-up. We documented a sustained improvement of biochemical functions, with a complete normalization of plasma phytanic, pristanic, and pipecolic acid levels. This was associated with stabilization of hearing and visual functions, and improved neurodevelopmental status, which has enabled the older patient to lead a relatively autonomous lifestyle on the long term. The psychomotor acquisitions have been markedly improved as compared to their affected siblings, who did not undergo LT and exhibited a poor neurological outcome with severe disabilities. We speculate that LT performed before the onset of severe sensorineural defects in mild ZSD enables partial metabolic remission and improved long-term clinical outcomes.
Supporting Information
Filename | Description |
---|---|
petr13112-sup-0001-TableS1-S3.xlsxMS Excel, 15.2 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta. 2012; 1822: 1430-1441.
- 2Waterham HR, Ferdinandusse S, Wanders RJ. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta. 2016; 1863: 922-933.
- 3Berendse K, Engelen M, Ferdinandusse S, et al. Zellweger spectrum disorders: clinical manifestations in patients surviving into adulthood. J Inherit Metab Dis. 2016; 39: 93-106.
- 4Braverman NE, Raymond GV, Rizzo WB, et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab. 2016; 117: 313-321.
- 5Leipnitz G, Amaral AU, Zanatta A, et al. Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats. Life Sci. 2010; 87: 275-280.
- 6Van Maldergem L, Moser AB, Vincent MF, et al. Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type. J Inherit Metab Dis. 2005; 28: 593-600.
10.1007/s10545-005-0593-9 Google Scholar
- 7Sokal EM, Smets F, Bourgois A, et al. Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation. 2003; 76: 735-738.
- 8Sokal EM, Sokol R, Cormier V, et al. Liver transplantation in mitochondrial respiratory chain disorders. Eur J Pediatr. 1999; 158(Suppl 2): S81-S84.
- 9Najimi M, Defresne F, Sokal EM. Concise review: updated advances and current challenges in cell therapy for inborn liver metabolic defects. Stem Cells Transl Med. 2016; 5: 1117-1125.
- 10Frankenburg WK, Dodds JB. The Denver developmental screening test. J Pediatr. 1967; 71: 181-191.
- 11 The milestone checklist. Centers for Disease Control and Prevention web site. https://www.cdc.gov/ncbddd/actearly/milestones/. Published February 23, 2015. Updated August 18, 2016. Accessed January 10, 2017.
- 12Klouwer FC, Berendse K, Ferdinandusse S, Wanders RJ, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis. 2015; 10: 151.
- 13Berendse K, Engelen M, Linthorst GE, van Trotsenburg AS, Poll-The BT. High prevalence of primary adrenal insufficiency in Zellweger spectrum disorders. Orphanet J Rare Dis. 2014; 9: 133.
- 14Sa MJ, Rocha JC, Almeida MF, et al. Infantile Refsum disease: influence of dietary treatment on plasma phytanic acid levels. JIMD Rep. 2016; 26: 53-60.
- 15Wanders RJ, Komen J, Ferdinandusse S. Phytanic acid metabolism in health and disease. Biochim Biophys Acta. 2011; 1811: 498-507.
- 16Baldwin EJ, Gibberd FB, Harley C, Sidey MC, Feher MD, Wierzbicki AS. The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry. 2010; 81: 954-957.
- 17Matsunami M, Shimozawa N, Fukuda A, et al. Living-donor liver transplantation from a heterozygous parent for infantile refsum disease. Pediatrics. 2016; 137: e20153102.
- 18Dalazen GR, Terra M, Jacques CE, et al. Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metab Brain Dis. 2014; 29: 175-183.
- 19Busanello EN, Lobato VG, Zanatta A, et al. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats. Cerebellum. 2014; 13: 751-759.
- 20Leipnitz G, Amaral AU, Fernandes CG, et al. Pristanic acid promotes oxidative stress in brain cortex of young rats: a possible pathophysiological mechanism for brain damage in peroxisomal disorders. Brain Res. 2011; 1382: 259-265.
- 21Wanders RJ, Ferdinandusse S, Brites P, Kemp S. Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta. 2010; 1801: 272-280.
- 22Berendse K, Klouwer FC, Koot BG, et al. Cholic acid therapy in Zellweger spectrum disorders. J Inherit Metab Dis. 2016; 39: 859-868.
- 23Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012; 1822: 1442-1452.
- 24Greenberg CR, Hajra AK, Moser AB. Triple therapy of a patient with a generalized peroxisomal disorder. Am J Hum Genet. 1987; 41(Suppl): A64.
- 25Holmes RD, Wilson GN, Hajra A. Oral ether lipid therapy in patients with peroxisomal disorder. Inherited Metab Dis. 1987; 10(Suppl.): 239-241.
10.1007/BF01811415 Google Scholar
- 26Vandana VP, Bindu PS, Nagappa M, Sinha S, Taly AB. Audiological findings in Infantile Refsum disease. Int J Pediatr Otorhinolaryngol. 2015; 79: 1366-1369.
10.1016/j.ijporl.2015.05.023 Google Scholar
- 27Simons J, Nowaczyk M. Phenotypic variability in fraternal twins with PEX1 mutations: Zellweger syndrome with discordant clinical phenotype. MJM. 2013; S5(001): 1-3.
- 28Yik WY, Steinberg SJ, Moser AB, Moser HW, Hacia JG. Identification of novel mutations and sequence variation in the Zellweger syndrome spectrum of peroxisome biogenesis disorders. Hum Mutat. 2009; 30: E467-E480.
- 29Steinberg S, Chen L, Wei L, et al. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab. 2004; 83: 252-263.
- 30Sokal EM, Stephenne X, Ottolenghi C, et al. Liver engraftment and repopulation by in vitro expanded adult derived human liver stem cells in a child with ornithine carbamoyltransferase deficiency. JIMD Rep. 2014; 13: 65-72.
- 31Tondreau T, Tulé M, Najimi M, Vincent M-F, Sokal E. Human adult liver progenitor cells (HALPCS) is a promising tool to restore peroxisomal dysfunction as infantile Refsum's disease. J Pediatr Gastroenterol Nutr. 2013; 56(Suppl 2): 92.