ISPAD Clinical Practice Consensus Guidelines 2022: Definition, epidemiology, and classification of diabetes in children and adolescents
Corresponding Author
Ingrid Libman
Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
Correspondence
Ingrid Libman, Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
Email: [email protected]
Search for more papers by this authorAveni Haynes
Children's Diabetes Centre, Telethon Kids Institute, Perth, Western Australia, Australia
Search for more papers by this authorSarah Lyons
Pediatric Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorPraveen Pradeep
Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
Search for more papers by this authorEdson Rwagasor
Rwanda Biomedical Center, Rwanda Ministry of Health, Kigali, Rwanda
Search for more papers by this authorJoanna Yuet-ling Tung
Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Hong Kong
Search for more papers by this authorCraig A. Jefferies
Starship Children's Health, Te Whatu Ora Health New Zealand, Auckland, New Zealand
Search for more papers by this authorRichard A. Oram
Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
Search for more papers by this authorDana Dabelea
Department of Epidemiology, University of Colorado School of Medicine, Aurora, Colorado, USA
Search for more papers by this authorMaria E. Craig
The Children's Hospital at Westmead, Sydney, New South Wales (NSW), Australia
University of Sydney Children's Hospital Westmead Clinical School, Sydney, NEW, Australia
Discipline of Paediatrics & Child Health, School of Clinical Medicine, University of NSW Medicine & Health, Sydney, NSW, Australia
Search for more papers by this authorCorresponding Author
Ingrid Libman
Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
Correspondence
Ingrid Libman, Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
Email: [email protected]
Search for more papers by this authorAveni Haynes
Children's Diabetes Centre, Telethon Kids Institute, Perth, Western Australia, Australia
Search for more papers by this authorSarah Lyons
Pediatric Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorPraveen Pradeep
Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
Search for more papers by this authorEdson Rwagasor
Rwanda Biomedical Center, Rwanda Ministry of Health, Kigali, Rwanda
Search for more papers by this authorJoanna Yuet-ling Tung
Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Hong Kong
Search for more papers by this authorCraig A. Jefferies
Starship Children's Health, Te Whatu Ora Health New Zealand, Auckland, New Zealand
Search for more papers by this authorRichard A. Oram
Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
Search for more papers by this authorDana Dabelea
Department of Epidemiology, University of Colorado School of Medicine, Aurora, Colorado, USA
Search for more papers by this authorMaria E. Craig
The Children's Hospital at Westmead, Sydney, New South Wales (NSW), Australia
University of Sydney Children's Hospital Westmead Clinical School, Sydney, NEW, Australia
Discipline of Paediatrics & Child Health, School of Clinical Medicine, University of NSW Medicine & Health, Sydney, NSW, Australia
Search for more papers by this author
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- 1Mayer-Davis EJ, Kahkoska AR, Jefferies C, et al. Chapter 1: definition, epidemiology, diagnosis and classification of Diabetes in Children and Adolescents. Pediatr Diabetes. 2018; 19(suppl 27): 7-19.
- 2 World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. Switzerland; 2006.
- 3 American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care. 2022; 45(suppl 1): S17-S38.
- 4Arslanian S, Bacha F, Grey M, Marcus MD, White NH, Zeitler P. Evaluation and management of youth-onset type 2 diabetes: a position statement by the American Diabetes Association. Diabetes Care. 2018; 41(12): 2648-2668.
- 5Dabelea D, Sauder K, Jensen E, et al. Twenty years of pediatric diabetes surveillance: what do we known and why it matters. Ann N Y Acad Sci. 2021; 1495(1): 99-120.
- 6Tosur M, Philipson LH. Precision diabetes: lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig. 2022; 13: 1465-1471.
- 7Todd JN, Kleinberger JW, Zhang H, et al. Monogenic diabetes in Youth with presumed type 2 diabetes: results from the Progress in Diabetes Genetics in Youth (ProDiGY) Collaboration. Diabetes Care. 2021; 44(10): 2312-2319.
- 8Klein KR, Walker CP, McFerren AL, et al. Carbohydrate intake prior to oral glucose tolerance testing. J Endocr Soc. 2021; 29(5):bvab049.
- 9Helminen O, Aspholm S, Pokka T, et al. HbA1c predicts time to diagnosis of type 1 diabetes in children at risk. Diabetes. 2015; 64(5): 1719-1727.
- 10Ludvigsson J, Cuthbertson D, Becker DJ, et al. Increasing plasma glucose before the development of type 1 diabetes-the TRIGR study. Pediatr Diabetes. 2021; 22(7): 974-981.
- 11Vehik K, Boulware D, Killian M, et al. Rising hemoglobin A1c in the nondiabetic range predicts progression of type 1 diabetes as well as oral glucose tolerance test. Diabetes Care. 2022; 45(10): 2342-2349.
- 12Hagman E, Reinehr T, Kowalski J, Ekbom A, Marcus C, Holl RW. Impaired fasting glucose prevalence in two nationwide cohorts of obese children and adolescents. Int J Obes (Lond). 2014; 38(1): 40-45.
- 13Libman I, Barinas-Mitchell E, Bartucci A, et al. Reproducibility of the oral glucose tolerance test in overweight children. J Clin Endocrinol Metab. 2008; 93(11): 4231-4237.
- 14Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015; 38(10): 1964-1974.
- 15Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. Diabetes. 1979; 28(12): 1039-1057.
- 16 WHO Expert Committee on Diabetes Mellitus. Second report. World Health Organ Tech Rep Ser. 1980; 646: 1-80.
- 17Libman I, Pietropaolo M, Arslanian S, et al. Changing prevalence of overweight in children and adolescent with insulin treated diabetes. Diabetes Care. 2003; 26(10): 2871-2875.
- 18Kapellen TM, Gausche R, Dost A, et al. Children and adolescents with type 1 diabetes in Germany are more overweight than healthy controls: results comparing DPV database and CrescNet database. J Pediatr Endocrinol Metab. 2014; 27(3–4): 209-214.
- 19Rewers A, Klingensmith G, Davis C, et al. Presence of diabetic ketoacidosis at diagnosis of diabetes mellitus in youth: the search for diabetes in youth study. Pediatrics. 2008; 121(5): e1258-e1266.
- 20Dabelea D, Rewers A, Stafford JM, et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics. 2014; 133(4): e938-e945.
- 21Fendler W, Borowiec M, Baranowska-Jazwiecka A, et al. Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia. 2012; 55(10): 2631-2635.
- 22Irgens HU, Molnes J, Johansson BB, et al. Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia. 2013; 56(7): 1512-1519.
- 23Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for diabetes in youth. J Clin Endocrinol Metab. 2013; 98(10): 4055-4062.
- 24Dabelea D, Pihoker C, Talton JW, et al. Etiological approach to characterization of diabetes type: the SEARCH for diabetes in youth study. Diabetes Care. 2011; 34(7): 1628-1633.
- 25Oram RA, Patel K, Hill A, et al. A type 1 diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care. 2016; 39(3): 337-344.
- 26Mottalib A, Kasetty M, Mar JY, Elseaidy T, Ashrafzadeh S, Hamdy O. Weight management in patients with type 1 diabetes and obesity. Curr Diab Rep. 2017; 17(10): 92.
- 27Libman I, Pietropaolo M, Aslanian S, et al. Evidence for heterogeneous pathogenesis of insulin-treated diabetes in black and white children. Diabetes Care. 2003; 26(10): 2876-2882.
- 28Genuth S, Palmer J, Nathan DM. Classification and diagnosis of diabetes. In: Cowie CC, Casagrande SS, Menke A, MA Cissell, MS Eberhardt, JB Meigs, EW Gregg, WC Knowler, E Barrett-Connor, DJ Becker, FL Brancati, EJ Boyko, WH Herman, BV HOward, KMV Narayan, M Rewers, JE Fradkin, eds. Diabetes in America. 3rd ed. Bethesda, MD: National Institutes of Health; 2018.
- 29Drachenberg CB, Klassen DK, Weir MR, et al. Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation. 1999; 68(3): 396-402.
- 30Andrews RC, Walker BR. Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci. 1999; 96(5): 513-523.
- 31Ferris HA, Kahn CR. New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. J Clin Invest. 2012; 122(11): 3854-3857.
- 32Gill GV, Mbanya JC, Ramaiya KL, et al. A sub-Saharan African perspective of diabetes. Diabetologia. 2009; 52(1): 8-16.
- 33Barman KK, Premalatha G, Mohan V. Tropical chronic pancreatitis. Postgrad Med J. 2003; 79(937): 606-615.
- 34Leete P, Mallone R, Richardson SJ, Sosenko JM, Redondo MJ, Evans-Molina C. The effect of age on the progression and severity of type 1 diabetes: potential effects on disease mechanisms. Curr Diab Rep. 2018; 18(11): 115.
- 35Oram RA, Redondo MJ. New insights on the genetics of type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2019; 26(4): 181-187.
- 36Mrena S, Virtanen SM, Laippala P, et al. Models for predicting type 1 diabetes in siblings of affected children. Diabetes Care. 2006; 29: 662-667.
- 37Dorman JS, Steenkiste AR, O'Leary LA, McCarthy B, Lorenzen T, Foley TP. Type 1 diabetes in offspring of parents with type 1 diabetes: the tip of an autoimmune iceberg? Pediatr Diabetes. 2000; 1: 17-22.
- 38Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med. 2008; 359: 2849-2850.
- 39Redondo MJ, Rewers M, Yu L, et al. Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ. 1999; 318: 698-702.
- 40Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet. 1997; 17: 393-398.
- 41Finnish-German AC. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 1997; 17: 399-403.
- 42Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet. 1996; 59(5): 1134-1148.
- 43Cudworth AG, Woodrow JC. Letter: HL-A antigens and diabetes mellitus. Lancet. 1974; 2: 1153.
- 44Redondo M, Steck A, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes. 2018; 19(3): 346-353.
- 45Erlich H, Valdes AM, Noble J, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008; 57(4): 1084-1092.
- 46Knip M. Pathogenesis of type 1 diabetes: implications for incidence trends. Horm Res Paediatr. 2011; 76(suppl 1): 57-64.
- 47Rose G. Sick individuals and sick populations. Int J Epidemiol. 1985; 14(1): 32-38.
- 48Zhao LP, Alshiekh S, Zhao M, et al. Next-Generation Sequencing Reveals That HLA-DRB3, -DRB4, and -DRB5 May Be Associated With Islet Autoantibodies and Risk for Childhood Type 1 Diabetes. Diabetes. 2016; 65: 710-718.
- 49Noble JA, Valdes AM, Thomson G, Erlich HA. The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes. Diabetes. 2000; 49: 121-125.
- 50Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997; 15: 289-292.
- 51Pugliese A, Zeller M, Fernandez A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997; 15: 293-297.
- 52Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P. A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun. 2004; 5: 678-680.
- 53Nistico L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes Belgian Diabetes Registry. Human Molecular Genetics. 1996; 5: 1075-1080.
- 54Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007; 39: 857-864.
- 55Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006; 38: 320-323.
- 56Redondo MJ, Muniz J, Rodriguez LM, et al. Association of TCF7L2 variation with single islet autoantibody expression in children with type 1 diabetes. BMJ Open Diabetes Res Care. 2014; 2:e000008.
- 57Patel KA, Oram RA, Flanagan SE, et al. Type 1 diabetes genetic risk score: a novel tool to discriminate monogenic and type 1 diabetes. Diabetes. 2016; 65(7): 2094-2099.
- 58Sharp S, Rich S, Wood A, et al. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care. 2019; 42(2): 200-207.
- 59Norris JM, Beaty B, Klingensmith G, et al. Lack of association between early exposure to cow's milk protein and beta-cell autoimmunity. Diabetes Autoimmunity Study in the Young (DAISY). JAMA. 1996; 276: 609-614.
- 60Steck AK, Dong F, Wong R, et al. Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers. Pediatr Diabetes. 2014; 15: 355-362.
- 61Frohnert BI, Laimighofer M, Krumsiek J, et al. Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young. Pediatr Diabetes. 2018; 19(2): 277-283.
- 62Winkler C, Krumsiek J, Lempainen J, et al. A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun. 2012; 13: 549-555.
- 63Winkler C, Krumsiek J, Buettner F, et al. Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. Diabetologia. 2014; 57: 2521-2529.
- 64Ferrat L, Vehik K, Sharp S, et al. A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nat Med. 2020; 26(8): 1247-1255.
- 65Oram R, Sharp S, Pihoker C, et al. Utility of diabetes type-specific genetic risk scores for the classification of diabetes type among multiethnic youth. Diabetes Care. 2022; 45(5): 1124-1131.
- 66Onengut-Gumuscu S, Chen WM, Robertson CC, et al. Type 1 diabetes risk in African-Ancestry participants and utility of an ancestry-specific genetic risk score. Diabetes Care. 2019; 42(3): 406-415.
- 67Rewers M, Hyoty H, Lernmark A, et al. The environmental determinants of diabetes in the Young (TEDDY) Study: 2018 update. Curr Diab Rep. 2018; 18(12): 136.
- 68Verge CF, Gianani R, Kawasaki E, et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes. 1996; 45(7): 926-933.
- 69Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013; 309(23): 2473-2479.
- 70Craig M, Wook Kim K, Isaacs SR, et al. Early-life factors contributing to type 1 diabetes. Diabetologia. 2019; 62(10): 1823-1834.
- 71Rewers M, Stene LC, Norris JM. Risk factors for type 1 diabetes. Diabetes in America. 3rd ed. National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018.
- 72March C, Becker D, Libman I. Nutrition and obesity in the pathogenesis of youth-onset type 1 diabetes and its complications. Front Endocrinol. 2021; 12:622901.
- 73Silijander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine. 2019; 46: 512-521.
- 74Yeung G, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus—a systematic review of molecular studies. BMJ. 2011; 342:d35.
- 75Laitinen OH, Honkanen H, Pakkanen O, et al. Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes. 2014; 63(2): 446-455.
- 76Mustonen N, Siljander H, Peet A, et al. Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatr Diabetes. 2018; 19(2): 293-299.
- 77Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia. 2009; 52(6): 1143-1151.
- 78Dotta F, Censini S, van Halteren AG, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A. 2007; 104(12): 5115-5120.
- 79Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG. Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia. 2013; 56(1): 185-193.
- 80Gale EA. Congenital rubella: citation virus or viral cause of type 1 diabetes? Diabetologia. 2008; 51(9): 1559-1566.
- 81Shah AS, Nadeau KJ. The changing face of paediatric diabetes. Diabetologia. 2020; 63(4): 683-691.
- 82Ogle GD, James S, Dabelea D, et al. Global estimates of incidence of type 1 diabetes in children and adolescents: results from the International Diabetes Federation Atlas, 10(th) Edition. Diabetes Res Clin Pract. 2021; 183:109083.
- 83 International Diabetes Federation (IDF). IDF Diabetes Atlas. 10th ed.; 2021 www.diabetesatlas.org (Accessed January 14, 2022)
- 84 Diabetes Epidemiology Research International Group. Geographic patterns of childhood insulin-dependent diabetes mellitus. Diabetes. 1988; 37: 1113-1119.
- 85Lévy-Marchal C, Patterson CC, Green A. Geographical variation of presentation at diagnosis of type I diabetes in children: the EURODIAB study European and Diabetes. Diabetologia. 2001; 44(suppl 3): B75-B80.
- 86Weng J, Zhou Z, Guo L, et al. Incidence of type 1 diabetes in China, 2010-13: population-based study. BMJ. 2018; 360:j5295.
- 87Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiales (DiaMond) Project Group. Diabetes Care. 2000; 23(10): 1516-1526.
- 88Parviainen A, But A, Siljander H, Knip M, Register TFPD. Decreased incidence of type 1 diabetes in young finnish children. Diabetes Care. 2020; 43(12): 2953-2958.
- 89Knip M. Type 1 diabetes in Finland: past, present, and future. Lancet Diab Endocrinol. 2021; 9(5): 259-260.
- 90Ahmadov GA, Govender D, Atkinson MA, et al. Epidemiology of childhood-onset type 1 diabetes in Azerbaijan: incidence, clinical features, biochemistry, and HLA-DRB1 status. Diabetes Res Clin Pract. 2018; 144: 252-259.
- 91Tuomilehto J, Ogle GD, Lund-Blix NA, Stene LC. Update on worldwide trends in occurrence of childhood type 1 diabetes in 2020. Pediatr Endocrinol Rev. 2020; 17(suppl 1): 198-209.
- 92Jasem D, Majaliwa ES, Ramaiya K, Najem S, Swai ABM, Ludvigsson J. Incidence, prevalence and clinical manifestations at onset of juvenile diabetes in Tanzania. Diabetes Res Clin Pract. 2019; 156:107817.
- 93Kondrashova A, Reunanen A, Romanov A, et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med. 2005; 37(1): 67-72.
- 94Skrivarhaug T, Stene L, Drivvoll A, et al. Incidence of type 1 diabetes in Norway among children aged 0–14 years between 1989 and 2012: has the incidence stopped rising? Results from the Norwegian Childhood Diabetes Registry. Diabetologia. 2014; 57(1): 57-62.
- 95Szalecki M, Wysocka-Mincewicz M, Ramotowska A, et al. Epidemiology of type 1 diabetes in polish children: a multicentre cohort study. Diabetes Metab Res Rev. 2018; 34(2):e2962.
- 96Castillo-Reinado K, Maier W, Holle R, et al. Associations of area deprivation and urban/rural traits with the incidence of type 1 diabetes: analysis at the municipality level in North Rhine-Westphalia, Germany. Diabet Med. 2020; 37(12): 2089-2097.
- 97Willis J, Cunningham-Tisdall C, Griffin C, et al. Type 1 diabetes diagnosed before age 15 years in Canterbury, New Zealand: a fifty-year record of increasing incidence. Pediatr Diabetes. 2022; 23(3): 301-309.
- 98Divers J, Mayer-Davis EJ, Lawrence JM, et al. Trends in incidence of type 1 and type 2 diabetes among youths—Selected counties and indian reservations, United States, 2002–2015. MMWR Morb Mortal Wkly Rep. 2020; 69: 161-165.
- 99Lawrence JM, Divers J, Isom S, et al. Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017. JAMA. 2021; 326(8): 717-727.
- 100Samuelsson U, Westerberg L, Aakesson K, et al. Geographical variation in the incidence of type 1 diabetes in the Nordic countries: a study within NordicDiabKids. Pediatr Diabetes. 2020; 21(2): 259-265.
- 101Xia Y, Xie Z, Huang G, Zhou Z. Incidence and trend of type 1 diabetes and the underlying environmental determinants. Diabetes Metab Res Rev. 2019; 35(1):e3075.
- 102Sheehan A, Freni Sterrantino A, Fecht D, Elliott P, Hodgson S. Childhood type 1 diabetes: an environment-wide association study across England. Diabetologia. 2020; 63(5): 964-976.
- 103Gale EAM, Gillespie K. Diabetes and gender. Diabetologia. 2001; 44: 3-15.
- 104Forga L, Chueca MJ, Tamayo I, Oyarzabal M, Toni M, Goñi MJ. Cyclical variation in the incidence of childhood-onset type 1 diabetes during 40 years in Navarra (Spain). Pediatr Diabetes. 2018; 19(8): 1416-1421.
- 105Haynes A, Bulsara MK, Bergman P, et al. Incidence of type 1 diabetes in 0 to 14 year olds in Australia from 2002 to 2017. Pediatr Diabetes. 2020; 21(5): 707-712.
- 106McKenna A, O'Regan M, Ryder K, Fitzgerald H, Hoey H, Roche E. Incidence of childhood type 1 diabetes mellitus in Ireland remains high but no longer rising. Acta Paediatr. 2021; 110(7): 2142-2148.
- 107Wandell PE, Carlsson AC. Time trends and gender differences in incidence and prevalence of type 1 diabetes in Sweden. Curr Diabetes Rev. 2013; 9(4): 342-349.
- 108Patterson CC, Harjutsalo V, Rosenbauer J, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25-year period 1989–2013: a multicenter prospective registration study. Diabetologia. 2019; 62(3): 408-417.
- 109Rami-Merhar B, Hofer SE, Fröhlich-Reiterer E, Waldhoer T, Fritsch M, for the Austrian Diabetes Incidence Study Group. Time trends in incidence of diabetes mellitus in Austrian children and adolescents <15 years (1989-2017). Pediatr Diabetes. 2020; 21(5): 720-726.
- 110Manuwald U, Schoffer O, Kugler J, et al. Trends in incidence and prevalence of type 1 diabetes between 1999 and 2019 based on the Childhood Diabetes Registry of Saxony, Germany. PLoS One. 2021; 16(12):e0262171.
- 111Flint SA, Gunn AJ, Hofman PL, et al. Evidence of a plateau in the incidence of type 1 diabetes in children 0-4 years of age from a regional pediatric diabetes center; Auckland, New Zealand: 1977-2019. Pediatr Diabetes. 2021; 22(6): 854-860.
- 112Haynes A, Bulsara M, Bower C, et al. Regular peaks and troughs in the Australian incidence of childhood type 1 diabetes mellitus (2000–2011). Diabetologia. 2015; 58(11): 2513-2516.
- 113McNally RJQ, Court S, James PW, et al. Cyclical variation in type 1 childhood diabetes. Epidemiology. 2010; 21(6): 914-915.
- 114Siemiatycki J, Colle E, Aubert D, et al. The distribution of type 1 (insulin-dependent) diabetes mellitus by age, sex, secular trend, seasonality, time clusters, and space-time clusters: evidence from Montreal, 1971-1983. Am J Epidemiol. 1986; 124: 545-560.
- 115Karvonen M, Tuomilehto J, Virtala E, et al. Seasonality in the clinical onset of insulin-dependent diabetes mellitus in finnish children. Am J Epidemiol. 1996; 143: 167-176.
- 116Szypowska A, Ramotowska A, Wysocka-Mincewicz M, et al. Seasonal variation in month of diagnosis of polish children with type 1 diabetes—a multicenter study. Exp Clin Endocrinol Diabetes. 2019; 127(5): 331-335.
- 117Gerasimidi Vazeou A, Kordonouri O, Witsch M, et al. Seasonality at the clinical onset of type 1 diabetes—Lessons from the SWEET database. Pediatr Diabetes. 2016; 17: 32-37.
- 118Gardner SG, Bingley PJ, Sawtell PA, Weeks S, Gale EA, the Bart's-Oxford Study Group. Rising incidence of insulin dependent diabetes in children aged under 5 years in the Oxford region: time trend analysis. Br Med J. 1997; 315: 713-717.
- 119Berhan Y, Waernbaum I, Lind T, Möllsten A, Dahlquist G, for the Swedish Childhood Diabetes Study Group. Thirty years of prospective nationwide incidence of childhood type 1 diabetes: the accelerating increase by time tends to level off in Sweden. Diabetes. 2011; 60(2): 577-581.
- 120Kamrath C, Rosenbauer J, Eckert AJ, et al. Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV registry. Diabetes Care. 2022; 45: 1762-1771.
- 121Barrett CE, Koyama AK, Alvarez P, et al. Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged <18 years - United States, March 1, 2020-June 28, 2021. https://www.cdc.gov/mmwr/volumes/71/wr/mm7102e2.htm (Accessed January 14, 2022). MMWR Morb Mortal Wkly Rep. 2022; 71(2): 59-65.
- 122Unsworth R, Wallace S, Oliver NS, et al. New-onset type 1 diabetes in children during COVID-19: multicenter regional findings in the UK. Diabetes Care. 2020; 43(11): e170-e171.
- 123Accili D. Can COVID-19 cause diabetes? Nat Metab. 2021; 3(2): 123-125.
- 124Gregory G, Robinson T, Linklater S, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projections to 2040: a modelling study. Lancet. 2022; 10: 741-760.
- 125Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020; 8(3): 226-238.
- 126Franks PW, Pomares-Millan H. Next-generation epidemiology: the role of high-resolution molecular phenotyping in diabetes research. Diabetologia. 2020; 63(12): 2521-2532.
- 127Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014; 383(9922): 1068-1083.
- 128 American Diabetes Association. Children and adolescents: standards of medical care. Diabetes Care. 2022; 45(suppl 1): S208-S231.
- 129Farsani SF, Van Der Aa M, Van Der Vorst M, et al. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: a systematic review and evaluation of methodological approaches. Diabetologia. 2013; 56(7): 1471-1488.
- 130Haynes A, Kalic R, Cooper M, Hewitt JK, Davis EA. Increasing incidence of type 2 diabetes in Indigenous and non-Indigenous children in Western Australia, 1990–2012. Med J Aust. 2016; 204: 303.
- 131Shulman R, Slater M, Khan S, et al. Prevalence, incidence and outcomes of diabetes in Ontario First Nations children: a longitudinal population-based cohort study. CMAJ Open. 2020; 8: E48-E55.
- 132Candler TP, Mahmoud O, Lynn RM, Majbar AA, Barrett TG, Shield JPH. Continuing rise of Type 2 diabetes incidence in children and young people in the UK. Diabet Med. 2018; 35: 737-744.
- 133Wang J, Wu W, Dong G, Huang K, Fu J. Pediatric diabetes in China: challenges and actions. Pediatr Diabetes. 2022; 23(5): 545-550.
- 134Baechle C, Stahl-Pehe A, Prinz N, et al. Prevalence trends of type 1 and type 2 diabetes in children and adolescents in North Rhine-Westphalia, the most populous federal state in Germany, 2002-2020. Diabetes Res Clin Pract. 2022; 16(190):109995.
- 135Bacha F, Gungor N, Lee S, Arslanian SA. Type 2 diabetes in youth: are there racial differences in β-cell responsiveness relative to insulin sensitivity? Pediatr Diabetes. 2012; 13: 259-265.
- 136Malik FS, Liese AD, REboussin BA, et al. Prevalence and predictors of household food insecurity and supplemental nutrition assistance program use in youth and young adults with diabetes. The SEARCH for Diabetes in Youth Study. Diabetes Care. 2021; 19:dc210790. doi:10.2337/dc21-0790
10.2337/dc21?0790 Google Scholar
- 137Tattersall R. Maturity-onset diabetes of the young: a clinical history. Diabet Med. 1998; 15(1): 11-14.
10.1002/(SICI)1096-9136(199801)15:1<11::AID-DIA561>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 138Fajans SS, Bell GI. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care. 2011; 34(8): 1878-1884.
- 139Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001; 345(13): 971-980.
- 140Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes. 1975; 24(1): 44-53.
- 141Edghill EL, Dix RJ, Flanagan SE, et al. HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes. 2006; 55(6): 1895-1898.
- 142Iafusco D, Stazi MA, Cotichini R, et al. Permanent diabetes mellitus in the first year of life. Diabetologia. 2002; 45(6): 798-804.
- 143De Franco E, Flanagan SE, Houghton JA, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015; 386(9997): 957-963.
- 144Rubio-Cabezas O, Minton JA, Caswell R, et al. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care. 2009; 32(1): 111-116.
- 145Rubio-Cabezas O, Flanagan SE, Damhuis A, Hattersley AT, Ellard S. KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life. Pediatr Diabetes. 2012; 13(4): 322-325.
- 146Rubio-Cabezas O, Edghill EL, Argente J, Hattersley AT. Testing for monogenic diabetes among children and adolescents with antibody—negative clinically defined type 1 diabetes. Diabet Med. 2009; 26(10): 1070-1074.
- 147Mohamadi A, Clark LM, Lipkin PH, Mahone EM, Wodka EL, Plotnick LP. Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM. Pediatr Diabetes. 2010; 11(3): 203-207.
- 148Yang M, Xu L, Xu C, et al. The mutations and clinical variability in maternally inherited diabetes and deafness: an analysis of 161 patients. Front Endocrinol. 2021; 12:728043.
- 149Laloi-Michelin M, Meas T, Ambonville C, et al. The clinical variability of maternally inherited diabetes and deafness is associated with the degree of heteroplasmy in blood leukocytes. J Clin Endocrinol Metab. 2009; 94(8): 3025-3030.
- 150Reardon W, Ross RJ, Sweeney MG, et al. Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet. 1992; 340(8832): 1376-1379.
- 151van den Ouweland JM, Lemkes HH, Ruitenbeek W, et al. Mutation in mitochondrial tRNA(Leu) (UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992; 1(5): 368-371.
- 152Mazzaccara C, Iafusco D, Liguori R, et al. Mitochondrial diabetes in children: seek and you will find it. PLoS One. 2012; 7(4):e34956.
- 153Rana M, Munns CF, Selvadurai H, Donaghue KC, Craig ME. Cystic fibrosis-related diabetes in children-gaps in the evidence? Nat Rev Endocrinol. 2010; 6(7): 371-378.
- 154Khare S, Desimone M, Kasim N, et al. Cystic fibrosis-related diabetes: prevalence, screening and diagnosis. J Clin Transl Endocrinol. 2021; 27:100290.
- 155Hameed S, Morton JR, Jaffe A, et al. Early glucose abnormalities in cystic fibrosis are preceded by poor weight gain. Diabetes Care. 2010; 33(2): 221-226.
- 156Waugh N, Royle P, Craigie I, et al. Screening for cystic fibrosis-related diabetes: a systematic review. Health Technol Assess. 2012; 16(24): 1-179.
- 157Moran A, Dunitz J, Nathan B, Saeed A, Holme B, Thomas W. Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care. 2009; 32(9): 1626-1631.
- 158Moran A, Milla C, Ducret R, Nair KS. Protein metabolism in clinically stable adult cystic fibrosis patients with abnormal glucose tolerance. Diabetes. 2001; 50(6): 1336-1343.
- 159Fowler C. Hereditary hemochromatosis: pathophysiology, diagnosis, and management. Crit Care Nurs Clin North Am. 2008; 20(2): 191-201.
- 160Toumba M, Sergis A, Kanaris C, Skordis N. Endocrine complications in patients with Thalassaemia major. Pediatr Endocrinol Rev. 2007; 5(2): 642-648.
- 161Mitchell TC, McClain DA. Diabetes and hemochromatosis. Curr Diab Rep. 2014; 14(5): 488.
- 162Berne C, Pollare T, Lithell H. Effects of antihypertensive treatment on insulin sensitivity with special reference to ACE inhibitors. Diabetes Care. 1991; 14(suppl 4): 39-47.
- 163Galling B, Roldán A, Nielsen RE, et al. Type 2 diabetes mellitus in youth exposed to antipsychotics. A systematic review and meta-analysis. JAMA Psychiatry. 2016; 73(3): 247-259.
- 164Tosur M, Vlau-Colindres J, Astudillo M, Redondo MJ, Lyons SK. Medication-induced hyperglycemia: pediatric perspective. BMJ Open Diab Res Care. 2020; 8(1):e000801.
- 165Pui CH, Burghen GA, Bowman WP, Aur RJ. Risk factors for hyperglycemia in children with leukemia receiving L-asparaginase and prednisone. J Pediatr. 1981; 99(1): 46-50.
- 166Akturk HK, Kahramangil D, Sarwal A, Hoffecker L, Murad MH, Michels AW. Immune checkpoint inhibitor-induced type 1 diabetes: a systematic review and meta-analysis. Diabet Med. 2019; 36(9): 1075-1081.
- 167Al Uzri A, Stablein DM, Cohn A. Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Transplantation. 2001; 72(6): 1020-1024.
- 168Maes BD, Kuypers D, Messiaen T, et al. Post-transplantation diabetes mellitus in FK-506-treated renal transplant recipients: analysis of incidence and risk factors. Transplantation. 2001; 72(10): 1655-1661.
- 169First MR, Gerber DA, Hariharan S, Kaufman DB, Shapiro R. Post-transplant diabetes mellitus in kidney allograft recipients: incidence, risk factors, and management. Transplantation. 2002; 73(3): 379-386.
- 170Bobo WV, Cooper WO, Stein CM, et al. Antipsychotics and the risk of type 2 diabetes mellitus in children and youth. JAMA Psychiat. 2013; 70(10): 1067-1075.
10.1001/jamapsychiatry.2013.2053 Google Scholar
- 171Amed S, Dean H, Sellers EA, et al. Risk factors for medication-induced diabetes and type 2 diabetes. J Pediatr. 2011; 159(2): 291-296.
- 172Bhisitkul DM, Morrow AL, Vinik AI, Shults J, Layland JC, Rohn R. Prevalence of stress hyperglycemia among patients attending a pediatric emergency department. J Pediatr. 1994; 124(4): 547-551.
- 173Fattoruso V, Nugnes R, Casertano A, et al. Non-diabetic hyperglycemia in the pediatric age: why how and when to treat? Curr Diab Rep. 2018; 29: 140.
- 174Gauglitz GG, Herndon DN, Kulp GA, Meyer WJ 3rd, Jeschke MG. Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab. 2009; 94(5): 1656-1664.
- 175Saz EU, Ozen S, Simsek Goksen D, Darcan S. Stress hyperglycemia in febrile children: relationship to prediabetes. Minerva Endocrinol. 2011; 36(2): 99-105.
- 176Weiss SL, Alexander J, Agus MS. Extreme stress hyperglycemia during acute illness in a pediatric emergency department. Pediatr Emerg Care. 2010; 26(9): 626-632.
- 177Herskowitz RD, Wolfsdorf JI, Ricker AT, et al. Transient hyperglycemia in childhood: identification of a subgroup with imminent diabetes mellitus. Diabetes Res. 1988; 9(4): 161-167.
- 178Schatz DA, Kowa H, Winter WE, Riley WJ. Natural history of incidental hyperglycemia and glycosuria of childhood. J Pediatr. 1989; 115(5 Pt 1): 676-680.
- 179Vardi P, Shehade N, Etzioni A, et al. Stress hyperglycemia in childhood: a very high-risk group for the development of type I diabetes. J Pediatr. 1990; 117(1 Pt 1): 75-77.
- 180Herskowitz-Dumont R, Wolfsdorf JI, Jackson RA, Eisenbarth GS. Distinction between transient hyperglycemia and early insulin- dependent diabetes mellitus in childhood: a prospective study of incidence and prognostic factors. J Pediatr. 1993; 123(3): 347-354.
- 181Bhisitkul DM, Vinik AI, Morrow AL, et al. Prediabetic markers in children with stress hyperglycemia. Arch Pediatr Adolesc Med. 1996; 150(9): 936-941.
- 182Shehadeh N, On A, Kessel I, et al. Stress hyperglycemia and the risk for the development of type 1 diabetes. J Pediatr Endocrinol Metab. 1997; 10(3): 283-286.
- 183Lorini R, Alibrandi A, Vitali L, et al. Risk of type 1 diabetes development in children with incidental hyperglycemia: a multicenter Italian study. Diabetes Care. 2001; 24(7): 1210-1216.
- 184Argyropoulos T, Korakas E, Gikas A, et al. Stress hyperglycemia in children and adolescents as a prognostic indicator for the development of type 1 diabetes. Front Pediatr. 2021; 9:670976.