ISPAD Clinical Practice Consensus Guidelines 2022: Insulin treatment in children and adolescents with diabetes
Corresponding Author
Eda Cengiz
University of California San Francisco (UCSF) Pediatric Diabetes Program, UCSF School of Medicine, San Francisco, California, USA
Correspondence
Eda Cengiz, Pediatric Diabetes Program, University of California San Francisco School of Medicine, 1500 Owens St. Suite 300, San Francisco, CA 94158, USA.
Email: [email protected]
Search for more papers by this authorThomas Danne
Auf Der Bult, Diabetes Center for Children and Adolescents, Hannover, Germany
Search for more papers by this authorTariq Ahmad
Pediatric Endocrinology, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
Search for more papers by this authorAhila Ayyavoo
Department of Pediatrics, G. Kuppuswamy Naidu Memorial Hospital, Coimbatore, India
Search for more papers by this authorDavid Beran
Division of Tropical and Humanitarian Medicine, Faculty of Medicine University of Geneva and Geneva University Hospitals, Faculty of Medicine Diabetes Centre, Geneva, Switzerland
Search for more papers by this authorSarah Ehtisham
Division of Pediatric Endocrinology, Mediclinic City Hospital, Dubai, UAE
Search for more papers by this authorJan Fairchild
Department of Endocrinology and Diabetes, Women's and Children's Hospital, North Adelaide, Australia
Search for more papers by this authorPrzemyslawa Jarosz-Chobot
Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
Search for more papers by this authorSze May Ng
Paediatric Department, Southport and Ormskirk NHS Trust, Southport, UK
Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
Search for more papers by this authorMegan Paterson
John Hunter Children's Hospital, HRMC, New South Wales, Australia
Search for more papers by this authorEthel Codner
Institute of Maternal and Child Research (IDIMI), School of Medicine, University of Chile, Santiago, Chile
Search for more papers by this authorCorresponding Author
Eda Cengiz
University of California San Francisco (UCSF) Pediatric Diabetes Program, UCSF School of Medicine, San Francisco, California, USA
Correspondence
Eda Cengiz, Pediatric Diabetes Program, University of California San Francisco School of Medicine, 1500 Owens St. Suite 300, San Francisco, CA 94158, USA.
Email: [email protected]
Search for more papers by this authorThomas Danne
Auf Der Bult, Diabetes Center for Children and Adolescents, Hannover, Germany
Search for more papers by this authorTariq Ahmad
Pediatric Endocrinology, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
Search for more papers by this authorAhila Ayyavoo
Department of Pediatrics, G. Kuppuswamy Naidu Memorial Hospital, Coimbatore, India
Search for more papers by this authorDavid Beran
Division of Tropical and Humanitarian Medicine, Faculty of Medicine University of Geneva and Geneva University Hospitals, Faculty of Medicine Diabetes Centre, Geneva, Switzerland
Search for more papers by this authorSarah Ehtisham
Division of Pediatric Endocrinology, Mediclinic City Hospital, Dubai, UAE
Search for more papers by this authorJan Fairchild
Department of Endocrinology and Diabetes, Women's and Children's Hospital, North Adelaide, Australia
Search for more papers by this authorPrzemyslawa Jarosz-Chobot
Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
Search for more papers by this authorSze May Ng
Paediatric Department, Southport and Ormskirk NHS Trust, Southport, UK
Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
Search for more papers by this authorMegan Paterson
John Hunter Children's Hospital, HRMC, New South Wales, Australia
Search for more papers by this authorEthel Codner
Institute of Maternal and Child Research (IDIMI), School of Medicine, University of Chile, Santiago, Chile
Search for more papers by this author
CONFLICT OF INTEREST
E. Cengiz is a scientific advisor for Eli Lilly, Novo Nordisk, Adocia and Arecor. TD has received speaker's honoraria and research support from or has consulted for Astra Zeneca, Bayer, Boehringer, Dexcom, Eli Lilly, Lifescan, Medtronic, Novo Nordisk, Provention Bio, Roche, Sanofi, Ypsomed and is a shareholder of Drea Med Ltd. TA, JF, DB, SH, MP, E. Codner have no disclosures.
REFERENCES
- 1Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. Clinical trial multicenter study randomized controlled trial research support, non-U.S. Gov't research support, U.S. Gov't, P.H.S. J Pediatr. 1994; 125(2): 177-188.
- 2Schuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001; 50(1): 1-11. doi:10.2337/diabetes.50.1.1
- 3de Beaufort CE, Houtzagers CM, Bruining GJ, et al. Continuous subcutaneous insulin infusion (CSII) versus conventional injection therapy in newly diagnosed diabetic children: two-year follow-up of a randomized, prospective trial. Diabet Med. 1989; 6(9): 766-771.
- 4Cengiz E, Xing D, Wong JC, et al. Severe hypoglycemia and diabetic ketoacidosis among youth with type 1 diabetes in the T1D exchange clinic registry. Pediatr Diabetes. 2013; 14(6): 447-454. doi:10.1111/pedi.12030
- 5Arbelaez AM, Semenkovich K, Hershey T. Glycemic extremes in youth with T1DM: the structural and functional integrity of the developing brain. Pediatr Diabetes. 2013; 14(8): 541-553. doi:10.1111/pedi.12088
- 6Home PD. The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences. Diabetes Obes Metab. 2012; 14(9): 780-788. doi:10.1111/j.1463-1326.2012.01580.x
- 7Plank J, Wutte A, Brunner G, et al. A direct comparison of insulin aspart and insulin lispro in patients with type 1 diabetes. Diabetes Care. 2002; 25(11): 2053-2057.
- 8Cemeroglu AP, Kleis L, Wood A, Parkes C, Wood MA, Davis AT. Comparison of the effect of insulin glulisine to insulin aspart on breakfast postprandial blood glucose levels in children with type 1 diabetes mellitus on multiple daily injections. Endocr Pract. 2013; 19(4): 614-619. doi:10.4158/EP12399.OR
- 9Philotheou A, Arslanian S, Blatniczky L, Peterkova V, Souhami E, Danne T. Comparable efficacy and safety of insulin glulisine and insulin lispro when given as part of a basal-bolus insulin regimen in a 26-week trial in pediatric patients with type 1 diabetes. Diabetes Technol Ther. 2011; 13(3): 327-334. doi:10.1089/dia.2010.0072
- 10Cengiz E, Bode B, Van Name M, Tamborlane WV. Moving toward the ideal insulin for insulin pumps. Expert Rev Med Devices. 2016; 13(1): 57-69. doi:10.1586/17434440.2016.1109442
- 11Danne T, Aman J, Schober E, et al. A comparison of postprandial and preprandial administration of insulin aspart in children and adolescents with type 1 diabetes. Diabetes Care. 2003; 26(8): 2359-2364.
- 12Deeb LC, Holcombe JH, Brunelle R, et al. Insulin lispro lowers postprandial glucose in prepubertal children with diabetes. Pediatrics. 2001; 108(5): 1175-1179.
- 13Renner R, Pfutzner A, Trautmann M, Harzer O, Sauter K, Landgraf R. Use of insulin lispro in continuous subcutaneous insulin infusion treatment. Results of a multicenter trial. German Humalog-CSII study group. Diabetes Care. 1999; 22(5): 784-788. doi:10.2337/diacare.22.5.784
- 14Rutledge KS, Chase HP, Klingensmith GJ, Walravens PA, Slover RH, Garg SK. Effectiveness of postprandial Humalog in toddlers with diabetes. Pediatrics. 1997; 100(6): 968-972.
- 15Tubiana-Rufi N, Coutant R, Bloch J, et al. Special management of insulin lispro in continuous subcutaneous insulin infusion in young diabetic children: a randomized cross-over study. Horm Res. 2004; 62(6): 265-271. doi:10.1159/000081703
- 16Fath M, Danne T, Biester T, Erichsen L, Kordonouri O, Haahr H. Faster-acting insulin aspart provides faster onset and greater early exposure vs insulin aspart in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes. 2017; 18(8): 903-910. doi:10.1111/pedi.12506
- 17 Search of: biochaperone | diabetes - List Results. 2022 Accessed March 26, 2022. ClinicalTrials.gov
- 18Lucidi P, Porcellati F, Marinelli Andreoli A, et al. Pharmacokinetics and pharmacodynamics of NPH insulin in type 1 diabetes: the importance of appropriate resuspension before subcutaneous injection. Diabetes Care. 2015; 38(12): 2204-2210. doi:10.2337/dc15-0801
- 19Lepore M, Pampanelli S, Fanelli C, et al. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes. 2000; 49(12): 2142-2148.
- 20Starke AA, Heinemann L, Hohmann A, Berger M. The action profiles of human NPH insulin preparations. Diabet Med. 1989; 6(3): 239-244.
- 21Woodworth JR, Howey DC, Bowsher RR. Establishment of time-action profiles for regular and NPH insulin using pharmacodynamic modeling. Diabetes Care. 1994; 17(1): 64-69. doi:10.2337/diacare.17.1.64
- 22Bolli GB, Perriello G, Fanelli CG, De Feo P. Nocturnal blood glucose control in type I diabetes mellitus. Diabetes Care. 1993; 16(Suppl 3): 71-89.
- 23Jehle PM, Micheler C, Jehle DR, Breitig D, Boehm BO. Inadequate suspension of neutral protamine Hagendorn (NPH) insulin in pens. Lancet. 1999; 354(9190): 1604-1607. doi:10.1016/S0140-6736(98)12459-5
- 24Thalange N, Bereket A, Larsen J, Hiort LC, Peterkova V. Insulin analogues in children with type 1 diabetes: a 52-week randomized clinical trial. Diabet Med. 2013; 30(2): 216-225. doi:10.1111/dme.12041
- 25Heise T, Nosek L, Ronn BB, et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes. 2004; 53(6): 1614-1620.
- 26Chase HP, Dixon B, Pearson J, et al. Reduced hypoglycemic episodes and improved glycemic control in children with type 1 diabetes using insulin glargine and neutral protamine Hagedorn insulin. J Pediatr. 2003; 143(6): 737-740.
- 27Cengiz E, Sherr JL, Erkin-Cakmak A, et al. A bridge to insulin pump therapy: twice-daily regimen with NPH and detemir insulins during initial treatment of youth with type 1 diabetes mellitus. Endocr Pract. 2011; 17(6): 862-866. doi:10.4158/EP11031.OR
- 28Korytkowski MT, Salata RJ, Koerbel GL, et al. Insulin therapy and glycemic control in hospitalized patients with diabetes during enteral nutrition therapy: a randomized controlled clinical trial. Diabetes Care. 2009; 32(4): 594-596. doi:10.2337/dc08-1436
- 29Mabrey ME, Barton AB, Corsino L, et al. Managing hyperglycemia and diabetes in patients receiving enteral feedings: a health system approach. Hosp Pract. 1995; 43(2): 74-78. doi:10.1080/21548331.2015.1022493
10.1080/21548331.2015.1022493 Google Scholar
- 30Clement S, Braithwaite SS, Magee MF, et al. Management of diabetes and hyperglycemia in hospitals. Diabetes Care. 2004; 27(2): 553-591. doi:10.2337/diacare.27.2.553
- 31Ratner RE, Hirsch IB, Neifing JL, Garg SK, Mecca TE, Wilson CA. Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. U.S. study Group of Insulin Glargine in type 1 diabetes. Diabetes Care. 2000; 23(5): 639-643. doi:10.2337/diacare.23.5.639
- 32Witthaus E, Stewart J, Bradley C. Treatment satisfaction and psychological well-being with insulin glargine compared with NPH in patients with type 1 diabetes. Diabet Med. 2001; 18(8): 619-625. doi:10.1046/j.1464-5491.2001.00529.x
- 33Ashwell SG, Bradley C, Stephens JW, Witthaus E, Home PD. Treatment satisfaction and quality of life with insulin glargine plus insulin lispro compared with NPH insulin plus unmodified human insulin in individuals with type 1 diabetes. Diabetes Care. 2008; 31(6): 1112-1117. doi:10.2337/dc07-1183
- 34Danne T, Philotheou A, Goldman D, et al. A randomized trial comparing the rate of hypoglycemia--assessed using continuous glucose monitoring--in 125 preschool children with type 1 diabetes treated with insulin glargine or NPH insulin (the PRESCHOOL study). Pediatr Diabetes. 2013; 14(8): 593-601. doi:10.1111/pedi.12051
- 35Albright ES, Desmond R, Bell DS. Efficacy of conversion from bedtime NPH insulin injection to once- or twice-daily injections of insulin glargine in type 1 diabetic patients using basal/bolus therapy. Diabetes Care. 2004; 27(2): 632-633. doi:10.2337/diacare.27.2.632
- 36Garg SK, Gottlieb PA, Hisatomi ME, et al. Improved glycemic control without an increase in severe hypoglycemic episodes in intensively treated patients with type 1 diabetes receiving morning, evening, or split dose insulin glargine. Diabetes Res Clin Pract. 2004; 66(1): 49-56. doi:10.1016/j.diabres.2004.02.008
- 37Robertson KJ, Schoenle E, Gucev Z, Mordhorst L, Gall MA, Ludvigsson J. Insulin detemir compared with NPH insulin in children and adolescents with type 1 diabetes. Diabet Med. 2007; 24(1): 27-34. doi:10.1111/j.1464-5491.2007.02024.x
- 38Nimri R, Lebenthal Y, Shalitin S, Benzaquen H, Demol S, Phillip M. Metabolic control by insulin detemir in basal-bolus therapy: treat-to-target study in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2013; 14(3): 196-202. doi:10.1111/pedi.12012
- 39Abali S, Turan S, Atay Z, Guran T, Haliloglu B, Bereket A. Higher insulin detemir doses are required for the similar glycemic control: comparison of insulin detemir and glargine in children with type 1 diabetes mellitus. Pediatr Diabetes. 2015; 16(5): 361-366. doi:10.1111/pedi.12167
- 40Danne T, Datz N, Endahl L, et al. Insulin detemir is characterized by a more reproducible pharmacokinetic profile than insulin glargine in children and adolescents with type 1 diabetes: results from a randomized, double-blind, controlled trial. Pediatr Diabetes. 2008; 9(6): 554-560. doi:10.1111/j.1399-5448.2008.00443.x
- 41Carlsson A, Forsander G, Ludvigsson J, Larsen S, Ortqvist E, Swedish P-YSG. A multicenter observational safety study in Swedish children and adolescents using insulin detemir for the treatment of type 1 diabetes. Pediatr Diabetes. 2013; 14(5): 358-365. doi:10.1111/pedi.12019
- 42Russell-Jones D, Danne T, Hermansen K, et al. Weight-sparing effect of insulin detemir: a consequence of central nervous system-mediated reduced energy intake? Diabetes Obes Metab. 2015; 17(10): 919-927. doi:10.1111/dom.12493
- 43Hallschmid M, Jauch-Chara K, Korn O, et al. Euglycemic infusion of insulin detemir compared with human insulin appears to increase direct current brain potential response and reduces food intake while inducing similar systemic effects. Diabetes. 2010; 59(4): 1101-1107. doi:10.2337/db09-1493
- 44Hordern SV, Wright JE, Umpleby AM, Shojaee-Moradie F, Amiss J, Russell-Jones DL. Comparison of the effects on glucose and lipid metabolism of equipotent doses of insulin detemir and NPH insulin with a 16-h euglycaemic clamp. Diabetologia. 2005; 48(3): 420-426. doi:10.1007/s00125-005-1670-1
- 45Smeeton F, Shojaee Moradie F, Jones RH, et al. Differential effects of insulin detemir and neutral protamine hagedorn (NPH) insulin on hepatic glucose production and peripheral glucose uptake during hypoglycaemia in type 1 diabetes. Diabetologia. 2009; 52(11): 2317-2323. doi:10.1007/s00125-009-1487-4
- 46Tschritter O, Hennige AM, Preissl H, et al. Cerebrocortical beta activity in overweight humans responds to insulin detemir. PLoS One. 2007; 2(11):e1196. doi:10.1371/journal.pone.0001196
- 47van Golen LW, IJzerman RG, Huisman MC, et al. Cerebral blood flow and glucose metabolism in appetite-related brain regions in type 1 diabetic patients after treatment with insulin detemir and NPH insulin: a randomized controlled crossover trial. Diabetes Care. 2013; 36(12): 4050-4056. doi:10.2337/dc13-0093
- 48Becker RH, Dahmen R, Bergmann K, Lehmann A, Jax T, Heise T. New insulin glargine 300 units ml−1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 units ml−1. Diabetes Care. 2015; 38(4): 637-643. doi:10.2337/dc14-0006
- 49Danne T, Tamborlane WV, Malievsky OA, et al. Efficacy and safety of insulin glargine 300 units/ml (Gla-300) versus insulin glargine 100 units/ml (Gla-100) in children and adolescents (6-17 years) with type 1 diabetes: results of the EDITION JUNIOR randomized controlled trial. Diabetes Care. 2020; 43(7): 1512-1519. doi:10.2337/dc19-1926
- 50Bergenstal RM, Bailey TS, Rodbard D, et al. Comparison of insulin glargine 300 units/ml and 100 units/ml in adults with type 1 diabetes: continuous glucose monitoring profiles and variability using morning or evening injections. Diabetes Care. 2017; 40(4): 554-560. doi:10.2337/dc16-0684
- 51Matsuhisa M, Koyama M, Cheng X, et al. Sustained glycaemic control and less nocturnal hypoglycaemia with insulin glargine 300U/ml compared with glargine 100U/ml in Japanese adults with type 1 diabetes (EDITION JP 1 randomised 12-month trial including 6-month extension). Diabetes Res Clin Pract. 2016; 122: 133-140. doi:10.1016/j.diabres.2016.10.002
- 52https://www.ema.europa.eu/en/medicines/human/EPAR/toujeo-previously-optisulin. Accessed March 26, 2022 2022,
- 53Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahlund PO, Ribel U. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res. 2012; 29(8): 2104-2114. doi:10.1007/s11095-012-0739-z
- 54Mathieu C, Hollander P, Miranda-Palma B, et al. Efficacy and safety of insulin degludec in a flexible dosing regimen vs insulin glargine in patients with type 1 diabetes (BEGIN: flex T1): a 26-week randomized, treat-to-target trial with a 26-week extension. J Clin Endocrinol Metab. 2013; 98(3): 1154-1162. doi:10.1210/jc.2012-3249
- 55Biester T, Blaesig S, Remus K, et al. Insulin degludec's ultra-long pharmacokinetic properties observed in adults are retained in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2014; 15(1): 27-33. doi:10.1111/pedi.12116
- 56Thalange N, Deeb L, Iotova V, et al. Insulin degludec in combination with bolus insulin aspart is safe and effective in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2015; 16(3): 164-176. doi:10.1111/pedi.12263
- 57Blum WF, Cao D, Hesse V, et al. Height gains in response to growth hormone treatment to final height are similar in patients with SHOX deficiency and turner syndrome. Horm Res. 2009; 71(3): 167-172.
- 58Kjeldsen TB, Hubalek F, Hjorringgaard CU, et al. Molecular engineering of insulin Icodec, the first Acylated insulin analog for once-weekly Administration in Humans. J Med Chem. 2021; 64(13): 8942-8950. doi:10.1021/acs.jmedchem.1c00257
- 59Nishimura E, Pridal L, Glendorf T, et al. Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. BMJ Open Diabetes Res Care. 2021; 9: 2301. doi:10.1136/bmjdrc-2021-002301
- 60Mortensen HB, Robertson KJ, Aanstoot HJ, et al. Insulin management and metabolic control of type 1 diabetes mellitus in childhood and adolescence in 18 countries. Hvidore study group on childhood diabetes. Diabet Med. 1998; 15(9): 752-759.
10.1002/(SICI)1096-9136(199809)15:9<752::AID-DIA678>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 61Battelino T, Deeb LC, Ekelund M, et al. Efficacy and safety of a fixed combination of insulin degludec/insulin aspart in children and adolescents with type 1 diabetes: a randomized trial. Pediatr Diabetes. 2018; 19(7): 1263-1270. doi:10.1111/pedi.12724
- 62https://www.ema.europa.eu/en/medicines/human/EPAR/ryzodeg. Accessed March 23, 2022, 2022, https://www.ema.europa.eu/en/medicines/human/EPAR/ryzodeg
- 63Kurtzhals P, Schaffer L, Sorensen A, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000; 49(6): 999-1005.
- 64Investigators OT, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. Comparative study multicenter study randomized controlled trial research support, non-U.S. Gov't. N Engl J Med. 2012; 367(4): 319-328. doi:10.1056/NEJMoa1203858
- 65 Kixelle EMA approval. 2022. Accessed March 23, 2022, chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fproduct-information%2Fkirsty-previously-kixelle-epar-product-information_en.pdf&clen=723626&chunk=true
- 66 Admelog approval info. 2022. Accessed March 23, 2022, chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fproduct-information%2Finsulin-aspart-sanofi-epar-product-information_en.pdf&clen=1004004&chunk=true
- 67Stickelmeyer MP, Graf CJ, Frank BH, Ballard RL, Storms SM. Stability of U-10 and U-50 dilutions of insulin lispro. Diabetes Technol Ther. 2000; 2(1): 61-66. doi:10.1089/152091599316757
- 68Ruan Y, Elleri D, Allen JM, et al. Pharmacokinetics of diluted (U20) insulin aspart compared with standard (U100) in children aged 3-6 years with type 1 diabetes during closed-loop insulin delivery: a randomised clinical trial. Diabetologia. 2015; 58(4): 687-690. doi:10.1007/s00125-014-3483-6
- 69Elleri D, Allen JM, Tauschmann M, et al. Feasibility of overnight closed-loop therapy in young children with type 1 diabetes aged 3-6 years: comparison between diluted and standard insulin strength. BMJ Open Diabetes Res Care. 2014; 2(1):e000040. doi:10.1136/bmjdrc-2014-000040
- 70Kurnaz E, Aycan Z, Yildirim N, Cetinkaya S. Conventional insulin pump therapy in two neonatal diabetes patients harboring the homozygous PTF1A enhancer mutation: need for a novel approach for the management of neonatal diabetes. Turk J Pediatr. 2017; 59(4): 458-462. doi:10.24953/turkjped.2017.04.013
- 71Rabbone I, Barbetti F, Gentilella R, et al. Insulin therapy in neonatal diabetes mellitus: a review of the literature. Diabetes Res Clin Pract. 2017; 129: 126-135. doi:10.1016/j.diabres.2017.04.007
- 72Welters A, Meissner T, Konrad K, et al. Diabetes management in Wolcott-Rallison syndrome: analysis from the German/Austrian DPV database. Orphanet J Rare Dis. 2020; 15(1): 100. doi:10.1186/s13023-020-01359-y
- 73Neu A, Lange K, Barrett T, et al. Classifying insulin regimens - difficulties and proposal for comprehensive new definitions. Pediatr Diabetes. 2015; 16(6): 402-406. doi:10.1111/pedi.12275
- 74Cobry E, McFann K, Messer L, et al. Timing of meal insulin boluses to achieve optimal postprandial glycemic management in patients with type 1 diabetes. Diabetes Technol Ther. 2010; 12(3): 173-177. doi:10.1089/dia.2009.0112
- 75Luijf YM, van Bon AC, Hoekstra JB, Devries JH. Premeal injection of rapid-acting insulin reduces postprandial glycemic excursions in type 1 diabetes. Diabetes Care. 2010; 33(10): 2152-2155. doi:10.2337/dc10-0692
- 76Bode BW, Iotova V, Kovarenko M, et al. Efficacy and safety of fast-acting insulin aspart compared with insulin Aspart, both in combination with insulin Degludec, in children and adolescents with type 1 diabetes: the onset 7 trial. Diabetes Care. 2019; 42(7): 1255-1262. doi:10.2337/dc19-0009
- 77Heise T, Pieber TR, Danne T, Erichsen L, Haahr H. A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clin Pharmacokinet. 2017; 56(5): 551-559. doi:10.1007/s40262-017-0514-8
- 78Linnebjerg H, Zhang Q, LaBell E, et al. Pharmacokinetics and Glucodynamics of ultra rapid lispro (URLi) versus humalog([R]) (Lispro) in younger adults and elderly patients with type 1 diabetes mellitus: a randomised controlled trial. Clin Pharmacokinet. 2020; 59(12): 1589-1599. doi:10.1007/s40262-020-00903-0
- 79Miura J, Imori M, Nishiyama H, Imaoka T. Ultra-rapid Lispro efficacy and safety compared to humalog([R]) in Japanese patients with type 1 diabetes: PRONTO-T1D subpopulation analysis. Diabetes Technol Ther. 2020; 11(9): 2089-2104. doi:10.1007/s13300-020-00892-0
- 80Shiramoto M, Nasu R, Oura T, Imori M, Ohwaki K. Ultra-rapid Lispro results in accelerated insulin lispro absorption and faster early insulin action in comparison with humalog([R]) in Japanese patients with type 1 diabetes. J Diabetes Investig. 2020; 11(3): 672-680. doi:10.1111/jdi.13195
- 81Sackey AH, Jefferson IG. Interval between insulin injection and breakfast in diabetes. Arch Dis Child. 1994; 71(3): 248-250. doi:10.1136/adc.71.3.248
- 82Chowdhury S. Puberty and type 1 diabetes. Indian J Endocrinol Metab. 2015; 19(Suppl 1): S51-S54. doi:10.4103/2230-8210.155402
- 83Amiel SA, Sherwin RS, Simonson DC, Lauritano AA, Tamborlane WV. Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes. Research support, non-U.S. Gov't research support, U.S. Gov't, P.H.S. N Engl J Med. 1986; 315(4): 215-219. doi:10.1056/NEJM198607243150402
- 84Dunger DB, Cheetham TD. Growth hormone insulin-like growth factor I axis in insulin-dependent diabetes mellitus. Horm Res. 1996; 46(1): 2-6.
- 85Munoz MT, Barrios V, Pozo J, Argente J. Insulin-like growth factor I, its binding proteins 1 and 3, and growth hormone-binding protein in children and adolescents with insulin-dependent diabetes mellitus: clinical implications. Research support, non-U.S. Gov't. Pediatr Res. 1996; 39(6): 992-998.
- 86Nambam B, Schatz D. Growth hormone and insulin-like growth factor-I axis in type 1 diabetes. Growth Hormon IGF Res. 2018; 38: 49-52. doi:10.1016/j.ghir.2017.12.005
- 87Trout KK, Rickels MR, Schutta MH, et al. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: a pilot study. Research support, N.I.H., extramural research support, non-U.S. Gov't. Diabetes Technol Ther. 2007; 9(2): 176-182. doi:10.1089/dia.2006.0004
- 88Codner E, Merino PM, Tena-Sempere M. Female reproduction and type 1 diabetes: from mechanisms to clinical findings. Hum Reprod Update. 2012; 18(5): 568-585. doi:10.1093/humupd/dms024
- 89Tan CY, Wilson DM, Buckingham B. Initiation of insulin glargine in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2004; 5(2): 80-86. doi:10.1111/j.1399-543X.2004.00039.x
- 90Danne T, Lupke K, Walte K, Von Schuetz W, Gall MA. Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes. Diabetes Care. 2003; 26(11): 3087-3092.
- 91Urakami T, Mine Y, Aoki M, Okuno M, Suzuki J. A randomized crossover study of the efficacy and safety of switching from insulin glargine to insulin degludec in children with type 1 diabetes. Endocr J. 2017; 64(2): 133-140. doi:10.1507/endocrj.EJ16-0294
- 92Predieri B, Suprani T, Maltoni G, et al. Switching from glargine to degludec: the effect on metabolic control and safety during 1-year of real clinical practice in children and adolescents with type 1 diabetes. Front Endocrinol (Lausanne). 2018; 9: 462. doi:10.3389/fendo.2018.00462
- 93Enander R, Gundevall C, Strömgren A, Chaplin J, Hanas R. Carbohydrate counting with a bolus calculator improves post-prandial blood glucose levels in children and adolescents with type 1 diabetes using insulin pumps. Pediatr Diabetes. 2012; 13(7): 545-551. doi:10.1111/j.1399-5448.2012.00883.x
- 94Hanas R, Adolfsson P. Bolus calculator settings in well-controlled prepubertal children using insulin pumps are characterized by low insulin to carbohydrate ratios and short duration of insulin action time. J Diabetes Sci Technol. 2017; 11(2): 247-252. doi:10.1177/1932296816661348
- 95Davidson PC, Hebblewhite HR, Steed RD, Bode BW. Analysis of guidelines for basal-bolus insulin dosing: basal insulin, correction factor, and carbohydrate-to-insulin ratio. Endocr Pract. 2008; 14(9): 1095-1101. doi:10.4158/ep.14.9.1095
- 96Holl RW, Swift PG, Mortensen HB, et al. Insulin injection regimens and metabolic control in an international survey of adolescents with type 1 diabetes over 3 years: results from the Hvidore study group. Eur J Pediatr. 2003; 162(1): 22-29. doi:10.1007/s00431-002-1037-2
- 97Cengiz E, Connor CG, Ruedy KJ, et al. Pediatric diabetes consortium T1D new onset (NeOn) study: clinical outcomes during the first year following diagnosis. Pediatr Diabetes. 2014; 15(4): 287-293. doi:10.1111/pedi.12068
- 98Cengiz E, Cheng P, Ruedy KJ, et al. Clinical outcomes in youth beyond the first year of type 1 diabetes: results of the pediatric diabetes consortium (PDC) type 1 diabetes new onset (NeOn) study. Pediatr Diabetes. 2017; 18(7): 566-573. doi:10.1111/pedi.12459
- 99Kinmonth AL, Baum JD. Timing of pre-breakfast insulin injection and postprandial metabolic control in diabetic children. Br Med J. 1980; 280(6214): 604-606. doi:10.1136/bmj.280.6214.604
- 100Randlov J, Poulsen JU. How much do forgotten insulin injections matter to hemoglobin a1c in people with diabetes? A simulation study. J Diabetes Sci Technol. 2008; 2(2): 229-235. doi:10.1177/193229680800200209
- 101Burdick J, Chase HP, Slover RH, et al. Missed insulin meal boluses and elevated hemoglobin A1c levels in children receiving insulin pump therapy. Pediatrics. 2004; 113(3 Pt 1): e221-e224. doi:10.1542/peds.113.3.e221
- 102Clements MA, DeLurgio SA, Williams DD, Habib S, Halpin K, Patton SR. Association of HbA1c to BOLUS scores among youths with type 1 diabetes. Diabetes Technol Ther. 2016; 18(6): 351-359. doi:10.1089/dia.2015.0352
- 103Tascini G, Berioli MG, Cerquiglini L, et al. Carbohydrate counting in children and adolescents with type 1 diabetes. Nutrients. 2018; 10(1):10109. doi:10.3390/nu10010109
- 104Birkebaek NH, Solvig J, Hansen B, Jorgensen C, Smedegaard J, Christiansen JS. A 4-mm needle reduces the risk of intramuscular injections without increasing backflow to skin surface in lean diabetic children and adults. Diabetes Care. 2008; 31(9):e65. doi:10.2337/dc08-0977
- 105Kalra S, Hirsch LJ, Frid A, Deeb A, Strauss KW. Pediatric insulin injection technique: a multi-country survey and clinical practice implications. Diabetes Ther. 2018; 9(6): 2291-2302. doi:10.1007/s13300-018-0514-1
- 106Hofman PL, Lawton SA, Peart JM, et al. An angled insertion technique using 6-mm needles markedly reduces the risk of intramuscular injections in children and adolescents. Diabet Med. 2007; 24(12): 1400-1405. doi:10.1111/j.1464-5491.2007.02272.x
- 107Hofman PL, Derraik JG, Pinto TE, et al. Defining the ideal injection techniques when using 5-mm needles in children and adults. Diabetes Care. 2010; 33(9): 1940-1944. doi:10.2337/dc10-0871
- 108Birkebaek NH, Johansen A, Solvig J. Cutis/subcutis thickness at insulin injection sites and localization of simulated insulin boluses in children with type 1 diabetes mellitus: need for individualization of injection technique? Diabet Med. 1998; 15(11): 965-971. doi:10.1002/(SICI)1096-9136(1998110)15:11<965::AID-DIA691>3.0.CO;2-Y
10.1002/(SICI)1096?9136(1998110)15:11<965::AID?DIA691>3.0.CO;2?Y CAS PubMed Web of Science® Google Scholar
- 109Smith CP, Sargent MA, Wilson BP, Price DA. Subcutaneous or intramuscular insulin injections. Arch Dis Child. 1991; 66(7): 879-882. doi:10.1136/adc.66.7.879
- 110Ginsberg BH, Parkes JL, Sparacino C. The kinetics of insulin administration by insulin pens. Horm Metab Res. 1994; 26(12): 584-587. doi:10.1055/s-2007-1001764
- 111Wysocki T, Harris MA, Buckloh LM, et al. Self-care autonomy and outcomes of intensive therapy or usual care in youth with type 1 diabetes. J Pediatr Psychol. 2006; 31(10): 1036-1045. doi:10.1093/jpepsy/jsj017
- 112Halberg IJL, Dahl U. A study on selfmixing insulin aspart with NPH insulin in the syringe before injection. Diabetes. 1999; 48(Suppl. 1):SA104.
- 113Cengiz E, Tamborlane WV, Martin-Fredericksen M, Dziura J, Weinzimer SA. Early pharmacokinetic and pharmacodynamic effects of mixing lispro with glargine insulin: results of glucose clamp studies in youth with type 1 diabetes. Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't. Diabetes Care. 2010; 33(5): 1009-1012. doi:10.2337/dc09-2118
- 114Cengiz E, Swan KL, Tamborlane WV, Sherr JL, Martin M, Weinzimer SA. The alteration of aspart insulin pharmacodynamics when mixed with detemir insulin. Diabetes Care. 2012; 35(4): 690-692. doi:10.2337/Dc11-0732
- 115Frid AH, Hirsch LJ, Menchior AR, Morel DR, Strauss KW. Worldwide injection technique questionnaire study: injecting complications and the role of the professional. Mayo Clin Proc. 2016; 91(9): 1224-1230. doi:10.1016/j.mayocp.2016.06.012
- 116Seyoum B, Abdulkadir J. Systematic inspection of insulin injection sites for local complications related to incorrect injection technique. Trop Dr. 1996; 26(4): 159-161. doi:10.1177/004947559602600406
- 117Chantelau E, Lee DM, Hemmann DM, Zipfel U, Echterhoff S. What makes insulin injections painful? BMJ. 1991; 303(6793): 26-27. doi:10.1136/bmj.303.6793.26
- 118Hanas R, Adolfsson P, Elfvin-Akesson K, et al. Indwelling catheters used from the onset of diabetes decrease injection pain and pre-injection anxiety. J Pediatr. 2002; 140(3): 315-320.
- 119Burdick P, Cooper S, Horner B, Cobry E, McFann K, Chase HP. Use of a subcutaneous injection port to improve glycemic control in children with type 1 diabetes. Pediatr Diabetes. 2009; 10(2): 116-119. doi:10.1111/j.1399-5448.2008.00449.x
- 120Hanas SR, Ludvigsson J. Metabolic control is not altered when using indwelling catheters for insulin injections. Diabetes Care. 1994; 17(7): 716-718. doi:10.2337/diacare.17.7.716
- 121Mudaliar SR, Lindberg FA, Joyce M, et al. Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care. 1999; 22(9): 1501-1506. doi:10.2337/diacare.22.9.1501
- 122ter Braak EW, Woodworth JR, Bianchi R, et al. Injection site effects on the pharmacokinetics and glucodynamics of insulin lispro and regular insulin. Diabetes Care. 1996; 19(12): 1437-1440.
- 123Vaag A, Pedersen KD, Lauritzen M, Hildebrandt P, Beck-Nielsen H. Intramuscular versus subcutaneous injection of unmodified insulin: consequences for blood glucose control in patients with type 1 diabetes mellitus. Diabet Med. 1990; 7(4): 335-342. doi:10.1111/j.1464-5491.1990.tb01401.x
- 124Frid A. Injection and absorption of insulin. PhD Thesis. Faculty of Medicine, Karolinska Institute, Stockholm, Sweden. 1992.
- 125Bantle JP, Neal L, Frankamp LM. Effects of the anatomical region used for insulin injections on glycemia in type I diabetes subjects. Diabetes Care. 1993; 16(12): 1592-1597. doi:10.2337/diacare.16.12.1592
- 126Gradel AKJ, Porsgaard T, Lykkesfeldt J, et al. Factors affecting the absorption of subcutaneously administered insulin: effect on variability. J Diabetes Res. 2018; 2018:1205121. doi:10.1155/2018/1205121
- 127Guerci B, Sauvanet JP. Subcutaneous insulin: pharmacokinetic variability and glycemic variability. Diabetes Metab. 2005; 31(4 Pt 2): 4S7-4S24. doi:10.1016/s1262-3636(05)88263-1
- 128Owens DR, Coates PA, Luzio SD, Tinbergen JP, Kurzhals R. Pharmacokinetics of 125I-labeled insulin glargine (HOE 901) in healthy men: comparison with NPH insulin and the influence of different subcutaneous injection sites. Diabetes Care. 2000; 23(6): 813-819. doi:10.2337/diacare.23.6.813
- 129Nosek L, Coester HV, Roepstorff C, et al. Glucose-lowering effect of insulin degludec is independent of subcutaneous injection region. Clin Drug Investig. 2014; 34(9): 673-679. doi:10.1007/s40261-014-0218-x
- 130Frid A, Gunnarsson R, Guntner P, Linde B. Effects of accidental intramuscular injection on insulin absorption in IDDM. Diabetes Care. 1988; 11(1): 41-45. doi:10.2337/diacare.11.1.41
- 131Hirsch L, Byron K, Gibney M. Intramuscular risk at insulin injection sites–measurement of the distance from skin to muscle and rationale for shorter-length needles for subcutaneous insulin therapy. Diabetes Technol Ther. 2014; 16(12): 867-873. doi:10.1089/dia.2014.0111
- 132Cengiz E, Weinzimer SA, Sherr JL, et al. Faster in and faster out: accelerating insulin absorption and action by insulin infusion site warming. Diabetes Technol Ther. 2014; 16(1): 20-25. doi:10.1089/dia.2013.0187
- 133Raz I, Bitton G, Feldman D, Alon T, Pfutzner A, Tamborlane WV. Improved postprandial glucose control using the InsuPad device in insulin-treated type 2 diabetes: injection site warming to improve glycemic control. J Diabetes Sci Technol. 2015; 9(3): 639-643. doi:10.1177/1932296815578881
- 134Pitt JP, McCarthy OM, Hoeg-Jensen T, Wellman BM, Bracken RM. Factors influencing insulin absorption around exercise in type 1 diabetes. Front Endocrinol (Lausanne). 2020; 11:573275. doi:10.3389/fendo.2020.573275
- 135Frid A, Ostman J, Linde B. Hypoglycemia risk during exercise after intramuscular injection of insulin in thigh in IDDM. Diabetes Care. 1990; 13(5): 473-477. doi:10.2337/diacare.13.5.473
- 136Peter R, Luzio SD, Dunseath G, et al. Effects of exercise on the absorption of insulin glargine in patients with type 1 diabetes. Diabetes Care. 2005; 28(3): 560-565.
- 137Karges B, Boehm BO, Karges W. Early hypoglycaemia after accidental intramuscular injection of insulin glargine. Diabet Med. 2005; 22(10): 1444-1445.
- 138Young RJ, Hannan WJ, Frier BM, Steel JM, Duncan LJ. Diabetic lipohypertrophy delays insulin absorption. Diabetes Care. 1984; 7(5): 479-480. doi:10.2337/diacare.7.5.479
- 139Sindelka G, Heinemann L, Berger M, Frenck W, Chantelau E. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia. 1994; 37(4): 377-380. doi:10.1007/BF00408474
- 140Schuler G, Pelz K, Kerp L. Is the reuse of needles for insulin injection systems associated with a higher risk of cutaneous complications? Diabetes Res Clin Pract. 1992; 16(3): 209-212. doi:10.1016/0168-8227(92)90119-c
- 141Arendt-Nielsen L, Egekvist H, Bjerring P. Pain following controlled cutaneous insertion of needles with different diameters. Somatosens Mot Res. 2006; 23(1–2): 37-43. doi:10.1080/08990220600700925
- 142Hanas R, Ludvigsson J. Side effects and indwelling times of subcutaneous catheters for insulin injections: a new device for injecting insulin with a minimum of pain in the treatment of insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1990; 10(1): 73-83.
- 143Hanas SR, Carlsson S, Frid A, Ludvigsson J. Unchanged insulin absorption after 4 days' use of subcutaneous indwelling catheters for insulin injections. Diabetes Care. 1997; 20(4): 487-490. doi:10.2337/diacare.20.4.487
- 144Engwerda EEC, Tack CJ, de Galan BE. Pharmacokinetic and pharmacodynamic variability of insulin when administered by jet injection. J Diabetes Sci Technol. 2017; 11(5): 947-952. doi:10.1177/1932296817699638
- 145Chiasson JL, Ducros F, Poliquin-Hamet M, Lopez D, Lecavalier L, Hamet P. Continuous subcutaneous insulin infusion (mill-hill infuser) versus multiple injections (Medi-Jector) in the treatment of insulin-dependent diabetes mellitus and the effect of metabolic control on microangiopathy. Diabetes Care. 1984; 7(4): 331-337. doi:10.2337/diacare.7.4.331
- 146Houtzagers CM, Visser AP, Berntzen PA, Heine RJ, van der Veen EA. The Medi-Jector II: efficacy and acceptability in insulin-dependent diabetic patients with and without needle phobia. Diabet Med. 1988; 5(2): 135-138. doi:10.1111/j.1464-5491.1988.tb00959.x
- 147Engwerda EE, Abbink EJ, Tack CJ, de Galan BE. Improved pharmacokinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology. Diabetes Care. 2011; 34(8): 1804-1808. doi:10.2337/dc11-0182
- 148Litton J, Rice A, Friedman N, Oden J, Lee MM, Freemark M. Insulin pump therapy in toddlers and preschool children with type 1 diabetes mellitus. J Pediatr. 2002; 141(4): 490-495. doi:10.1067/mpd.2002.127500
- 149Berghaeuser MA, Kapellen T, Heidtmann B, et al. Continuous subcutaneous insulin infusion in toddlers starting at diagnosis of type 1 diabetes mellitus. A multicenter analysis of 104 patients from 63 centres in Germany and Austria. Pediatr Diabetes. 2008; 9(6): 590-595. doi:10.1111/j.1399-5448.2008.00416.x
- 150Skogsberg L, Fors H, Hanas R, Chaplin JE, Lindman E, Skogsberg J. Improved treatment satisfaction but no difference in metabolic control when using continuous subcutaneous insulin infusion vs. multiple daily injections in children at onset of type 1 diabetes mellitus. Pediatr Diabetes. 2008; 9(5): 472-479. doi:10.1111/j.1399-5448.2008.00390.x
- 151Bolli GB, Kerr D, Thomas R, et al. Comparison of a multiple daily insulin injection regimen (basal once-daily glargine plus mealtime lispro) and continuous subcutaneous insulin infusion (lispro) in type 1 diabetes: a randomized open parallel multicenter study. Diabetes Care. 2009; 32(7): 1170-1176. doi:10.2337/dc08-1874
- 152Colquitt J, Royle P, Waugh N. Are analogue insulins better than soluble in continuous subcutaneous insulin infusion? Results of a meta-analysis. Diabet Med. 2003; 20(10): 863-866. doi:10.1046/j.1464-5491.2003.01018.x
- 153Sulmont V, Souchon PF, Gouillard-Darnaud C, et al. Metabolic control in children with diabetes mellitus who are younger than 6 years at diagnosis: continuous subcutaneous insulin infusion as a first line treatment? J Pediatr. 2010; 157(1): 103-107. doi:10.1016/j.jpeds.2009.12.034
- 154Danne T, Battelino T, Jarosz-Chobot P, et al. Establishing glycaemic control with continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes: experience of the PedPump study in 17 countries. Diabetologia. 2008; 51(9): 1594-1601. doi:10.1007/s00125-008-1072-2
- 155Heinemann L, Braune K, Carter A, Zayani A, Krämer LA. Insulin storage: a critical reappraisal. J Diabetes Sci Technol. 2021; 15(1): 147-159. doi:10.1177/1932296819900258
- 156Braune K, Kraemer LA, Weinstein J, Zayani A, Heinemann L. Storage conditions of insulin in domestic refrigerators and when carried by patients: often outside recommended temperature range. Diabetes Technol Ther. 2019; 21(5): 238-244. doi:10.1089/dia.2019.0046
- 157Virmani A, Avni TCA. A case for expanding thermochromic vial monitor technology to insulin and other biologics. Indian Pediatr. 2020; 57(1): 17-19. doi:10.1007/s13312-020-1696-y
- 158Herr JK, Keith S, Klug R, Pettis RJ. Characterizing normal-use temperature conditions of pumped insulin. J Diabetes Sci Technol. 2014; 8(4): 850-854. doi:10.1177/1932296814532327
- 159Richter B, Bongaerts B, Metzendorf MI. Thermal stability and storage of human insulin. In: Cochrane database of systematic reviews. John Wiley & Sons, Ltd; 2022;1465-1858. doi:10.1002/14651858.CD015385
10.1002/14651858.CD015385 Google Scholar
- 160Umpierrez GE, Jones S, Smiley D, et al. Insulin analogs versus human insulin in the treatment of patients with diabetic ketoacidosis: a randomized controlled trial. Diabetes Care. 2009; 32(7): 1164-1169. doi:10.2337/dc09-0169
- 161Pérez A, Ramos A, Carreras G. Insulin therapy in hospitalized patients. Am J Ther. 2020; 27(1): e71-e78.
- 162Tosur M, Viau-Colindres J, Astudillo M, Redondo MJ, Lyons SK. Medication-induced hyperglycemia: pediatric perspective. BMJ Open Diabetes Res Care. 2020; 8(1):e000801.
- 163Fram RY, Cree MG, Wolfe RR, et al. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children. Crit Care Med. 2010; 38(6):9e.
- 164Wolfsdorf JI, Glaser N, Agus M, et al. ISPAD clinical practice consensus guidelines 2018: diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes. 2018; 19: 155-177.
- 165Cohen M, Leibovitz N, Shilo S, Zuckerman-Levin N, Shavit I, Shehadeh N. Subcutaneous regular insulin for the treatment of diabetic ketoacidosis in children. Pediatr Diabetes. 2017; 18(4): 290-296.
- 166Della Manna T, Steinmetz L, Campos PR, et al. Subcutaneous use of a fast-acting insulin analog: an alternative treatment for pediatric patients with diabetic ketoacidosis. Diabetes Care. 2005; 28(8): 1856-1861.
- 167Ersöz H, Ukinc K, Köse M, et al. Subcutaneous lispro and intravenous regular insulin treatments are equally effective and safe for the treatment of mild and moderate diabetic ketoacidosis in adult patients. Int J Clin Pract. 2006; 60(4): 429-433.
- 168Umpierrez GE, Cuervo R, Karabell A, Latif K, Freire AX, Kitabchi AE. Treatment of diabetic ketoacidosis with subcutaneous insulin aspart. Diabetes Care. 2004; 27(8): 1873-1878.
- 169Savoldelli RD, Farhat SC, Manna TD. Alternative management of diabetic ketoacidosis in a Brazilian pediatric emergency department. Diabetol Metab Syndr. 2010; 2(1): 41.
- 170Beran D, Lazo-Porras M, Mba CM, Mbanya JC. A global perspective on the issue of access to insulin. Diabetologia. 2021; 64(5): 954-962. doi:10.1007/s00125-020-05375-2
- 171Beran D, Ewen M, Lipska K, Hirsch IB, Yudkin JS. Availability and affordability of essential medicines: implications for global diabetes treatment. Curr Diab Rep. 2018; 18(8): 48. doi:10.1007/s11892-018-1019-z