Ecosystem engineers alter the evolution of seed size by impacting fertility and the understory light environment
Corresponding Author
Christopher E. Doughty
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Corresponding author
Search for more papers by this authorBenjamin C. Wiebe
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Search for more papers by this authorJenna M. Keany
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Search for more papers by this authorCamille Gaillard
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Search for more papers by this authorAndrew J. Abraham
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
Search for more papers by this authorJeppe A. Kristensen
Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
SustainScapes – Center for Sustainable Landscapes Under Global Change, Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
Leverhulme Centre for Nature Recovery, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY UK
Search for more papers by this authorCorresponding Author
Christopher E. Doughty
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Corresponding author
Search for more papers by this authorBenjamin C. Wiebe
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Search for more papers by this authorJenna M. Keany
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Search for more papers by this authorCamille Gaillard
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Search for more papers by this authorAndrew J. Abraham
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
Search for more papers by this authorJeppe A. Kristensen
Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
SustainScapes – Center for Sustainable Landscapes Under Global Change, Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
Leverhulme Centre for Nature Recovery, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY UK
Search for more papers by this authorEditor. Nicholas Butterfield
Abstract
It has been hypothesized that the extinction of the dinosaurs, and later the Pleistocene megafauna, created a darker forest subcanopy benefiting large-seeded plants. Larger seeds and their fruit, in turn, opened a dietary niche space for animals thus strongly shaping the ecology of the Cenozoic, including our fruit-eating primate ancestors. In this paper, we develop a mechanistic model where we replicate the conditions of tropical forests of the early Paleocene, with small animal body and small seed size, and the Holocene, with small animal body and large seed size. We first calibrate light levels in our model using stable carbon isotope ratios from fossil leaves and estimate a decrease of understory light of c. 90 μmol m−2 s−1 (a 19% decrease) from the Cretaceous to the Paleocene. Our model predicts a rapid increase in seed size during the Paleocene that eventually plateaued or declined slightly. Specifically, we find a dynamic feedback where increased animal sizes opened the understory causing negative feedback by increasing subcanopy light penetration that limited maximum seed size, matching the actual trend in angiosperm seed sizes in mid/high latitude ecosystems. Adding the ability of larger animals to increase ecosystem fertility to the model, further increased mean animal body size by 17% and mean seed size by 90%. Our model is a drastic simplification and there are many remaining uncertainties, but we show that ecological dynamics can explain seed size trends without adding external factors such as climate change.
References
- Abraham, A. J., Prys-Jones, T. O., De Cuyper, A., Ridenour, C., Hempson, G. P., Hocking, T., Clauss, M. and Doughty, C. E. 2021. Improved estimation of gut passage time considerably affects trait-based dispersal models. Functional Ecology, 35 (4), 860–869.
- Abraham, A. J., Duvall, E. S., le Roux, E., Ganswindt, A., Clauss, M., Doughty, C. E. and Webster, A. B. 2023. Anthropogenic supply of nutrients in a wildlife reserve may compromise conservation success. Biological Conservation, 284, 110149.
- Asner, G. P., Levick, S. R., Kennedy-Bowdoin, T., Knapp, D. E., Emerson, R., Jacobson, J., Colgan, M. S. and Martin, R. E. 2009. Large-scale impacts of herbivores on the structural diversity of African savannas. Proceedings of the National Academy of Sciences, 106 (12), 4947–4952.
- Bakker, E. S., Gill, J. L., Johnson, C. N., Vera, F. W. M., Sandom, C. J., Asner, G. P. and Svenning, J. C. 2016. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences, 113 (4), 847–855.
- Baraloto, C., Forget, P.-M. and Goldberg, D. E. 2005. Seed mass, seedling size and neotropical tree seedling establishment. Journal of Ecology, 93 (6), 1156–1166.
- Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. and Shabel, A. B. 2004. Assessing the causes of late Pleistocene extinctions on the continents. Science, 306 (5693), 70–75.
- Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J., Lindsey, E. L., Maguire, K. C., Mersey, B. and Ferrer, E. A. 2011. Has the Earth's sixth mass extinction already arrived? Nature, 471 (7336), 51–57.
- Benson, R. B. J., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P. and Evans, D. C. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biology, 12 (5), e1001853.
- Berzaghi, F., Bretagnolle, F., Durand-Bessart, C. and Blake, S. 2023. Megaherbivores modify forest structure and increase carbon stocks through multiple pathways. Proceedings of the National Academy of Sciences, 120 (5), e2201832120.
- Blake, S., Deem, S. L., Mossimbo, E., Maisels, F. and Walsh, P. 2009. Forest elephants: tree planters of the Congo. Biotropica, 41 (4), 459–468.
- Carvalho, M. R., Jaramillo, C., de la Parra, F., Caballero-Rodríguez, D., Herrera, F., Wing, S., Turner, B. L., D'Apolito, C., Romero-Báez, M., Narváez, P. and Martínez, C. 2021. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372 (6537), 63–68.
- Clauss, M., Frey, R., Kiefer, B., Lechner-Doll, M., Loehlein, W., Polster, C., Rössner, G. E. and Streich, W. J. 2003. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia, 136 (1), 14–27.
- Craine, J. M. and Reich, P. B. 2005. Leaf-level light compensation points in shade-tolerant woody seedlings. The New Phytologist, 166 (3), 710–713.
- Dantas, V. L. and Pausas, J. G. 2022. The legacy of the extinct Neotropical megafauna on plants and biomes. Nature Communications, 13 (1), 129.
- Davies, A. B. and Asner, G. P. 2019. Elephants limit aboveground carbon gains in African savannas. Global Change Biology, 25 (4), 1368–1382.
- Doughty, C. E. 2013. Preindustrial human impacts on global and regional environment. Annual Review of Environment and Resources, 38 (1), 503–527.
10.1146/annurev-environ-032012-095147 Google Scholar
- Doughty, C. E. 2017. Herbivores increase the global availability of nutrients over millions of years. Nature Ecology & Evolution, 1 (12), 1820–1827.
- Doughty, C. E., Wolf, A. and Malhi, Y. 2013. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 6 (9), 761–764.
- Doughty, C. E., Metcalfe, D. B., da Costa, M. C., de Oliveira, A. A. R., Neto, G. F. C., Silva, J. A., Aragão, L. E. O. C., Almeida, S. S., Quesada, C. A., Girardin, C. A. J., Halladay, K., da Costa, A. C. L. and Malhi, Y. 2014. The production, allocation and cycling of carbon in a forest on fertile terra preta soil in eastern Amazonia compared with a forest on adjacent infertile soil. Plant Ecology and Diversity, 7 (1–2), 41–53.
- Doughty, C. E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E. S., Malhi, Y., Dunning, J. B. Jr and Svenning, J.-C. 2016a. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences, 113 (4), 868–873.
- Doughty, C. E., Wolf, A., Morueta-Holme, N., Jørgensen, P. M., Sandel, B., Violle, C., Boyle, B., Kraft, N. J. B., Peet, R. K., Enquist, B. J., Svenning, J.-C., Blake, S. and Galetti, M. 2016b. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 39 (2), 194–203.
- Doughty, C. E., Faurby, S. and Svenning, J. C. 2016c. The impact of the megafauna extinctions on savanna woody cover in South America. Ecography, 39 (2), 213–222.
- Duffy, K. J., Page, B. R., Swart, J. H. and Bajić, V. B. 1999. Realistic parameter assessment for a well known elephant–tree ecosystem model reveals that limit cycles are unlikely. Ecological Modelling, 121 (2), 115–125.
10.1016/S0304-3800(99)00091-5 Google Scholar
- Ehleringer, J. R., Field, C. B., Lin, Z. and Kuo, C. 1986. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia, 70 (4), 520–526.
- Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. and Doughty, C. E. 2020. The megabiota are disproportionately important for biosphere functioning. Nature Communications, 11 (1), 699.
- Eriksson, O. 2016. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews, 91 (1), 168–186.
- Eriksson, O., Friis, E. M. and Löfgren, P. 2000. Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. The American Naturalist, 156 (1), 47–58.
- Fauset, S., Gloor, M. U., Aidar, M. P. M., Freitas, H. C., Fyllas, N. M., Marabesi, M. A., Rochelle, A. L. C., Shenkin, A., Vieira, S. A. and Joly, C. A. 2017. Tropical forest light regimes in a human-modified landscape. Ecosphere, 8 (11), e02002.
- Fleming, T. H. and John Kress, W. 2011. A brief history of fruits and frugivores. Acta Oecologica, 37 (6), 521–530.
- Fleming, T. H., Breitwisch, R. and Whitesides, G. H. 1987. Patterns of tropical vertebrate frugivore diversity. Annual Review of Ecology and Systematics, 18, 91–109.
- Fricke, E. C., Ordonez, A., Rogers, H. S. and Svenning, J.-C. 2022. The effects of defaunation on plants’ capacity to track climate change. Science, 375 (6577), 210–214.
- Galetti, M., Guevara, R., Côrtes, M. C., Fadini, R., von Matter, S., Leite, A. B., Labecca, F., Ribeiro, T., Carvalho, C. S., Collevatti, R. G., Pires, M. M., Guimarães, P. R. Jr, Brancalion, P. H., Ribeiro, M. C. and Jordano, P. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340 (6136), 1086–1090.
- Gautier-Hion, A., Duplantier, J.-M., Quris, R., Feer, F., Sourd, C., Decoux, J.-P., Dubost, G., Emmons, L., Erard, C., Hecketsweiler, P., Moungazi, A., Roussilhon, C. and Thiollay, M.-M. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65 (3), 324–337.
- Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. and Robinson, G. S. 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science, 326 (5956), 1100–1103.
- Graham, A. 1999. Late Cretaceous and Cenozoic history of North American vegetation (North of Mexico). Oxford University Press. https://doi.org/10.1093/oso/9780195113426.001.0001
10.1093/oso/9780195113426.001.0001 Google Scholar
- Graham, H. V., Herrera, F., Jaramillo, C., Wing, S. L. and Freeman, K. H. 2019. Canopy structure in Late Cretaceous and Paleocene forests as reconstructed from carbon isotope analyses of fossil leaves. Geology, 47 (10), 977–981.
- Guimarães, P. R. Jr, Galetti, M. and Jordano, P. 2008. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One, 3 (3), e1745.
- Hu, H., Wang, Y., McDonald, P. G., Wroe, S., O'Connor, J. K., Bjarnason, A., Bevitt, J. J., Yin, X., Zheng, X., Zhou, Z. and Benson, R. J. 2022. Earliest evidence for fruit consumption and potential seed dispersal by birds. eLife, 11, e74751.
- Jantz, P., Abraham, A., Scheffers, B., Gaillard, C., Harfoot, M., Goetz, S. and Doughty, C. E. 2024. Functional traits and phylogeny predict vertical foraging in terrestrial mammals and birds. BioRxiv. https://doi.org/10.1101/2024.04.18.589860
10.1101/2024.04.18.589860 Google Scholar
- Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist, 104 (940), 501–528.
- Janzen, D. H. 1979. How to be a fig. Annual Review of Ecology and Systematics, 10 (1), 13–51.
10.1146/annurev.es.10.110179.000305 Google Scholar
- Janzen, D. H. and Martin, P. S. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science, 215 (4528), 19–27.
- Keany, J. M., Burns, P., Abraham, A. J., Jantz, P., Makaga, L., Saatchi, S., Maisels, F., Abernethy, K. and Doughty, C. E. 2024. Using multiscale lidar to determine variation in canopy structure from African forest elephant trails. Remote Sensing in Ecology and Conservation, 10 (5), 655–667.
10.1002/rse2.395 Google Scholar
- Kumari, N. and Mohan, C. 2021. Basics of clay minerals and their characteristic properties. Ch. 2. In G. M. Do Nascimento (ed.) Clay and clay minerals. IntechOpen. https://doi.org/10.5772/intechopen.97672
10.5772/intechopen.97672 Google Scholar
- Lim, J. Y., Svenning, J.-C., Göldel, B., Faurby, S. and Kissling, W. D. 2020. Frugivore–fruit size relationships between palms and mammals reveal past and future defaunation impacts. Nature Communications, 11 (1), 4904.
- Malhi, Y., Riutta, T., Wearn, O. R., Deere, N. J., Mitchell, S. L., Bernard, H., Majalap, N., Nilus, R., Davies, Z. G., Ewers, R. M. and Struebig, M. 2022. Logged tropical forests have amplified and diverse ecosystem energetics. Nature, 612 (7941), 707–713.
- McCarthy, T. S., Ellery, W. N. and Bloem, A. 1998. Some observations on the geomorphological impact of hippopotamus (Hippopotamus amphibius L.) in the Okavango Delta, Botswana. African Journal of Ecology, 36 (1), 44–56.
- Montgomery, R. A. 2004. Effects of understory foliage on patterns of light attenuation near the forest floor. Biotropica, 36 (1), 33–39.
- Morley, R. J. 2011. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. 1–34. In M. Bush, J. Flenley and W. Gosling (eds) Tropical rainforest responses to climatic change. Springer. https://doi.org/10.1007/978-3-642-05383-2_1
10.1007/978-3-642-05383-2_1 Google Scholar
- Murchie, T. J., Monteath, A. J., Mahony, M. E., Long, G. S., Cocker, S., Sadoway, T., Karpinski, E., Zazula, G., MacPhee, R. D. E., Froese, D. and Poinar, H. N. 2021. Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nature Communications, 12 (1), 7120.
- Murchie, T. J., Long, G. S., Lanoil, B. D., Froese, D. and Poinar, H. N. 2023. Permafrost microbial communities follow shifts in vegetation, soils, and megafauna extinctions in Late Pleistocene NW North America. Environmental DNA, 5 (6), 1759–1779.
- Naware, D. and Benson, R. 2024. Patterns of variation in fleshy diaspore size and abundance from Late Triassic–Oligocene. Biological Reviews, 99 (2), 430–457.
- Owen-Smith, R. N. 1988. Megaherbivores: The influence of very large body size on ecology. Cambridge University Press. Cambridge Studies in Ecology. https://doi.org/10.1017/CBO9780511565441
10.1017/CBO9780511565441 Google Scholar
- Palmer, C. A., Oman, C. L., Park, A. J. and Luppens, J. A. 2015. The U.S. Geological Survey coal quality (COALQUAL) database version 3.0. Data Series. Reston, VA. https://doi.org/10.3133/ds975
10.3133/ds975 Google Scholar
- Pearce, E. A., Mazier, F., Normand, S., Fyfe, R., Andrieu, V., Bakels, C., Balwierz, Z., Bińka, K., Boreham, S., Borisova, O. K., Brostrom, A., de Beaulieu, J.-L., Gao, C., González-Sampériz, P., Granoszewski, W., Hrynowiecka, A., Kołaczek, P., Kuneš, P., Magri, D., Malkiewicz, M., Mighall, T., Milner, A. M., Möller, P., Nita, M., Noryśkiewicz, B., Pidek, I. A., Reille, M., Robertsson, A.-M., Salonen, J. S., Schläfli, P., Schokker, J., Scussolini, P., Šeirienė, V., Strahl, J., Urban, B., Winter, H. and Svenning, J.-C. 2023. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Science Advances, 9 (45), eadi9135.
- Pearce, E. A., Mazier, F., Fyfe, R., Davison, C. W., Normand, S., Serge, M.-A., Scussolini, P. and Svenning, J.-C. 2024. Higher abundance of disturbance-favoured trees and shrubs in European temperate woodlands prior to the late-Quaternary extinction of megafauna. Journal of Ecology, 112 (12), 2813–2827.
10.1111/1365-2745.14422 Google Scholar
- Pires, M. M., Guimarães, P. R., Galetti, M. and Jordano, P. 2018. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography, 41 (1), 153–163.
- Rogers, H., Cavazos, B., Gawel, A. M., Karnish, A., Ray, C., Rose, E., Thierry, H. and Fricke, E. C. 2021. Frugivore gut passage increases seed germination: an updated meta-analysis. BioRxiv. https://doi.org/10.1101/2021.10.12.462022
10.1101/2021.10.12.462022 Google Scholar
- Rule, S., Brook, B. W., Haberle, S. G., Turney, C. S. M., Kershaw, A. P. and Johnson, C. N. 2012. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science, 335 (6075), 1483–1486.
- Shillito, A. P. and Davies, N. S. 2019. Dinosaur-landscape interactions at a diverse Early Cretaceous tracksite (Lee Ness Sandstone, Ashdown Formation, southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 593–612.
- Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J. and Harding, L. E. 2010. The evolution of maximum body size of terrestrial mammals. Science, 330 (6008), 1216–1219.
- Sussman, R. W., Rasmussen, D. and Raven, P. H. 2013. Rethinking primate origins again. American Journal of Primatology, 75 (2), 95–106.
- Villar, N., Paz, C., Zipparro, V., Nazareth, S., Bulascoschi, L., Bakker, E. S. and Galetti, M. 2021. Frugivory underpins the nitrogen cycle. Functional Ecology, 35 (2), 357–368.
- Wang, L., Cromsigt, J. P. G. M., Buitenwerf, R., Lundgren, E. J., Li, W., Bakker, E. S. and Svenning, J.-C. 2023. Tree cover and its heterogeneity in natural ecosystems is linked to large herbivore biomass globally. One Earth, 6 (12), 1759–1770.
10.1016/j.oneear.2023.10.007 Google Scholar
- Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M. and Jetz, W. 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology, 95 (7), 2027.
10.1890/13-1917.1 Google Scholar
- Wing, S. L. and Tiffney, B. H. 1987. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Review of Palaeobotany and Palynology, 50 (1), 179–210.
10.1016/0034-6667(87)90045-5 Google Scholar
- Wolf, A., Doughty, C. E. and Malhi, Y. 2013. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems. PLoS One, 8 (8), e71352.