Epigenetic regulation of white adipose tissue in the onset of obesity and metabolic diseases
Daniel Castellano-Castillo
Hospital Clínico Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
Search for more papers by this authorBruno Ramos-Molina
Hospital Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
Search for more papers by this authorCorresponding Author
Fernando Cardona
Hospital Clínico Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
Correspondence
Fernando Cardona, Hospital Clínico Universitario Virgen de la Victoria, Instituto Biomédico de Investigación de Málaga (IBIMA), 29010 Malaga, Spain.
Email: [email protected]
Search for more papers by this authorMaría Isabel Queipo-Ortuño
Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Universidad de Málaga, Málaga, Spain
Search for more papers by this authorDaniel Castellano-Castillo
Hospital Clínico Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
Search for more papers by this authorBruno Ramos-Molina
Hospital Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
Search for more papers by this authorCorresponding Author
Fernando Cardona
Hospital Clínico Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
Correspondence
Fernando Cardona, Hospital Clínico Universitario Virgen de la Victoria, Instituto Biomédico de Investigación de Málaga (IBIMA), 29010 Malaga, Spain.
Email: [email protected]
Search for more papers by this authorMaría Isabel Queipo-Ortuño
Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Universidad de Málaga, Málaga, Spain
Search for more papers by this authorDaniel Castellano-Castillo and Bruno Ramos-Molina contributed equally.
Daniel Castellano-Castillo is currently at Institute of Food, Nutrition and Health, ETH, CH-8603, Schwerzenbach, Switzerland.
Summary
Obesity and metabolic syndrome are among the most prevalent health problems in developed countries. The impairment of adipose tissue (AT) function is partially responsible for the aetiology of these conditions. Epigenetics refers to several processes that add modifications to either the DNA or chromatin architectural proteins (histones). These processes can regulate gene expression, chromatin compaction and DNA repair. Epigenetics includes mechanisms by which the cell can adapt the cellular response to the environmental conditions. Here, we review the role of epigenetics in the onset of obesity and related metabolic disorders, with special focus on AT. We highlight the importance of nutrients and lifestyle in the regulation of the epigenetic mechanisms and how they can impact on AT plasticity and function in obesity and metabolic diseases. Thus, the epigenetic landscape emerges as a fine-tune regulator of the cellular responses according to the energetic, metabolic and physiological conditions of the cell. Alterations in metabolic pathways deregulated during obesity and metabolic syndrome could in part explain the disturbances in the epigenetic marks of the AT in these disorders. The understanding of how this epigenetic deregulation may affect AT biology and function could lead to new therapeutic approaches based on epigenetic strategies.
CONFLICT OF INTEREST
No conflict of interest was declared.
REFERENCES
- 1Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2016; 33(7): 673-689. https://doi.org/10.1007/s40273-014-0243-x
- 2Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015; 518(7538): 197-206. https://doi.org/10.1038/nature14177.Genetic
- 3Golay A, Ybarra J. Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 2005; 19(4): 649-663. https://doi.org/10.1016/j.beem.2005.07.010
- 4Abdullah A, Peeters A, De Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010; 89(3): 309-319. https://doi.org/10.1016/j.diabres.2010.04.012
- 5Akil L, Ahmad HA. Relationships between obesity and cardiovascular diseases in four southern states and Colorado. J Heal Care Poor Underserved. 2011; 22(4A): 61-72. https://doi.org/10.1353/hpu.2011.0166.Relationships
- 6Burke GL, Bertoni AG, Shea S, et al. The impact of obesity on cardiovascular disease risk factors and subclinical vascular disease: the multi-ethnic study of atherosclerosis. Arch Intern Med. 2008; 168(9): 928-935. https://doi.org/10.1001/archinte.168.9.928
- 7Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983; 67(5): 968-977. https://doi.org/10.1161/01.CIR.67.5.968
- 8Lovren F, Teoh H, Verma S. Obesity and atherosclerosis: mechanistic insights. Can J Cardiol. 2015; 31(2): 177-183. https://doi.org/10.1016/j.cjca.2014.11.031
- 9Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009; 6(6): 399-409. https://doi.org/10.1038/nrcardio.2009.55
- 10Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology And Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16): 1640-1645. https://doi.org/10.1161/circulationaha.109.192644
- 11Uzunlulu M, Telci Caklili O, Oguz A. Association between metabolic syndrome and cancer. Ann Nutr Metab. 2016; 178(3): 173-179. https://doi.org/10.1159/000443743
- 12De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013; 2013: 1-11. https://doi.org/10.1155/2013/291546
10.1155/2013/291546 Google Scholar
- 13Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol. 2018; 221(Suppl 1): 1–17, jeb162958. https://doi.org/10.1242/jeb.162958
- 14Gerhard GS, Styer AM, Strodel WE, et al. Gene expression profiling in subcutaneous, visceral, and epigastric adipose tissues of patients with extreme obesity. Int J Obes (Lond). 2014; 38(3): 371-378. https://doi.org/10.1038/ijo.2013.152.Gene
- 15Sato F, Maeda N, Yamada T, et al. Association of Epicardial, visceral, and subcutaneous fat with cardiometabolic diseases. Circ J. 2017; 82(February): 502-508. https://doi.org/10.1253/circj.CJ-17-0820
- 16Tu AW, Humphries KH, Lear SA. Longitudinal changes in visceral and subcutaneous adipose tissue and metabolic syndrome: results from the Multicultural Community Health Assessment Trial (M-CHAT). Diabetes Metab Syndr Clin Res Rev. 2017; 11: S957-S961. https://doi.org/10.1016/j.dsx.2017.07.022
- 17Kwon H, Kim D, Kim JS. Body fat distribution and the risk of incident metabolic syndrome: a longitudinal cohort study. Sci Rep. 2017; 7(1): 1-8. https://doi.org/10.1038/s41598-017-09723-y
- 18Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006; 7(12): 885-896. https://doi.org/10.1038/nrm2066
- 19Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol. 2013; 92(6–7): 229-236. https://doi.org/10.1016/j.ejcb.2013.06.001
- 20Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012; 53(2): 227-246. https://doi.org/10.1194/jlr.R021089
- 21Lee H, Lee YJ, Choi H, et al. SCARA5 plays a critical role in the commitment of mesenchymal stem cells to adipogenesis. Sci Rep. 2017; 7(1): 1-13. https://doi.org/10.1038/s41598-017-12512-2
- 22Sarantopoulos CN, Banyard DA, Ziegler ME, Sun B, Shaterian A, Widgerow AD. Elucidating the preadipocyte and its role in adipocyte formation: a comprehensive review. Stem Cell Rev Reports. 2018; 14(1): 27-42. https://doi.org/10.1007/s12015-017-9774-9
- 23Feinberg AP, Daniele FM. Epigenetics at the crossroads of genes and the environment. JAMA - J Am Med Assoc. 2015; 314(11): 1129-1130. https://doi.org/10.1001/jama.2015.10414
- 24Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47: 155-162. https://doi.org/10.1093/nar/gky1141
- 25Kameswaran V, Bramswig NC, Mckenna LB, et al. Epigenetic regulation of the MEG3-DLK1 microRNA cluster in human Type 2 diabetic islets. Cell Metab. 2014; 19(1): 135-145. https://doi.org/10.1016/j.cmet.2013.11.016.Epigenetic
- 26Sun KAN, Chang X, Yin L, et al. Expression and DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Mol Med Rep. 2014; 9(3): 967-972. https://doi.org/10.3892/mmr.2013.1872
- 27Mansego ML, Milagro FI, Marti A. DNA methylation of miRNA coding sequences putatively associated with childhood obesity. Pediatr Obes. 2016; 12(December 2015): 19-27. https://doi.org/10.1111/ijpo.12101
- 28Garcia-lacarte M, Martinez JA, Zulet MA. Implication of miR-612 and miR-1976 in the regulation of TP53 and CD40 and their relationship in the response to specific weight-loss diets. PLoS ONE. 2018; 13: 1-11.
- 29Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019; 51: 11-17. https://doi.org/10.1016/j.cbpa.2019.01.024
- 30Moutinho C, Esteller M. Chapter seven- MicroRNAs and Epigenetics. Advances in Cancer Research. 1st ed. 135 Amsterdam: Elsevier Inc. 2017: 189–220. https://doi.org/10.1016/bs.acr.2017.06.003
- 31Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008; 9(6): 465-476. https://doi.org/10.1038/nrg2341
- 32Fuso A, Lucarelli M. CpG and non-CpG methylation in the diet–epigenetics–neurodegeneration connection. Curr Nutr Reports. 2019; 8: 74-82.
- 33Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017; 10(23): 1–10. https://doi.org/10.1186/s13072-017-0130-8
- 34Schübeler D. Function and information content of DNA methylation. Nature. 2015; 517(7534): 321-326. https://doi.org/10.1038/nature14192
- 35Yang X, Han H, DeCarvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014; 26(4): 577-590. https://doi.org/10.1016/j.ccr.2014.07.028
- 36Deaton A, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011; 25(10): 1010-1022. https://doi.org/10.1101/gad.2037511.1010
- 37Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012; 13(7): 484-492. https://doi.org/10.1038/nrg3230
- 38Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018; 19(2): 81-92. https://doi.org/10.1038/nrg.2017.80
- 39Liao J, Karnik R, Gu H, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015; 47(5): 469-478. https://doi.org/10.1038/ng.3258.Targeted
- 40Suzuki MM, Bird A. DNA methylation landscapes provocative inside from epigenomics. Nat Rev Genet. 2008; 9(6): 465-476.
- 41Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013; 502(7472): 472-479. https://doi.org/10.1038/nature12750
- 42Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017; 18(9): 517-534. https://doi.org/10.1038/nrg.2017.33
- 43Lin IH, Chen YF, Hsu MT. Correlated 5-hydroxymethylcytosine (5hmC) and gene expression profiles underpin gene and organ-specific epigenetic regulation in adult mouse brain and liver. PLoS ONE. 2017; 12(1): 1-25. https://doi.org/10.1371/journal.pone.0170779
- 44Gross JA, Pacis A, Chen GG, et al. Gene-body 5-hydroxymethylation is associated with gene expression changes in the prefrontal cortex of depressed individuals. Transl Psychiatry. 2017; 7(5): e1119-e1118. https://doi.org/10.1038/tp.2017.93
- 45Ponnaluri VKC, Ehrlich KC, Zhang G, et al. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics. 2017; 12(2): 123-138. https://doi.org/10.1080/15592294.2016.1265713
- 46Dubois-Chevalier J, Oger F, Dehondt H, et al. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res. 2014; 42(17): 10943-10959. https://doi.org/10.1093/nar/gku780
- 47Janssen KA, Sidoli S, Garcia BA. Recent achievements in characterizing the histone code and approaches to integrating epigenomics and systems biology. Methods Enzymol. 2017; 586: 359-378. https://doi.org/10.1016/bs.mie.2016.10.021.Recent
- 48Simithy J, Sidoli S, Yuan Z, et al. Characterization of histone acylations links chromatin modifications with metabolism. Nat Commun. 2017; 8(1141): 1–13. https://doi.org/10.1038/s41467-017-01384-9
- 49Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell. 2016; 62(5): 695-711. https://doi.org/10.1016/j.molcel.2016.05.029
- 50Carlberg C, Molnár F. Human Epigenomics. Singapore: Springer; 2018: 1–219.
- 51Landgrave-gómez J, Mercado-gómez O, Guevara-guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci. 2015; 9(February): 1-11. https://doi.org/10.3389/fncel.2015.00058
- 52Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 2015; 8: 1-17.
- 53Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res - Rev Mutat Res. 2008; 659(1–2): 40-48. https://doi.org/10.1016/j.mrrev.2008.02.004
- 54Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta - Gene Regul Mech. 2014; 1839(12): 1362-1372. https://doi.org/10.1016/j.bbagrm.2014.02.007
- 55Thomson JP, Skene PJ, Selfridge J, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010; 464(7291): 1082-1086. https://doi.org/10.1038/nature08924.CpG
- 56Højfeldt JW, Laugesen A, Willumsen BM, et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol Biol. 2018; 25(3): 225-232. https://doi.org/10.1038/s41594-018-0036-6
- 57van Kruijsbergen I, Hontelez S, Veenstra GJC. Recruiting Polycomb to chromatin. Int J Biochem Cell Biol. 2015; 67: 177-187. https://doi.org/10.1016/j.clinbiochem.2015.06.023.Gut-Liver
- 58Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics. 2018; 10(1): 1-18. https://doi.org/10.1186/s13148-018-0450-y
- 59Viré E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006; 439(7078): 871-874. https://doi.org/10.1038/nature04431
- 60Curry E, Zeller C, Masrour N, et al. Genes predisposed to DNA hypermethylation during acquired resistance to chemotherapy are identified in ovarian tumors by bivalent chromatin domains at initial diagnosis. Cancer Res. 2018; 78(6): 1383-1391. https://doi.org/10.1158/0008-5472.CAN-17-1650
- 61Panzeri I, Pospisilik JA. Epigenetic control of variation and stochasticity in metabolic disease. Mol Metab. 2018; 14: 1-13. https://doi.org/10.1016/j.molmet.2018.05.010
- 62Davegårdh C, García-Calzón S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab. 2018; 14: 12-25. https://doi.org/10.1016/j.molmet.2018.01.022
- 63Donkin I, Barrès R. Sperm epigenetics and influence of environmental factors. Mol Metab. 2018; 14(February): 1-11. https://doi.org/10.1016/j.molmet.2018.02.006
- 64Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019; 20: 1-24.
- 65Sibani S. Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis. 2002; 23(1): 61-65. https://doi.org/10.1093/carcin/23.1.61
- 66Fan J, Krautkramer KA, Feldman JL, Denu JM, States U. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2016; 10(1): 95-108. https://doi.org/10.1021/cb500846u.Metabolic
- 67Sadhu MJ, Guan Q, Li F, et al. Nutritional control of epigenetic processes in yeast and human cells. Genetics. 2013; 195(3): 831-844. https://doi.org/10.1534/genetics.113.153981
- 68Shyh-Chang NG, Lyssiotis CA. Influence of Threonine Metabolism on S-adenosylmethionine and Histone Methylation. Science. 2013; 339(6116): 222-226. https://doi.org/10.1126/science.1226603.Influence
- 69Elshorbagy AK, Jernerén F, Samocha-Bonet D, Refsum H, Heilbronn LK. Serum S-adenosylmethionine, but not methionine, increases in response to overfeeding in humans. Nutr Diabetes. 2016; 6: 2-5. https://doi.org/10.1038/nutd.2015.44
- 70Oh W, Abu-Elheiga L, Kordari P, et al. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc Natl Acad Sci U S A. 2005; 102(5): 1384-1389. https://doi.org/10.1073/pnas.0409451102
- 71Torchon E, Hulver M, McMillan R, Voy B. Fasting rapidly increases fatty acid oxidation in white adipose tissue (269.2). FASEB J. 2014; 28(1_Supplement): 269.2-269.39. https://doi.org/10.1080/21623945.2016.1263777
- 72Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012; 23(9): 435-443. https://doi.org/10.1016/j.tem.2012.06.004
- 73Zhou X, Sun H, Chen H, et al. Hypoxia induces tri-methylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res. 2010; 70(10): 4214-4221. https://doi.org/10.1158/0008-5472.CAN-09-2942.Hypoxia
- 74Reid MA, Dai Z, Locasale JW. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol. 2017; 19(11): 1298-1306. https://doi.org/10.1038/ncb3629
- 75Gowans GJ, Bridgers JB, Zhang J, et al. Recognition of histone Crotonylation by Taf14 links metabolic state to gene expression. Mol Cell. 2019; 76(6): 909-921.e3. https://doi.org/10.1016/j.molcel.2019.09.029
- 76Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019; 574(7779): 575-580. https://doi.org/10.1038/s41586-019-1678-1
- 77Castoldi A, De Souza CN, Saraiva Câmara NO, Moraes-Vieira PM. The macrophage switch in obesity development. Front Immunol. 2016; 6(JAN): 1-11. https://doi.org/10.3389/fimmu.2015.00637
- 78Shin KC, Hwang I, Choe SS, et al. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun. 2017; 8(1087): 1–14. https://doi.org/10.1038/s41467-017-01232-w
- 79Moreno-indias I, Oliva-olivera W, Omiste A, et al. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function. Transl Res. 2016; 172: 6-17.e3. https://doi.org/10.1016/j.trsl.2016.01.002
- 80Jones TE, Pories WJ, Houmard JA, et al. Plasma lactate as a marker of metabolic health: implications of elevated lactate for impairment of aerobic metabolism in the metabolic syndrome. Surgery. 2019; 166(5): 861-866. https://doi.org/10.1016/j.surg.2019.04.017
- 81Tobi lmar W, Slieker RC, Luijk R, et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv. 2018; 4(1): 1–10, eaao4364 31. https://doi.org/10.1126/sciadv.aao4364
- 82Pauwels S, Ghosh M, Duca RC, et al. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics. 2017; 9(1): 1-13. https://doi.org/10.1186/s13148-017-0321-y
- 83Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017; 105(C): 991-1000. https://doi.org/10.3945/ajcn.116.143164
- 84Rönn T, Volkov P, Davegårdh C, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013; 9(6): 1–16, e1003572. https://doi.org/10.1371/journal.pgen.1003572
- 85Tsai P, Glastonbury CA, Eliot MN, et al. Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clinical epigenetics. 2018; 10(126): 1-21. https://doi.org/10.1186/s13148-018-0558-0
- 86Teschendorff AE, Breeze CE, Zheng SC, Beck S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in epigenome-wide association studies. BMC Bioinformatics. 2017; 18: 1-14. https://doi.org/10.1186/s12859-017-1511-5
- 87Zheng SC, Webster AP, Dong D, et al. A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics. 2018; 10(7): 925-940.
- 88Clark SJ, Argelaguet R, Stubbs CKTM, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018; 9(1): 1-9. https://doi.org/10.1038/s41467-018-03149-4
- 89Chen S, Lake BB, Zhang K, Jolla L. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol. 2019; 37(12): 1452-1457. https://doi.org/10.1038/s41587-019-0290-0.High-throughput
- 90Madrid A, Chopra P, Alisch RS, Gavin DP. Species-specific 5 mC and 5 hmC genomic landscapes indicate epigenetic contribution to human brain. Evolution. 2018; 11: 1-12. https://doi.org/10.3389/fnmol.2018.00039
- 91Rohde K, Keller M, Stumvoll M, Blüher M. DNA 5-hydroxymethylation in human adipose tissue differs between subcutaneous and visceral adipose tissue depots. Epigenomics. 2015; 7: 911-920.
- 92Yu P, Ji L, Lee KJ, et al. Subsets of visceral adipose tissue nuclei with distinct levels of 5-hydroxymethylcytosine. PLoS ONE. 2016; 11(5):e0154949. https://doi.org/10.1371/journal.pone.0154949
- 93Yoo Y, Park JH, Weigel C, et al. TET-mediated hydroxymethylcytosine at the Pparγ locus is required for initiation of adipogenic differentiation. Int J Obes (Lond). 2017; 41(4): 652-659. https://doi.org/10.1038/ijo.2017.8
- 94Bricambert J, Alves-Guerra MC, Esteves P, et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nat Commun. 2018; 9(2092): 1–18. https://doi.org/10.1038/s41467-018-04361-y
- 95Shen W, Wang C, Xia L, et al. Epigenetic modification of the leptin promoter in diet-induced obese mice and the effects of N-3 polyunsaturated fatty acids. Sci Rep. 2014; 4(5282): 1–8. https://doi.org/10.1038/srep05282
- 96Noer A, Lindeman LC, Collas P. Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells Dev. 2009; 18(5): 725-736. https://doi.org/10.1089/scd.2008.0189
- 97Wang L, Xu S, Lee J-E, et al. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO J. 2013; 32(1): 45-59. https://doi.org/10.1038/emboj.2012.306
- 98Fujimoto S, Goda T, Mochizuki K. In vivo evidence of enhanced di-methylation of histone H3 K4 on upregulated genes in adipose tissue of diabetic db/db mice. Biochem Biophys Res Commun. 2011; 404(1): 223-227. https://doi.org/10.1016/j.bbrc.2010.11.097
- 99Mehdipour P, Murphy T, De Carvalho DD. The role of DNA-demethylating agents in cancer therapy. Pharmacol Ther. 2020; 205(107416): 1–14. https://doi.org/10.1016/j.pharmthera.2019.107416
- 100Rajan A, Shi H, Xue B. Class I and II histone deacetylase inhibitors differentially regulate thermogenic gene expression in brown adipocytes. Sci Rep. 2018; 8(1): 1-11. https://doi.org/10.1038/s41598-018-31560-w
- 101Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics. 2019; 11: 1-18.
- 102Eleutherakis-papaiakovou E, Kanellias N, Kastritis E, Gavriatopoulou M, Terpos E, Dimopoulos MA. Efficacy of panobinostat for the treatment of multiple myeloma. J Oncol. 2020; 2020: 1-11.
- 103Li F, Wu R, Cui X, et al. Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation. J Biol Chem. 2016; 291(9): 4523-4536. https://doi.org/10.1074/jbc.M115.677930
- 104Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and b-cell dysfunction in humans. Diabetes. 2011; 60(3): 918-924. https://doi.org/10.2337/db10-1433
- 105Catalioto R, Maggi CA, Giuliani S. Chemically distinct HDAC inhibitors prevent adipose conversion of subcutaneous human white preadipocytes at an early stage of the differentiation program. Exp Cell Res. 2009; 315(19): 3267-3280. https://doi.org/10.1016/j.yexcr.2009.09.012
- 106Boqu N, Soria AC, Rodr S. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res. 2013; 57(8): 1-6. https://doi.org/10.1002/mnfr.201200686
- 107Gao Y, Li J, Chu S, et al. Ginsenoside Rg1 protects mice against streptozotocin-induced type 1 diabetic by modulating the NLRP3 and Keap1/Nrf2/HO-1 pathways. Eur J Pharmacol. 2019; 866(172801): 1–10. https://doi.org/10.1016/j.ejphar.2019.172801
- 108Hosseini H, Teimouri M, Shabani M, et al. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway running. Int J Biochem Cell Biol. 2019; 119(105667): 1–24. https://doi.org/10.1016/j.biocel.2019.105667