Mineralogy of terminal grains recovered from the Tanpopo capture panel onboard the International Space Station
Corresponding Author
Takaaki Noguchi
Division of Earth and Planetary Sciences, Kyoto University, Kyoto, Japan
Correspondence
Takaaki Noguchi, Division of Earth and Planetary Sciences, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
Email: [email protected]
Search for more papers by this authorAkira Miyake
Division of Earth and Planetary Sciences, Kyoto University, Kyoto, Japan
Search for more papers by this authorHikaru Yabuta
Department of Earth and Planetary Systems Science, Hiroshima University, Hiroshima, Japan
Search for more papers by this authorYoko Kebukawa
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
Search for more papers by this authorHiroki Suga
NanoTerasu Promotion Division, Japan Synchrotron Radiation Research Institute, Sendai, Miyagi, Japan
Search for more papers by this authorMakoto Tabata
Faculty of Science, Chiba University, Chiba, Japan
Search for more papers by this authorKyoko Okudaira
Division of Information Systems and Aizu Research Center for Space Informatics (ARC-Space), Department of Computer Science and Engineering, University of Aizu, Fukushima, Japan
Search for more papers by this authorAkihiko Yamagishi
Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
Search for more papers by this authorH. Yano
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
Space and Astronautical Science, Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Kanagawa, Japan
Search for more papers by this authorCorresponding Author
Takaaki Noguchi
Division of Earth and Planetary Sciences, Kyoto University, Kyoto, Japan
Correspondence
Takaaki Noguchi, Division of Earth and Planetary Sciences, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
Email: [email protected]
Search for more papers by this authorAkira Miyake
Division of Earth and Planetary Sciences, Kyoto University, Kyoto, Japan
Search for more papers by this authorHikaru Yabuta
Department of Earth and Planetary Systems Science, Hiroshima University, Hiroshima, Japan
Search for more papers by this authorYoko Kebukawa
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
Search for more papers by this authorHiroki Suga
NanoTerasu Promotion Division, Japan Synchrotron Radiation Research Institute, Sendai, Miyagi, Japan
Search for more papers by this authorMakoto Tabata
Faculty of Science, Chiba University, Chiba, Japan
Search for more papers by this authorKyoko Okudaira
Division of Information Systems and Aizu Research Center for Space Informatics (ARC-Space), Department of Computer Science and Engineering, University of Aizu, Fukushima, Japan
Search for more papers by this authorAkihiko Yamagishi
Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
Search for more papers by this authorH. Yano
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
Space and Astronautical Science, Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Kanagawa, Japan
Search for more papers by this authorEditorial Handling—Donald Brownlee
Abstract
The Tanpopo experiment is Japan's first astrobiology mission aboard the Japanese Experiment Module Exposed Facility on the International Space Station. The Tanpopo-1 mission exposed silica aerogel panels to low Earth orbit from 2015 to 2016 to capture micrometeoroids. We identified an impact track measuring approximately 8 mm long, which contained terminal grains in the silica aerogel panel oriented toward space. The impact track exhibited a bulbous cavity with two thin, straight tracks branching from it, each preserving a terminal grain at their ends. The terminal grains were extracted from the silica aerogel and analyzed using scanning transmission electron microscopy and scanning transmission X-ray microscopy to investigate their X-ray absorption near-edge structure (STXM-XANES). Both grains are Fe-bearing and relatively homogeneous orthopyroxene crystals (En88.4±0.4 and En88.2±1.8). The recovery of Fe-bearing low-Ca pyroxene aligns with previous studies of micrometeoroids captured in LEO. Micrometeoroids containing Fe-bearing olivine and low-Ca pyroxene are likely abundant in LEO.
Open Research
Data availability statement
Data are available on request from the authors.
REFERENCES
- Biggar, G. M. 1992. Subsolidus Equilibria between Protopyroxene, Orthopyroxene, Pigeonite and Diopside, in the MgSiO3-CaMgSi2O6 at 1 bar to 9.5 kbar, and 1012 to 1450°C. European Journal of Mineralogy 4: 153–170.
- Brearley, A. J., and Jones, R. H. 1998. Chondritic Meteorites. In Planetary Materials (Reviews in Mineralogy, vol. 36), edited by J. J. Papike, 3-1–3-398. Washington, DC: Mineralogical Society of America.
- Brownleel, D. E., Horz, F., Hrubsch, L., McDonnell, J. A. M., Tsou, P., and Williams, J. 1994. Eureka!! Aerogel Capture of Meteoroids in Space. 25th Lunar and Planetary Science Conference, abstract #1092.
- Burchell, M. J., Fairey, S. A. J., Foster, N. J., and Cole, M. J. 2006. Hypervelocity Capture of Particles in Aerogel: Dependence on Aerogel Properties. Planetary and Space Science 57: 58–70.
- Burchell, M. J., Thomson, R., and Yano, H. 1999. Capture of Hypervelocity Particles in Aerogel: In Ground Laboratory and Low Earth Orbit. Planetary and Space Science 47: 189–204.
- Cabaret, D., Sainctavit, P., Ildefonse, P., and Flank, A.-M. 1998. Full Multiple Scattering Calculations of the X-Ray Absorption near Edge Structure at the Magnesium K-Edge in Pyroxene. American Mineralogist 83: 300–304.
- de Groot, F. M. F., Glatzel, P., Bergmann, U., van Aken, P. A., Barrea, R. A., Klemme, S., Hävecker, M., Knop-Gericke, A., Heijboer, W. M., and Weckhuysen, B. M. 2005. 1s2p Resonant Inelastic X-Ray Scattering of Iron Oxides. Journal of Physical Chemistry B 109: 20751–20762.
- Defouilloy, C., Nakashima, D., Joswiak, D. J., Brownlee, D. E., Tenner, T. J., and Kita, N. T. 2017. Origin of Crystalline Silicates from Comet 81P/Wild 2: Combined Study on their Oxygen Isotopes and Mineral Chemistry. Earth and Planetary Science Letters 465: 145–154.
- Della Corte, V., Rietmeijer, F. J. M., Rotundi, A., Ferrari, M., and Palumbo, P. 2013. Meteoric CaO and Carbon Smoke Particles Collected in the Upper Stratosphere from an Unanticipated Source. Tellus B: Chemical and Physical Meteorology 65: 20174.
- Drolshagen, E., Ott, T., Koschny, D., Drolshagen, G., Kristiane Schmidt, A., and Poppe, B. 2020. Velocity Distribution of Larger Meteoroids and Small Asteroids Impacting Earth. Planetary and Space Science 184: 104869.
- Elmi, C., Brigatti, M. F., Pasquali, L., Montecchi, M., Laurora, A., Malferrari, D., and Nannarone, S. 2010. Crystal Chemistry, Surface Morphology and X-Ray Photoelectron Spectroscopy of Fe-Rich Osumilite from Mt. Arci, Sardinia (Italy). Physics and Chemistry of Minerals 37: 561–569.
- Frati, F., Hunault, M. O. J. Y., and de Groot, F. M. F. 2020. Oxygen K-Edge X-Ray Absorption Spectra. Chemical Reviews 120: 4056–4110.
- Fuchs, L. H., Olsen, E., and Jensen, K. J. 1973. Mineralogy, Mineral Chemistry, and Compositions of the Murchison (C2) Meteorite. Smithsonian Contributions to the Earth Sciences 10: 1–39.
10.5479/si.00810274.10.1 Google Scholar
- Fujiwara, D., Kawaguchi, Y., Kinoshita, I., Yatabe, J., Narumi, I., Hashimoto, H., Yokobori, S., and Yamagishi, A. 2021. Mutation Analysis of the rpoB Gene in the Radiation-Resistant Bacterium Deinococcus Radiodurans R1 Exposed to Space during the Tanpopo Experiment at the International Space Station. Astrobiology 21: 1494–1504.
- Gainsforth, Z., Butterworth, A. L., Stodolna, J., Westphal, A. J., Huss, G. R., Nagashima, K., Ogliore, R., et al. 2015. Constraints on the Formation Environment of Two Chondrule-like Igneous Particles from Comet 81P/Wild 2. Meteoritics & Planetary Science 50: 976–1004.
- Garvie, L. A. J., and Buseck, P. R. 1998. Ratios of Ferrous to Ferric Iron from Nanometer-Sized Areas in Minerals. Nature 386: 667–670.
- Hörz, F., Zolensky, M. E., Bernhard, R. P., See, T. H., and Warren, J. L. 2000. Impact Features and Projectile Residues in Aerogel Exposed on Mir. Icarus 147: 559–579.
- Ishiguro, M., Yang, H., Usui, F., Pyo, J., Ueno, M., Ootsubo, T., Kwon, S.-M., and Mukai, T. 2013. High-Resolution Imaging of the Gegenschein and the Geometric Albedo of Interplanetary Dust. Astrophysical Journal 767: 75–88.
- Jacob, D., Stodolna, J., Leroux, H., Langenhorst, F., and Houdellier, F. 2009. Pyroxenes Microstructure in Comet 81P/Wild 2 Terminal Stardust Particles. Meteoritics & Planetary Science 44: 1475–1488.
- Jones, R. H. 1996. FeO-Rich, Porphyritic Pyroxene Chondrules in Unequilibrated Ordinary Chondrites. Geochimica et Cosmochimica Acta 60: 3115–3138.
- Joswiak, D. J., Brownlee, D. E., Matrajt, G., Westphal, A. J., Snead, C. J., and Gainsforth, Z. 2012. Comprehensive Examination of Large Mineral and Rock Fragments in Stardust Tracks: Mineralogy, Analogous Extraterrestrial Materials, and Source Regions. Meteoritics & Planetary Science 47: 471–524.
- Kimoto, Y., Yano, K., Ishizawa, J., Miyazaki, E., and Yamagata, I. 2009. Passive Space-Environment-Effect Measurement on the International Space Station. Journal of Spacecraft and Rockets 46: 22–27.
- Kistler, S. S. 1931. Coherent Expanded Aerogels and Jellies. Nature 127: 741.
- Kobayashi, K., Mita, H., Kebukawa, Y., Nakagawa, K., Kaneko, T., Obayashi, Y., Sato, T., et al. 2021. Space Exposure of Amino Acids and their Precursors during the Tanpopo Mission. Astrobiology 21: 1479–1493.
- Kodaira, S., Naito, M., Uchihori, Y., Hashimoto, H., Yano, H., and Yamagishi, A. 2021. Space Radiation Dosimetry at the Exposure Facility of the International Space Station for the Tanpopo Mission. Astrobiology 21: 1473–1478.
- Kurihara, M., Higashide, M., Takayanagi, Y., Arai, K., Yano, H., Tabata, M., Hasegawa, S., and Yamagishi, A. 2015. Impact Frequency Estimate of Micron-Sized Meteoroids and Debris on Tanpopo Capture Panels on the ISS. Procedia Engineering 103: 334–340.
10.1016/j.proeng.2015.04.055 Google Scholar
- Lee, S. K., Eng, P. J., and Mao, H. 2014. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-Ray Raman Scattering at High Pressure. In Spectroscopic Methods in Mineralogy and Materials Sciences (Reviews in Mineralogy and Geochemistry, vol. 78), edited by J. J. Papike, 139–174. Washington, DC: Mineralogical Society of America.
10.1515/9781614517863.139 Google Scholar
- Li, D., Peng, M., and Murata, T. 1999. Coordination and Local Structure of Magnesium in Silicate Minerals and Glasses: Mg K-Edge XANES Study. Canadian Mineralogist 37: 199–206.
- Love, S. G., and Brownlee, D. E. 1993. A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust. Science 262: 550–553.
- Mason, B. 1962. Meteorites. New York, London: John Wiley and Sons Inc.
- Matsumoto, T., Kawada, M., Murakami, H., Noda, M., Matsuura, S., Tanaka, M., and Narita, K. 1997. IRTS Observation of the Near-Infrared Spectrum of the Zodiacal Light. Publications of the Astronomical Society of Japan 48: L47–L51.
10.1093/pasj/48.5.L47 Google Scholar
- Nakamura, T., Noguchi, T., Tsuchiyama, A., Ushikubo, T., Kita, N. T., Valley, J. W., Zolensky, M. E., et al. 2008. Chondrule like Objects in Short-Period Comet 81P/Wild 2. Science 321: 1664–1667.
- Nakashima, D., Ushikubo, T., Joswiak, D. J., Brownlee, D. E., Matrajt, G., Weisberg, M. K., Zolensky, M. E., and Kita, N. T. 2012. Oxygen Isotopes in Crystalline Silicates of Comet Wild 2: A Comparison of Oxygen Isotope Systematics Between Wild 2 Particles and Chondritic Materials. Earth and Planetary Science Letters 357–358: 355–365.
- Nesvorný, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlický, D., and Gounelle, M. 2010. Cometary Origin of the Zodiacal Cloud and Carbonaceous Micrometeorites. Implications for Hot Debris Disks. Astrophysical Journal 713: 816–836.
- Noguchi, T., Nakamura, T., Okudaira, K., Yano, H., Sugita, S., and Burchell, M. J. 2007. Thermal Alteration of Hydrated Minerals during Hypervelocity Capture to Silica Aerogel at the Flyby Speed of Stardust. Meteoritics & Planetary Science 42: 357–372.
- Noguchi, T., Nakamura, T., Ushikubo, T., Kita, N. T., Valley, J. W., Yamanaka, R., Kimoto, Y., and Kitazawa, Y. 2011. A Chondrule-like Object Captured by Space-Exposed Aerogel on the International Space Station. Earth and Planetary Science Letters 309: 198–206.
- Nozaki, W., Nakamura, T., and Noguchi, T. 2006. Bulk Mineralogical Changes of Hydrous Micrometeorites during Low-Temperature Heating in the Upper Atmosphere. Meteoritics & Planetary Science 41: 1095–1114.
- Ohi, S., and Miyake, A. 2016. Phase Transitions between High- and Low-Temperature Orthopyroxene in the Mg2Si2O6-Fe2Si2O6 System. American Mineralogist 101: 1414–1422.
- Ohi, S., Miyake, A., and Yashima, M. 2010. Stability Field of the High-Temperature Orthorhombic Phase in the Enstatite-Diopside System. American Mineralogist 95: 1267–1275.
- Peuker-Ehrenbrink, P. 1996. Accretion of Extraterrestrial Matter during the Last 80 Million Years and its Effect on the Marine Osmium Isotope Record. Geochimica et Cosmochimica Acta 60: 3187–3196.
- Rietmeijer, F. J. M., and Blanford, G. E. 1988. Capture of an Olivine Micrometeoroid by Spacecraft in Low-Earth Orbit. Journal of Geophysical Research 93: 11943–11948.
- Rohrbach, A., Ballhaus, C., Ulmer, P., Golla-Schindler, U., and Schönbohm, D. 2011. Experimental Evidence for a Reduced Metal-Saturated Upper Mantle. Journal of Petrology 52: 717–731.
- Rojas, J., Duprat, J., Engrand, C., Delauche, L., Godard, M., Gounelle, M., Carrillo-Sánchez, J. D., Pokormý, P., and Plane, J. M. C. 2021. The Micrometeorite Flux at Dome C (Antarctica), Monitoring the Accretion of Extraterrestrial Dust on Earth. Earth and Planetary Science Letters 560: 116794.
- Sasaki, S., Imani, J., and Yano, H. 2019. Design, Fabrication and Evaluation of an Aerogel Processor CLOXS for the Astrobiology Mission Tanpopo. Biological Sciences in Space 33: 7–11.
10.2187/bss.33.7 Google Scholar
- Tabata, M., Imai, E., Yano, H., Hashimoto, H., Kawai, H., Kawaguchi, Y., Kobayashi, K., et al. 2014. Design of a Silica-Aerogel-Based Cosmic Dust Collector for the Tanpopo Mission aboard the International Space Station. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan 12: Pk_29–Pk_34.
10.2322/tastj.12.Pk_29 Google Scholar
- Trcera, N., Cabaret, D., Rossano, S., Farges, F., Flank, A.-M., and Lagarde, P. 2009. Experimental and Theoretical Study of the Structural Environment of Magnesium in Minerals and Silicate Glasses Using X-Ray Absorption Near-Edge Structure. Physics and Chemistry of Minerals 36: 241–257.
- Tenner, T. J., Ushikubo, T., Nakashima, D., Schrader, D. L., Weisberg, M. K., Kimura, M., and Kita, N. T. 2018. Oxygen Isotope Characteristics of Chondrules from Recent Studies by Secondary Ion Mass Spectrometry. In Chondrules, edited by S. S. Russell, H. C. Connolly, and A. N. Krot, 196–246. Cambridge: Cambridge University Press.
10.1017/9781108284073.008 Google Scholar
- Tomita-Yokotani, K., Kimura, S., Ong, M., Tokita, M., Katoh, H., Abe, T., Hashimoto, H., Sonoike, K., and Ohmori, M. 2021. Investigation of Nostoc sp. HK-01, Cell Survival over Three Years during the Tanpopo Mission. Astrobiology 21: 1505–1514.
- Waki, M., and Kimoto, Y. 2013. Passive Measurement of Dust Particles on JEM/MPAC & SEED – Experiment Summary, Particle Fluxes. In Protection of Materials and Structures from the Space Environment, edited by J. Kleiman, M. Tagawa, and Y. Kimoto, 499–512. Berlin, Heidelberg: Springer-Verlag.
10.1007/978-3-642-30229-9_46 Google Scholar
- Yamagishi, A., Hashimoto, H., Yano, H., Imai, E., Tabata, M., Higashide, M., and Okudaira, K. 2021. Four-Year Operation of Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments on the JEM Exposed Facility of the International Space Station. Astrobiology 21: 1461–1472.
- Yamagishi, A., Yokobori, S., Kobayashi, K., Mita, H., Yabuta, H., Tabata, M., Higashide, M., and Yano, H. 2021. Scientific Targets of Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments at the Japanese Experiment Module Exposed Facility of the International Space Station. Astrobiology 21: 1451–1460.
- Yamanaka, R., Noguchi, T., and Kimoto, Y. 2011. Analysis Results of Microparticles Capture Experiment Samples on Service Module. Journal of Spacecraft and Rockets 48: 867–873.
- Zhang, M., Defouilloy, C., Joswiak, D. J., Brownlee, D. E., Nakashima, D., Siron, G., Kitajima, K., and Kita, N. T. 2021. Oxygen Isotope Systematics of Crystalline Silicates in a Giant Cluster IDP: A Genetic Link to Wild 2 Particles and Primitive Chondrite Chondrules. Earth and Planetary Science Letters 564: 116928.
- Zolensky, M. E. 2021. The Long Duration Exposure Facility—A Forgotten Bridge between Apollo and Stardust. Meteoritics & Planetary Science 56: 900–910.
- Zolensky, M. E., See, T. H., Bernhard, R. P., Barrett, R., Hörz, F., Warren, J. L., Dardano, C., Leago, K. S., Kessler, D., and Foster, T. R. 1995. Final Activities and Results of the Long Duration Exposure Facility Meteoroid and Debris Special Investigation Group. Advances of Space Research 16: 53–65.