Type B–type C CAI in a CR chondrite: Evidence for multiple melting events, gas–melt interaction, and oxygen-isotope exchange
Kirsten Larsen
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Search for more papers by this authorCorresponding Author
Alexander N. Krot
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
Correspondence
Alexander N. Krot, Centre for Star and Planet Formation, University of Copenhagen, Copenhagen DK-1350, Denmark.
Email: [email protected]
Search for more papers by this authorDaniel Wielandt
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Search for more papers by this authorKazuhide Nagashima
Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
Search for more papers by this authorGuy Libourel
Observatoire de la Côte d'Azur, UMR 7293 LAGRANGE, Nice, France
Search for more papers by this authorMartin Bizzarro
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
Search for more papers by this authorKirsten Larsen
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Search for more papers by this authorCorresponding Author
Alexander N. Krot
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
Correspondence
Alexander N. Krot, Centre for Star and Planet Formation, University of Copenhagen, Copenhagen DK-1350, Denmark.
Email: [email protected]
Search for more papers by this authorDaniel Wielandt
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Search for more papers by this authorKazuhide Nagashima
Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
Search for more papers by this authorGuy Libourel
Observatoire de la Côte d'Azur, UMR 7293 LAGRANGE, Nice, France
Search for more papers by this authorMartin Bizzarro
Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
Search for more papers by this authorEditorial Handling—Marrocchi Yves
Abstract
A coarse-grained igneous calcium-aluminum-rich inclusion (CAI) N-53, 4.3 × 5.9 mm in size, from the CR (Renazzo-type) carbonaceous chondrite Northwest Africa (NWA) 6043 is composed of two mineralogically, chemically, and isotopically distinct units—type B (B) and type C (C). Type B unit occurs in the CAI core and consists of melilite (Åk28–56), AlTi-diopside, anorthite, spinel, and minor Fe,Ni-metal. Type C unit forms islands in B (Cc) and mantle (Cm) around it and consists of Na-bearing åkermanitic melilite (Åk58–72, 0.18–0.86 wt% Na2O), anorthite, AlTi-diopside (up to 1.2 wt% Cr2O3), spinel (up to 2.1 wt% Cr2O3), perovskite, and minor wollastonite. The outermost portion of N-53 contains relict grains of olivine (Fa4) and low-Ca pyroxene (Fs4Wo5); Wark–Lovering rim is absent. Magnesian spinel in B and C is 16O-rich (Δ17O ~ −23‰); Cr-bearing spinel in Cm is 16O-depleted (Δ17O ~ −11‰). AlTi-diopside, anorthite, and melilite in B and Cc are 16O-depleted to various degrees (Δ17O ~ −22‰ to −19‰, −21‰ to −17‰, −13‰ to −8‰, respectively). AlTi-diopside, anorthite, and melilite in Cm show a range of compositions correlated with a distance from the CAI edge (Δ17O ~ −18‰ to −8‰, −16‰ to −8‰, ~ −8‰ to −2‰). Melilite in B has the heaviest Mg-isotope composition (Δ25Mg ~ 10‰); average Δ25Mg of melilite, AlTi-diopside, and spinel in C are ~9, ~8‰, and ~6‰, respectively; anorthite in both units has Δ25Mg of ~4‰. On the Al-Mg evolutionary diagram, melilite data in B oscillate around the canonical isochron. Melilite, AlTi-diopside, and spinel in C have resolvable δ26Mg* and deviate to the left of this isochron; anorthite in both units has barely resolvable δ26Mg*. Although these data are consistent with late-stage reprocessing of N-53, they provide no clear chronological information. We conclude that N-53 experienced multiple melting events. Initial melting of solid precursors took place in an 16O-rich gaseous reservoir and resulted in formation of the uniformly 16O-rich (Δ17O ~ −24‰) type B CAI. Subsequent single- or multi-stage partial melting of this CAI occurred in an 16O-depleted gaseous reservoir(s) and resulted in addition of SiO and Na to the CAI melt, O- and Mg-isotope exchange, and crystallization of C unit.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
maps14325-sup-0001-FigureS1-S11.zipZip archive, 6.4 MB | Figure S1. The spinel-saturated bulk chemical compositions of refractory inclusions from CV carbonaceous chondrites projected from spinel onto the corundum (Al2O3) – forsterite (Mg2SiO4) – larnite (Ca2SiO4) plane in the CMAS (CaO-MgO-Al2O3-SiO2) system (MacPherson and Huss, 2005). AOAs, amoeboid olivine aggregates; CTA, Compact Type A; FTA, Fluffy Type A; sp-px-an-mel, spinel-pyroxene-anorthite-melilite CAIs. Figure S2. Locations of SIMS spots for oxygen-isotope compositions (see Table 5) of individual 1 minerals (anorthite in blue; melilite in red; perovskite in cyan; pyroxene in green; spinel in purple;) 2 in CAI N-53. Figure S3. Oxygen-isotope SIMS spots in anorthite (a: a27, a28, a29, a31), melilite (m: m16, 6 m17, m18), and pyroxene (p: p10, p11, p12, p13, p14, p16, p17, p18, p22, p23, p24) in the CAI 7 N-53. Figure S4. Oxygen-isotope SIMS spots in anorthite (a: a30, a32), melilite (m: m19), pyroxene 10 (p: p13, p14, p15, p19, p20, p21), and spinel (s: s1) in the CAI N-53. Figure S5. Oxygen-isotope SIMS spots in melilite (m: m6, m7, m8, m9, m10, m11, m12), and 14 spinel (s: s2) in the CAI N-53. Figure S6. Oxygen-isotope SIMS spots in melilite (m: m13, m14, m15) and pyroxene (p: p31, 17 p32, p33, p34, p35, 36, p37) in the CAI N-53. Figure S7. Oxygen-isotope SIMS spots in anorthite (a: a22, a23, a24), melilite (m: m3, m4, 21 m5), and pyroxene (p: p25, p26, p27, p30, p33) in the CAI N-53. Figure S8. Oxygen-isotope SIMS spots in anorthite (a: a5, a6, a7, a8, a9, a10, a25, a26), melilite 25 (m: m1, m2, m20, m21, m22, m24, m25, m26), pyroxene (p: p4, p28, p29), and wollastonite (w: 26 w7) in the CAI N-53. Figure S9. Oxygen-isotope SIMS spots in anorthite (a: a12, a16, a17, a18, a19, a33, a34, a35, 30 a36) and melilite (m: m23) in the CAI N-53. Figure S10. Oxygen-isotope SIMS spots in anorthite (a: a13, a14, a15, a20, a21), pyroxene (p: 33 p38, p39, p40), perovskite (pv: pv1, pv2, pv3), and spinel (s: s3, s4, s5) in the CAI N-53. Figure S11. Oxygen-isotope SIMS spots in anorthite (a: a2, a3, a4, a11) and pyroxene (p: p1, 37 p2, p3, p5, p6, p8, p9) in the CAI N-53. Figure S12. Al-Mg-isotope SIMS spots in anorthite (a: a1, a2, a3, a4, a6, a7, a10, a11, a12, 41 a13, a16), melilite (m: m3, m4, m7, m8, m9, m10, m11, m15, m16, m17, m18, m19, m20), 42 pyroxene (p: p1, p2, p3, p4, p8, p9, p10, p11, p13, p14, p15, p16, p17), and spinel (s: s1, s2, s3, 43 s6, s8, s9) in the CAI N-53. Figure S13. Al-Mg-isotope SIMS spots in anorthite (a: a1, a9, a12, a13, a14, a15), melilite (m: 47 m1, m2, m3, m4, m5, m6, m10, m11, m17, m21, m22, m23), and pyroxene (p: p13, p14, p15, 48 p18, p19, p20, p21, p22, p23, p24) in the CAI N-53. Figure S14. Al-Mg-isotope SIMS spots in anorthite (a: a8, a9, a10, a16), melilite (m: m8, m9, 52 m11, m12, m13, m15, m17), pyroxene (p: p3, p5, p6, p7, p8, p10, p18), and spinel (s: s1, s2, s3, 53 s4, s7) in the CAI N-53. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Aléon, J. 2016. Oxygen Isotopes in the Early Protoplanetary Disk Inferred from Pyroxene in a Classical Type B CAI. Earth and Planetary Science Letters 440: 62–70.
- Aléon, J. 2018. Closed System Oxygen Isotope Redistribution in Igneous CAIs upon Spinel Dissolution. Earth and Planetary Science Letters 482: 324–333.
- Aléon, J., El Goresy, A., and Zinner, E. 2007. Oxygen Isotope Heterogeneities in the Earliest Protosolar Gas Recorded in a Meteoritic Calcium Aluminum-Rich Inclusion. Earth and Planetary Science Letters 263: 114–127.
- Aléon, J., Krot, A. N., and McKeegan, K. D. 2002. Ca-Al-Rich Inclusions and Amoeboid Olivine Aggregates from the CR Carbonaceous Chondrites. Meteoritics & Planetary Science 37: 1729–1755.
- Aléon, J., Marin-Carbonne, J., McKeegan, K. D., and El Goresy, A. 2018. O, Mg, and Si Isotope Distributions in the Complex Ultrarefractory CAI Efremovka 101.1: Assimilation of Ultrarefractory, FUN, and Regular CAI Precursor. Geochimica et Cosmochimica Acta 81: 48–81.
- Aléon, J., Marin-Carbonne, J., Taillifet, E., McKeegan, K. D., Charnoz, S., and Baillié, K. 2013. Igneous CAI Growth by Coagulation and Partial Melting of Smaller Proto-CAIs: Insights from a Compact Type A CAI and from Modeling. Lunar and Planetary Science 44: 2530.
- Alexander, C. M. O'D., and Ebel, D. S. 2012. Questions, Questions: Can the Contradictions Between the Petrologic, Isotopic, Thermodynamic, and Astrophysical Constraints on Chondrule Formation be Resolved? Meteoritics & Planetary Science 36: 419–428.
- Alexander, C. M. O'D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. 2008. The Formation Conditions of Chondrules and Chondrites. Science 320: 1617–1619.
- Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C. H., Ireland, T. R., Petaev, M., and Jacobsen, S. B. 2010. U-Pb Chronology of the Solar System's Oldest Solids with Variable 238U/235U. Earth and Planetary Science Letters 300: 343–350.
- Beckett, J. R., and Grossman, L. 1988. The Origin of Type C Inclusions from Carbonaceous Chondrites. Earth and Planetary Science Letters 89: 1–14.
- Beckett, J. R., Simon, S. B., and Stolper, E. 2000. The Partitioning of Na between Melilite and Liquid: Part II. Applications to Type B Inclusions from Carbonaceous Chondrites. Geochimica et Cosmochimica Acta 64: 2519–2534.
- Beckett, J. R., and Stolper, E. 2000. The Partitioning of Na between Melilite and Liquid: Part I. The Role of Crystal Chemistry and Liquid Composition. Geochimica et Cosmochimica Acta 64: 2509–2517.
- Beckett, J. R., Thrane, K., and Krot, A. N. 2008. Why Igneous Wollastonite is So Rare in CAIs? 71st Meteoritical Society Meeting, #5208.
- Bischoff, A., and Keil, K. 1984. Al-Rich Objects in Ordinary Chondrites—Related Origin of Carbonaceous and Ordinary Chondrites and their Constituents. Geochimica et Cosmochimica Acta 48: 693–709.
- Bizzarro, M., Paton, C., Larsen, K., Schiller, M., Trinquier, A., and Ulfbeck, D. 2011. High-Precision Mg-Isotope Measurements of Terrestrial and Extraterrestrial Material by HR-MC-ICPMS—Implications for the Relative and Absolute Mg-Isotope Composition of the Bulk Silicate Earth. Journal of Analytical Atomic Spectrometry 26: 656–677.
- Brearley, A. J., and Krot, A. N. 2012. Metasomatism in the Early Solar System: The Record from Chondritic Meteorites. In Metasomatism and the Chemical Transformation of Rock—Lecture Notes in Earth System Sciences, 659–789. Berlin, Heidelberg: Springer-Verlag.
- Brearley, J. A., and Jones, R. H. 1998. Chondritic Meteorites. Reviews in Mineralogy and Geochemistry 36: 3-01–3-398.
- Bullock, E. M., MacPherson, G. J., Nagashima, K., Krot, A. N., Petaev, M. I., Jacobsen, S. B., and Ulyanov, A. A. 2012. Forsterite-Bearing Type B Refractory Inclusions from CV3 Chondrites: From Aggregates to Volatilized Melt Droplets. Meteoritics & Planetary Science 47: 2128–2147.
- Caillet-Komarovski, C. L. V., Zinner, E. K., McKeegan, K. D., Hervig, R., and Buseck, P. R. 2007. The White Angel: A Unique Wollastonite-Bearing, Mass-Fractionated Refractory Inclusion from the Leoville CV3 Carbonaceous Chondrite. Meteoritics & Planetary Science 42: 1159–1182.
10.1111/j.1945-5100.2007.tb00567.x Google Scholar
- Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. 1977. Distribution of the Pre-Solar Component in Allende and Other Carbonaceous Chondrites. Earth and Planetary Science Letters 34: 209–224.
- Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., and Ivanova, M. A. 2012. The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science 338: 651–655.
- Cuzzi, J. N., and Alexander, C. M. O'D. 2006. Chondrule Formation in Particle-Rich Nebular Regions at Least Hundreds of Kilometers across. Nature 441: 483–485.
- Davis, A. M., Alexander, C. M. O'D., Nagahara, H., and Richter, F. M. 2005. Evaporation and Condensation during CAI and Chondrule Formation. In Chondrules and the Protoplanetary Disk ASP Conference Series, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, vol. 341, 433–455. San Francisco: Astronomical Society of the Pacific.
- Davis, A. M., and McKeegan, K. D. 2013. Short-Lived Radionuclides and Early Solar System Chronology. In Meteorites, Comets and Planets, edited by A. M. Davis, vol. 1, Treatise on Geochemistry (Holland, H.D. and Turekian, K.K. eds.), 361–395. Oxford: Elsevier.
- Davis, A. M., Richter, F. M., Mendybaev, R. A., Janney, P. E., Wadhwa, M., and McKeegan, K. D. 2015. Isotopic Mass Fractionation Laws for Magnesium and their Effects on 26Al-26Mg Systematics in Solar System Materials. Geochimica et Cosmochimica Acta 158: 245–261.
- De Laeter, J. R., Bohike, K. K., De Bièvre, P. J., and Hidaka, H. 2003. Atomic Weights of the Elementa: Review 2000. Pure and Applied Chemistry 75: 683–800.
- Ebel, D. S., and Grossman, L. 2000. Condensation in Dust-Enriched Systems. Geochimica et Cosmochimica Acta 64: 339–366.
- Fagan, T. J., Krot, A. N., Keil, K., and Yurimoto, H. 2004. Nebular Setting of Oxygen Isotopic Alteration in a Coarse-Grained Ca-Al-Rich Inclusion from Efremovka. Meteoritics & Planetary Science 39: 1257–1272.
- Galy, A., Young, E. D., Ash, R. D., and O'Nions, R. K. 2000. The Formation of Chondrules at High Gas Pressures in the Solar Nebula. Science 290: 1751–1753.
- Grossman, L., Ebel, D. S., and Simon, S. B. 2002. Formation of Refractory Inclusions by Evaporation of Condensate Precursors. Geochimica et Cosmochimica Acta 66: 145–161.
- Grossman, L., Ebel, D. S., Simon, S. B., Davis, A. M., Richter, F. M., and Parsad, N. M. 2000. Major Element Chemical and Isotopic Compositions of Refractory Inclusions in C3 Chondrites: The Separate Roles of Condensation and Evaporation. Geochimica et Cosmochimica Acta 64: 2879–2894.
- Han, J., Liu, M.-C., Matsuda, N., Park, C., and Keller, L. P. 2020. Mg Isotopic Compositions of Fine-Grained Ca-Al-Rich Inclusions from Reduced CV3 Chondrites and Implications on the Timescale of Nebular Condensation. 51st Lunar and Planetary Science Conference, abstract #2895.
- Imai, H., and Yurimoto, H. 2000. Oxygen and Magnesium Isotopic Distributions in a Type C CAI from the Allende Meteorite. 31st Lunar and Planetary Science Conference, abstract #1510.
- Ito, M., Nagasawa, H., and Yurimoto, H. 2004. Oxygen Isotopic SIMS Analysis in Allende CAI: Details of the Very Early Thermal History of the Solar System. Geochimica et Cosmochimica Acta 68: 2905–2923.
- Itoh, S., Kojima, H., and Yurimoto, H. 2004. Petrography and Oxygen Isotopic Compositions in Refractory Inclusions from CO Chondrites. Geochimica et Cosmochimica Acta 68: 183–194.
- Jilly-Rehak, C. E., Huss, G. R., Nagashima, K., and Schrader, D. L. 2018. Low-Temperature Aqueous Alteration on the CR Chondrite Parent Body: Implications from In Situ Oxygen-Isotope Analyses. Geochimica et Cosmochimica Acta 222: 230–252.
- Kawasaki, N., Itoh, S., Sakamoto, N., Simon, S. B., Yamamoto, D., and Yurimoto, H. 2021. Oxygen and Al-Mg Isotopic Constraints on Cooling Rate and Age of Partial Melting of an Allende Type B CAI, Golfball. Meteoritics & Planetary Science 56: 1224–1239.
- Kawasaki, N., Itoh, S., Sakamoto, N., and Yurimoto, H. 2017. Chronological Study of Oxygen Isotope Composition for the Solar Protoplanetary Disk Recorded in a Fluffy Type A CAI from Vigarano. Geochimica et Cosmochimica Acta 201: 83–102.
- Kawasaki, N., Kato, C., Itoh, S., Wakaki, S., Ito, M., and Yurimoto, H. 2015. 26Al-26Mg Chronology and Oxygen Isotope Distributions of Multiple Melting for a Type C CAI from Allende. Geochimica et Cosmochimica Acta 169: 99–114.
- Kawasaki, N., Sakamoto, N., and Yurimoto, H. 2012. Oxygen Isotopic and Chemical Zoning of Melilite Crystals in a Type A Ca-Al-Rich Inclusion of Efremovka CV3 Chondrite. Meteoritics & Planetary Science 47: 2084–2093.
- Kawasaki, N., Simon, S. B., Grossman, L., Sakamoto, N., and Yurimoto, H. 2018. Crystal Growth and Disequilibrium Distribution of Oxygen Isotopes in an Igneous Ca-Al-Rich Inclusion from the Allende Carbonaceous Chondrite. Geochimica et Cosmochimica Acta 221: 318–341.
- Kita, N. T., Lin, Y., Kimura, M., and Morishita, Y. 2004. The 26Al-26Mg Chronology of a Type C CAI and POIs in Ningqiang Carbonaceous Chondrite. 35th Lunar and Planetary Science, abstract #1471.
- Kita, N. T., Yin, Q.-Z., MacPherson, G. J., Ushikubo, T., Jacobsen, B., Nagashima, K., Kurahashi, E., Krot, A. N., and Jacobsen, S. B. 2013. 26Al-26Mg Isotope Systematics of the First Solids in the Early Solar System. Meteoritics & Planetary Science 48: 1383–1400.
- Krot, A. N. 2019. Refractory Inclusions in Carbonaceous Chondrites: Records of Early Solar System Processes. Meteoritics and Planetary Science 54: 1647–1692.
- Krot, A. N., Amelin, Y., Bland, P., Ciesla, F. J., Connelly, J., Davis, A. M., Huss, G. R., et al. 2009. Origin and Chronology of Chondritic Components: A Review. Geochimica et Cosmochimica Acta 73: 4963–4998.
- Krot, A. N., Chaussidon, M., Yurimoto, H., Sakamoto, N., Nagashima, K., Hutcheon, I. D., and MacPherson, G. J. 2008. Oxygen Isotopic Compositions of Allende Type C CAIs: Evidence for Isotopic Exchange during Nebular Melting and Asteroidal Metamorphism. Geochimica et Cosmochimica Acta 72: 2534–2555.
- Krot, A. N., Fagan, T. J., Keil, K., McKeegan, K. D., Sahijpal, S., Hutcheon, I. D., Petaev, M. I., and Yurimoto, H. 2004. Ca, Al-Rich Inclusions, Amoeboid Olivine Aggregates, and Al-Rich Chondrules from the Unique Carbonaceous Chondrite Acfer 094: I. Mineralogy and Petrology. Geochimica et Cosmochimica Acta 68: 2167–2184.
- Krot, A. N., Hutcheon, I. D., and Keil, K. 2002. Anorthite-Rich Chondrules in the Reduced CV Chondrites: Evidence for Complex Formation History and Genetic Links between CAIs and Ferromagnesian Chondrules. Meteoritics & Planetary Science 37: 155–182.
- Krot, A. N., and Keil, K. 2002. Anorthite-Rich Chondrules in CR and CH Carbonaceous Chondrites: Genetic Link between Ca, Al-Rich Inclusions and Ferromagnesian Chondrules. Meteoritics & Planetary Science 37: 91–111.
- Krot, A. N., Libourel, G., Goodrich, C. A., and Petaev, M. I. 2004. Silica-Rich Igneous Rims around Magnesian Chondrules in CR Carbonaceous Chondrites: Evidence for Fractional Condensation during Chondrule Formation. Meteoritics & Planetary Science 39: 1931–1955.
- Krot, A. N., Ma, C., Nagashima, K., Davis, A. M., Beckett, J. R., Simon, S. B., Komatsu, M., et al. 2019. Mineralogy, Petrography, and Oxygen Isotopic Compositions of Ultrarefractory Inclusions from Carbonaceous Chondrites. Geochemistry 79: 125519.
- Krot, A. N., MacPherson, G. J., Ulyanov, A. A., and Petaev, M. I. 2004. Fine-Grained, Spinel-Rich Inclusions from the Reduced CV Chondrites Efremovka and Leoville: I. Mineralogy, Petrology, and Bulk Chemistry. Meteoritics & Planetary Science 39: 1517–1553.
- Krot, A. N., Nagashima, K., Fintor, K., and Pál-Molnár, E. 2018. Evidence for Oxygen-Isotope Exchange in Refractory Inclusions from Kaba (CV3.1) carbonaceous Chondrite during Fluid-Rock Interaction on the CV Parent Asteroid. Geochimica et Cosmochimica Acta 246: 419–435.
- Krot, A. N., Nagashima, K., Lyons, J. R., Lee, J.-E., and Bizzarro, M. 2020. Oxygen Isotopic Heterogeneity in the Early Solar System Inherited from the Protosolar Molecular Cloud. Science Advances 6: eaay2724.
- Krot, A. N., Nagashima, K., MacPherson, G. J., and Ulyanov, A. A. 2022. On the Nature of Oxygen-Isotope Heterogeneity of Igneous Calcium-Aluminum-Rich Inclusions in CV Carbonaceous Chondrites. Geochimica et Cosmochimica Acta 332: 327–354.
- Krot, A. N., Nagashima, K., Simon, S. B., Ma, C., Connolly, H. C., Jr., Huss, G. R., Davis, A. M., and Bizzarro, M. 2019. Mineralogy, Petrography, and Oxygen and Aluminum-Magnesium Isotope Systematics of Grossite-Bearing Refractory Inclusions. Geochemistry 79: 125529.
- Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. 2017. Calcium-Aluminum-Rich Inclusions Recycled during Formation of Porphyritic Chondrules from CH Carbonaceous Chondrites. Geochimica et Cosmochimica Acta 201: 185–223.
- Krot, A. N., Nagashima, K., Wasserburg, G. J., Huss, G. R., Papanastassiou, D., Davis, A. M., Hutcheon, I. D., and Bizzarro, M. 2014. Calcium-Aluminum-Rich Inclusions with Fractionation and Unknown Nuclear Effects (FUN CAIs): I. Mineralogy, Petrology, and Oxygen-Isotope Compositions. Geochimica et Cosmochimica Acta 145: 206–247.
- Krot, A. N., Petaev, M. I., and Nagashima, K. 2021. Infiltration Metasomatism of the Allende Coarse-Grained Calcium-Aluminum-Rich Inclusions. Progress in Earth and Planetary Science 8: 61.
- Krot, A. N., Yurimoto, H., Hutcheon, I. D., Libourel, G., Chaussidon, M., Petaev, M. I., MacPherson, G. J., Paque-Heather, J., and Wark, D. 2007. Anorthite-Rich, Igneous (Type C) Ca,Al-Rich Inclusions from the CV Carbonaceous Chondrite Allende: Evidence for Multistage Formation History. Geochimica et Cosmochimica Acta 71: 4342–4364.
- Krot, A. N., Yurimoto, H., Hutcheon, I. D., and MacPherson, G. J. 2005. Relative Chronology of CAI and Chondrule Formation: Evidence from Chondrule-Bearing Igneous CAIs. Nature 434: 998–1001.
- Krot, A. N., Yurimoto, H., Hutcheon, I. D., MacPherson, G. J., and Paque, J. 2007. Remelting of Refractory Inclusions in the Chondrule-Forming Regions: Evidence from the Chondrule-Bearing Type C Calcium-Aluminum-Rich Inclusions. Meteoritics & Planetary Science 42: 1197–1221.
- Larsen, K., Trinquier, A., Paton, C., Schiller, M., Wielandt, D., Ivanova, M., Connelly, J., Nordlund, A., Krot, A. N., and Bizzarro, M. 2011. Evidence for Magnesium-Isotope Heterogeneity in the Solar Protoplanetary Disk. The Astrophysical Journal 735: L37–L40.
- Larsen, K. K., Wielandt, D., Schiller, M., and Bizzarro, M. 2016. Chromatographic Speciation of Cr (III)-Species, Interspecies Equilibrium Isotope Fractionation and Improved Chemical Purification Strategies for High-Precision Isotope Analysis. Journal of Chromatography. A 1443: 162–174.
- Larsen, K. K., Wielandt, D., Schiller, M., Krot, A. N., and Bizzarro, M. 2020. Episodic Formation of Refractory Inclusions in the Solar System and their Presolar Heritage. Earth and Planetary Science Letters 535: 1–9.
- Lee, M. R., Alexander, C. M. O'D., Bischoff, A., Brearley, A. J., Dobrică, E., Fujiya, W., Le Guillou, C., et al. 2025. Low-Temperature Aqueous Alteration of Chondrites. Space Science Reviews, in press 221: 11.
- Libourel, G., Krot, A. N., and Tissandier, L. 2006. Role of Gas-Melt Interaction during Chondrule Formation. Earth and Planetary Science Letters 251: 232–240.
- Lin, Y., and Kimura, M. 1998. Anorthite-Spinel-Rich Inclusions in the Ningqiang Carbonaceous Chondrite: Genetic Links to Type A and C Inclusions. Meteoritics & Planetary Science 33: 435–446.
- Lin, Y., and Kimura, M. 2000. Two Unusual Type B Refractory Inclusions in the Ninqgiang Carbonaceous Chondrite: Evidence for Relicts, Xenoliths and Multi-Stage Heating. Geochimica et Cosmochimica Acta 64: 4031–4047.
- Lin, Y., and Kimura, M. 2003. Ca-Al-Rich Inclusions from the Ningqiang Meteorite: Continuous Assemblages of Nebular Condensates and Genetic Link to Type B Inclusions. Geochimica et Cosmochimica Acta 67: 2251–2267.
- Lodders, K. 2008. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal 591: 1220–1247.
- MacPherson, G. J. 2014. Calcium-Aluminum-Rich Inclusions in Chondritic Meteorites. In Meteorites and Cosmochemical Processes, Vol. 1 of Treatise on Geochemistry, edited by A. M. Davis, 139–179. Amsterdam: Elsevier.
10.1016/B978-0-08-095975-7.00105-4 Google Scholar
- MacPherson, G. J., and Davis, A. M. 1993. A Petrologic and Ion Microprobe Study of a Vigarano Type B2 Refractory Inclusion: Evolution by Multiple Stages of Alteration and Melting. Geochimica et Cosmochimica Acta 57: 231–243.
- MacPherson, G. J., and Huss, G. R. 2005. Petrogenesis of Al-Rich Chondrules: Evidence from Bulk Compositions and Phase Equilibria. Geochimica et Cosmochimica Acta 69: 3099–3127.
- MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S., and Davis, A. M. 2012. Well-Resolved Variations in the Formation Ages for Ca-Al-Rich Inclusions in the Early Solar System. Earth and Planetary Science Letters 331: 43–54.
- MacPherson, G. J., Nagashima, K., Krot, A. N., Kuehner, S. M., Irving, A. J., Ziegler, K., Mallozzi, L., Corrigan, C., and Pitt, D. 2023. Northwest Africa 8418: The First CV4 Chondrite. Meteoritics & Planetary Science 58: 135–157.
- Makide, K., Nagashima, K., Krot, A. N., Huss, G. R., Hutcheon, I. D., and Bischoff, A. 2009. Oxygen- and Magnesium-Isotope Compositions of Calcium−Aluminum-Rich Inclusions from CR2 Carbonaceous Chondrites. Geochimica et Cosmochimica Acta 73: 5018–5051.
- Nagashima, K., Kita, N. T., and Luu, T.-H. 2018. 26Al-26Mg Systematics of Chondrules. In Chondrules and the Protoplanetary Disk, edited by S. S. Russel, H. C. J. Connolly, and A. N. Krot, 247–275. Astronomical Society of the Pacific, San Francisco: Cambridge University Press.
10.1017/9781108284073.009 Google Scholar
- Nagashima, K., Krot, A. N., and Chaussidon, M. 2007. Aluminum-Magnesium Isotope Systematics of Chondrules from CR Chondrites. Meteoritics & Planetary Science 42(Suppl): A115.
- Ogliore, R. C., Huss, G. R., and Nagashima, K. 2011. Ratio Estimation in SIMS Analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269: 1910–1918.
- Olsen, M. B., Schiller, M., Krot, A. N., and Bizzarro, M. 2013. Magnesium Isotope Evidence for Single Stage Formation of CB Chondrules by Colliding Planetesimals. Astrophysical Journal Letters 776: L1.
- Papanastassiou, D. A., Wasserburg, G. J., and Bogdanovski, O. 2005. The 53Mn-53Cr System in CAIs: An Update. 36th Lunar and Planetary Science Conference, abstract #2198.
- Park, C., Nagashima, K., Krot, A. N., Huss, G. R., Davis, A. M., and Bizzarro, M. 2017. Calcium-Aluminum-Rich Inclusions with Fractionation and Unidentified Nuclear Effects (FUN CAIs): II. Heterogeneities of Magnesium Isotopes and 26Al in the Early Solar System Inferred from In Situ High-Precision Magnesium-Isotopic Measurements. Geochimica et Cosmochimica Acta 201: 6–24.
- Paton, C., Hellstrom, J., Bence, P., Woodhead, J., and Hergt, J. 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry 26: 2508–2518.
- Petaev, M. I., and Wood, J. A. 2005. Meteoritic Constraints on Temperatures, Pressures, Cooling Rates, Chemical Compositions and Modes of Condensation in the Solar Nebula. In Chondrites and the Protoplanetary Disk ASP Conference Series, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, vol. 341, 373–406. San Francisco: Astronomical Society of the Pacific.
- Pouchou, J.-L., and Pichoir, F. 1984. A New Model for Quantitative x-Ray Microanalysis. Part I: Application to the Analysis of Homogeneous Samples. Recherche Aérospatiale 5: 13–38.
- Richter, F. M., Davis, A. M., Ebel, D. S., and Hashimoto, A. 2002. Elemental and Isotopic Fractionation of Type B Calcium-, Aluminum-Rich Inclusions: Experiments, Theoretical Considerations, and Constraints on their Thermal Evolution. Geochimica et Cosmochimica Acta 66: 521–540.
- Ryerson, F. J., and McKeegan, K. D. 1994. Determination of Oxygen Self-Diffusion in åkermanite, Anorthite, Diopside, and Spinel: Implications for Oxygen Isotopic Anomalies and the Thermal Histories of Ca-Al-Rich Inclusions. Geochimica et Cosmochimica Acta 58: 3713–3734.
- Schrader, D. L., Davidson, J., Greenwood, R. C., Franchi, I. A., and Gibson, J. M. 2014. A Water-Ice Rich Minor Body from the Early Solar System: The CR Chondrite Parent Asteroid. Earth and Planetary Science Letters 407: 48–60.
- Schrader, D. L., Franchi, I. A., Connolly, H. C., Jr., Greenwood, R. C., Lauretta, D. S., and Gibson, J. M. 2011. The Formation and Alteration of the Renazzo-Like Carbonaceous Chondrites I: Implications of Bulk-Oxygen Isotopic Composition. Geochimica et Cosmochimica Acta 75: 308–325.
- Simon, J. I., Young, E. D., Russell, S. S., Tonui, E. K., Dyl, K. A., and Manning, C. E. 2005. A Short Timescale for Changing Oxygen Fugacity in the Solar Nebula Revealed by High-Resolution 26Al-26Mg Dating of CAI Rims. Earth and Planetary Science Letters 238: 272–283.
- Simon, S. B., Grossman, L., and Sutton, S. R. 2005. A Unique Type B Inclusions from Allende with Evidence for Multiple Stages of Melting. Meteoritics & Planetary Science 40: 461–475.
- Stolper, E. 1982. Crystallization Sequences of Ca-Al-Rich Inclusions from Allende: An Experimental Study. Geochimica et Cosmochimica Acta 46: 2159–2180.
- Suzumura, A., Kawasaki, N., Seto, Y., Yurimoto, H., and Itoh, S. 2021. Origin of Minerals in åkermanite-Rich Patch Texture and Oxygen Isotopic Evolution of Compact Type A Ca-Al-Rich Inclusions from the Northwest Africa 7865 CV Chondrite. Geochimica et Cosmochimica Acta 303: 51–65.
- Tenner, T. J., Ushikubo, T., Nakashima, D., Schrader, D. L., Weisberg, M. K., Kimura, M., and Kita, N. 2018. Oxygen isotope characteristics of chondrules from recent studies by secondary ion mass spectrometry. In Chondrules and the protoplanetary disk, edited by S. S. Russel, H. C. Connolly, and A. N. Krot, 196–247. Cambridge, UK: Cambridge University Press.
10.1017/9781108284073.008 Google Scholar
- Thrane, K., Nagashima, K., Krot, A. N., and Bizzarro, M. 2008. Discovery of a New FUN CAI from a CV Carbonaceous Chondrite: Evidence for Multistage Thermal Processing in the Protoplanetary Disk. The Astrophysical Journal 680: L141–L144.
- Tissandier, L., Libourel, G., and Robert, F. 2002. Gas-Melt Interactions and their Bearings on Chondrule Formation. Meteoritics & Planetary Science 37: 1377–1389.
- Wakaki, S., Itoh, S., Tanaka, T., and Yurimoto, H. 2013. Petrology, Trace Element Abundances and Oxygen Isotopic Compositions of a Compound CAI-Chondrule Object from Allende. Geochimica et Cosmochimica Acta 102: 261–279.
- Wark, D. A. 1987. Plagioclase-Rich Inclusions in Carbonaceous Chondrite Meteorites: Liquid Condensates? Geochimica et Cosmochimica Acta 51: 221–242.
- Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. 1993. The CR (Renazzo-Type) Carbonaceous Chondrite Group and its Implications. Geochimica et Cosmochimica Acta 57: 1567–1586.
- Yoshitake, M., Koide, Y., and Yurimoto, H. 2005. Correlations between Oxygen-Isotopic Composition and Petrologic Setting in a Coarse-Grained Ca,Al-Rich Inclusion. Geochimica et Cosmochimica Acta 69: 2663–2674.
- Yoshizaki, T., Nakashima, D., Nakamura, T., Park, C., Sakamoto, N., Ishida, H., and Itoh, S. 2019. Nebular History of an Ultrarefractory Phase Bearing CAI from a Reduced Type CV Chondrite. Geochimica et Cosmochimica Acta 252: 39–60.
- Yurimoto, H., Ito, M., and Nagasawa, H. 1998. Oxygen Isotope Exchange between Refractory Inclusion in Allende and Solar Nebula Gas. Science 282: 1874–1877.
- Yurimoto, H., Krot, A. N., Choi, B.-G., Aléon, J., Kunihiro, T., and Brearley, A. J. 2008. Oxygen Isotopes of Chondritic Components. In Oxygen in the Solar System Reviews in Mineralogy and Geochemistry, edited by G. J. MacPherson, vol. 68, 141–187 The Mineralogical Society of America: Geochemical Society, Lunar and Planetary Institute.
10.1515/9781501508509-008 Google Scholar