Collection of Antarctic micrometeorites stored in the surface snow near the Dome Fuji Station
Corresponding Author
Takaaki Noguchi
Division of Earth and Planetary Science, Kyoto University, Kyoto, Japan
Correspondence
Takaaki Noguchi, Division of Earth and Planetary Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
Email: [email protected]
Search for more papers by this authorTakahito Tominaga
Department of Earth and Planetary Science, Kyushu University, Fukuoka, Japan
Kai Industries Co. Ltd., Gifu, Japan
Search for more papers by this authorMinako Takase
Department of Earth and Planetary Science, Kyushu University, Fukuoka, Japan
Fukuoka City Science Museum, Fukuoka, Japan
Search for more papers by this authorAkira Yamaguchi
National Institute of Polar Research, Japan, Tokyo, Japan
Search for more papers by this authorNaoya Imae
National Institute of Polar Research, Japan, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Takaaki Noguchi
Division of Earth and Planetary Science, Kyoto University, Kyoto, Japan
Correspondence
Takaaki Noguchi, Division of Earth and Planetary Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
Email: [email protected]
Search for more papers by this authorTakahito Tominaga
Department of Earth and Planetary Science, Kyushu University, Fukuoka, Japan
Kai Industries Co. Ltd., Gifu, Japan
Search for more papers by this authorMinako Takase
Department of Earth and Planetary Science, Kyushu University, Fukuoka, Japan
Fukuoka City Science Museum, Fukuoka, Japan
Search for more papers by this authorAkira Yamaguchi
National Institute of Polar Research, Japan, Tokyo, Japan
Search for more papers by this authorNaoya Imae
National Institute of Polar Research, Japan, Tokyo, Japan
Search for more papers by this authorAbstract
Over a period of 16 years, we collected Antarctic micrometeorites (AMMs) preserved in 1-t snow samples from the surface to a depth of ~10–15 cm near Dome Fuji Station, Antarctica. A total of 1025 AMMs were identified: 843 unmelted AMMs, 51 scoriaceous ones, and 131 cosmic spherules. Their average sizes were 40, 64, and 40 μm, respectively. The accretion rate of AMMs was inferred to be (3.3 ± 1.8) × 103 t year−1, based on the snow accumulation rate near Dome Fuji Station. We compared the Dome Fuji collection (DFC) with our previous Tottuki #5 collection (T5C) recovered from blue ice in 2000. Regardless of the collection methods, the full range size distributions of AMMs were well fitted by lognormal functions. In 2019 and 2020, we applied a freeze-drying (FD) system to collect AMMs. We identified 21 AMMs from 17 kg of surface snow. Both GEMS (glass with embedded metal and sulfide)-rich chondritic porous (CP) AMMs and hydrated fine-grained (H f-g) AMMs were identified. No detectable mineralogical differences were observed between a CP AMM from the DFC-FD and one from the DFC, suggesting that ~6 h of exposure to cold water (<8.7°C) did not affect the mineralogy of CP AMMs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data available on request from the authors.
REFERENCES
- Attree, N., Groussin, O., Jorda, L., Nébouy, D., Thomas, N., Brouet, Y., Kührt, E., et al. 2018. Tensile Strength of 67P/Churyumov–Gerasimenko Nucleus Material from Overhangs. Astronomy & Astrophysics 611: A33–A45.
- Brearley, A. J., and Jones, R. H. 1998. Chondritic Meteorites. In Planetary Materials, edited by J. J. Papike, vol. 36. Washington, DC: Mineralogical Society of America (Reviews in Mineralogy), C1–C398.
- Brownlee, D. E., Bates, B., and Schramm, L. 1997. The Elemental Composition of Stony Cosmic Spherules. Meteoritics & Planetary Science 32: 157–175.
- Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation Forces on Small Particles in the Solar System. Icarus 40: 1–48.
- Cavitte, M. G. P., Parrenin, F., Ritz, C., Young, D. A., Van Liefferinge, B., Blankenship, D. D., Frezzotti, M., and Roberts, J. L. 2018. Accumulation Patterns around Dome C, East Antarctica, in the Last 73 Kyr. The Cryosphere 12: 1401–1414. https://doi.org/10.5194/tc-12-1401-2018.
- David, J.-C., and Leya, I. 2019. Spallation, Cosmic Rays, Meteorites, and Planetology. Progress in Particle and Nuclear Physics 109: 103711. https://doi.org/10.1016/j.ppnp.2019.103711.
- Dobrică, E., Engrand, C., Leroux, H., Rouzaud, J. N., and Duprat, J. 2012. Transmission Electron Microscopy of CONCORDIA Ultracarbonaceous Antarctic Micrometeorites (UCAMMs): Mineralogical Properties. Geochimica et Cosmochimica Acta 76: 68–82.
- Dobrică, E., Ogliore, R. C., Engrand, C., Nagashima, K., and Brearley, A. J. 2019. Mineralogy and Oxygen Isotope Systematics of Magnetite Grains and a Magnetite Dolomite Assemblage in Hydrated Fine-Grained Antarctic Micrometeorites. Meteoritics & Planetary Science 54: 1973–1989.
- Duprat, J., Dobrică, E., Engrand, C., Aléon, J., Marrocchi, Y., Mostefaoui, S., Meibom, A., et al. 2010. Extreme Deuterium Excesses in Ultracarbonaceous Micrometeorites from Central Antarctic Snow. Science 328: 742–745. https://doi.org/10.1126/science.1184832.
- Genge, M. J., Engrand, C., Gounelle, M., and Taylor, S. 2008. The Classification of Micrometeorites. Meteoritics & Planetary Science 43: 497–515.
- Genge, M. J., van Ginneken, M., Suttle, M. D., and Harvey, R. P. 2018. Accumulation Mechanisms of Micrometeorites in an Ancient Supraglacial Moraine at Larkman Nunatak, Antarctica. Meteoritics & Planetary Science 53: 2051–2066. https://doi.org/10.1111/maps.13107.
- Gounelle, M., Maurette, M., Kurat, G., and Hammer, C. 1999. Comparison of the 1998 “Cap-Prudhomme” and “Astrolabe” Antarctic Micrometeorite Collections with the 1996 “South Pole” Collection: preliminary implications. 30th Lunar and Planetary Science Conference, abstract #1564.
- Grott, M., Knollenberg, J., Hamm, M., Ogawa, K., Jaumann, R., Otto, K. A., Delbo, M., et al. 2019. Low Thermal Conductivity Boulder with High Porosity Identified on C-Type Asteroid (162173) Ryugu. Nature Astronomy 3: 971–997.
- Gustafson, B. Å. S. 1994. Physics of Zodiacal Dust. Annual Review of Earth and Planetary Science 22: 553–595.
- Hammer, C., and Maurette, M. 1996. Micrometeorite Flux on the Melt Zone of the West Greenland Ice Sheet. Meteoritics & Planetary Science 31: A56–A57.
- Ito, M., Tomioka, N., Uesugi, M., Yamaguchi, A., Shirai, N., Ohigashi, T., Liu, M.-C., et al. 2022. A Pristine Record of Outer Solar System Materials from Asteroid Ryugu's Returned Sample. Nature Astronomy 6: 1163–1171.
- Iwata, N., and Imae, N. 2002. Antarctic Micrometeorite Collection at a Bare Ice Region near Syowa Station by JARE-41 in 2000. Antarctic Meteorite Research 15: 25–37.
- Jackson, A. A., and Zook, H. A. 1992. Orbital Evolution of Dust Particles from Comets and Asteroids. Icarus 97: 70–84.
- Jonker, G., van Elsas, R., van der Lubbe, J. H. J. L., and van Westrenen, W. 2023. Improved Collection of Rooftop Micrometeorites through Optimized Extraction Methods: The Budel Collection. Meteoritics & Planetary Science 58: 463–479. https://doi.org/10.1111/maps.13966.
- Joswiak, D. J., Brownlee, D. E., Pepin, R. O., and Schlutter, D. J. 2007. Densities and Mineralogy of Cometary and Asteroidal Interplanetary Dust Particles Collected in the Stratosphere. In Workshop on Dust in Planetary Systems (ESA SP-643), 26–30 September 2005, edited by H. Krueger, and A. Graps. Kauai, Hawaii: ESA Publications.
- Kameda, T., Motoyama, H., Fujita, S., and Takahashi, S. 2008. Temporal and Spatial Variability of Surface Mass Balance at Dome Fuji, East Antarctica, by the Stake Method from 1995 to 2006. Journal of Glaciology 54: 107–116.
- Keller, L. P., and Flynn, G. J. 2021. Evidence for a Significant Kuiper Belt Dust Contribution to the Zodiacal Cloud. Nature Astronomy 6: 731–735. https://doi.org/10.1038/s41550-022-01647-6.
- Kelly, M. S. P., Hsieh, H. H., Bodewits, D., Saki, M., Villanueva, G., Milam, S. N., and Hammel, H. B. 2023. Spectroscopic Identification of Water Emission from a Main-Belt Comet. Nature Astronomy 619: 720–723.
10.1038/s41586-023-06152-y Google Scholar
- Kurat, G., Koeberl, C., Presper, T., Brandstätter, F., and Maurette, M. 1994. Petrology and Geochemistry of Antarctic Micrometeorites. Geochimica et Cosmochimica Acta 58: 3879–3904.
- Kurosawa, K., Tanaka, S., Ino, Y., Nakashima, D., Nakamura, T., Morita, T., Kikuiri, M., et al. 2022. Tensile (flexural) Strength of Ryugu Grain C0002. 53rd Lunar and Planetary Science Conference, abstract #1378.
- Kyte, F. T. 1983. Analysis of extraterrestrial materials in terrestrial sediments PhD thesis, University of California, Los Angeles, CA, USA, 152 pp.
- Lauretta, D. S., Connolly, H. C., Jr., Aebersold, J. E., Alexander, C. M. O'D., Ballouz, R. L., Barnes, J. J., Bates, H. C., et al. 2024. Asteroid (101955) Bennu in the Laboratory: Properties of the Sample Collected by OSIRIS-REx. Meteoritics & Planetary Science 59: 2453–2486. https://doi.org/10.1111/maps.14227.
- Lin, M., and Poppe, A. R. 2024. Solar Energetic Particle Track Accumulation in Edgeworth–Kuiper Belt Dust Grains. Astrophysical Journal 5: 274–286.
- Love, S. G., and Brownlee, D. E. 1993. A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust. Science 262: 550–553. https://doi.org/10.1126/science.262.5133.550.
- Maurette, M., Olinger, C., Christophe Michel-Levy, M., Kurat, G., Pourchet, M., Brandstätter, F., and Bourot-Denise, M. 1991. A Collection of Diverse Micrometeorites Recovered From 100 Tonnes of Antarctic Blue Ice. Nature 351: 44–47.
- Maurette, M., Jehanno, C., Robin, E., and Hammer, C. 1987. Characteristics and Mass Distribution of Extraterrestrial Dust from the Greenland Ice Cap. Nature 328: 869–871.
- McDonnell, J. A. M. 1978. Cosmic Dust. New York, NY: Wiley-Interscience.
- Murrell, M. T., Davis, P. A., Nishiizumi, K., and Millard, H. T. 1980. Deepsea Spherules from Pacific Clay: Mass Distribution and Influx Rate. Geochimica et Cosmochimica Acta 44: 2067–2074.
- Nakamura, T., Matsumoto, M., Amano, K., Enokido, Y., Zolensky, M. E., Mikouchi, T., Genda, H., et al. 2023. Formation and Evolution of Carbonaceous Asteroid Ryugu: Direct Evidence from Returned Samples. Science 379: eabn8671.
- Noguchi, T., Matsumoto, R., Yabuta, H., Kobayashi, H., Miyake, A., Naraoka, H., Okazaki, R., et al. 2022. Antarctic Micrometeorite Composed of CP and CS IDP-Like Material: A Micro-Breccia Originated from a Partially Ice-Melted Comet-like Small Body. Meteoritics & Planetary Science 57: 2042–2062. https://doi.org/10.1111/maps.13919.
- Noguchi, T., Matsumoto, T., Miyake, A., Igami, Y., Haruta, M., Saito, H., Hata, S., et al. 2023. Mineralogy and Petrology of Fine-Grained Samples Recovered from the Asteroid (162173) Ryugu. Meteoritics & Planetary Science 59: 1877–1906. https://doi.org/10.1111/maps.14093.
- Noguchi, T., Nakamura, T., and Nozaki, W. 2002. Mineralogy of Phyllosilicate-Rich Micrometeorites and Comparison with Tagish Lake and Sayama Meteorites. Earth and Planetary Science Letters 202: 229–246.
- Noguchi, T., Nakashima, D., Ushikubo, T., Fujiya, W., Ohashi, N., Bradley, J. P., Nakamura, T., et al. 2024. Chondrule-Like Objects and a Ca-Al-Rich Inclusion from Comets or Comet-like Icy Bodies. Geochimica et Cosmochimica Acta 381: 131–155.
- Noguchi, T., Ohashi, N., Tsujimoto, S., Mitsunari, T., Bradley, J. P., Nakamura, T., Toh, S., Stephan, T., Iwata, N., and Imae, N. 2015. Cometary Dust in Antarctic Ice and Snow: Past and Present Chondritic Porous Micrometeorites Preserved on the Earth's Surface. Earth and Planetary Science Letters 410: 1–11. https://doi.org/10.1016/j.epsl.2014.11.012.
- Noguchi, T., Yabuta, H., Itoh, S., Sakamoto, N., Mitsunari, T., Okubo, A., Okazaki, R., et al. 2017. Variation of Mineralogy and Organic Matter during the Early Stages of Aqueous Activity Recorded in Antarctic Micrometeorites. Geochimica et Cosmochimica Acta 208: 119–144. https://doi.org/10.1016/j.gca.2017.03.034.
- Okazaki, R., Noguchi, T., Tsujimoto, S., Tobimatsu, Y., Nakamura, T., Ebihara, M., Itoh, S., et al. 2015. Mineralogy and Noble Gas Isotopes of Micrometeorites Collected from Antarctic Snow. Earth Planet and Space 67: 90–106.
- Parish, T. R., and Cassano, J. J. 2003. The Role of Katabatic Winds on the Antarctic Surface Wind Regime. Monthly Weather Review 131: 317–333.
- Parkin, D. W., and Tilles, D. 1968. Influx Measurements of Extraterrestrial Material. Science 159: 936–946.
- Peucker-Ehrenbrink, B., and Ravizza, G. 2000. The Effects of Sampling Artifacts on Cosmic Dust Flux Estimates: A Reevaluation of Nonvolatile Tracers (Os, Ir). Geochimica et Cosmochimica Acta 64: 1965–1970.
- Pohl, L., and Britt, D. T. 2020. Strengths of Meteorites—An Overview and Analysis of Available Data. Meteoritics & Planetary Science 55: 962–987.
- Prasad, M. S., Rudraswami, N. G., and Panda, D. K. 2013. Micrometeorite Flux on Earth during the Last ~50,000 Years. Journal of Geophysical Research Planets 118: 2381–2399. https://doi.org/10.1002/2013JE004460.
- Robin, E., Jehannoc, C., and Maurette, M. 1988. Characteristics and Origin of Greenland Fe/Ni Cosmic Grains. In Proceedings of 18th Lunar and Planetary Science Conference, edited by G. Ryder, 593–598. Houston, TX: Cambridge University Press and Lunar and Planetary Institute.
- Rochette, P., Folco, L., Suavet, C., van Ginneken, M., Gattacceca, J., Perchiazzi, N., Braucher, R., and Harvey, R. P. 2008. Micrometeorites from the Transantarctic Mountains. Proceedings of National Academy of Sciences of the United States of America 105: 18206–18211. https://doi.org/10.1073/pnas.0806049105.
- Rojas, J., Duprat, J., Dartois, E., Wu, T.-D., Engrand, C., Nittler, L. R., Bardin, N., et al. 2024. Nitrogen-Rich Organics from Comets Probed by Ultra-Carbonaceous Antarctic Micrometeorites. Nature Astronomy 8: 1553–1561.
- Rojas, J., Duprat, J., Engrand, C., Dartois, E., Delauche, L., Godard, M., Gounelle, M., Carrillo-Sánchez, J. D., Pokorný, P., and Plane, J. M. C. 2021. The Micrometeorite Flux at Dome C (Antarctica), Monitoring the Accretion of Extraterrestrial Dust on Earth. Earth and Planetary Science Letters 560: 116794. https://doi.org/10.1016/j.epsl.2021.116794.
- Sakamoto, K., Nakamura, T., Noguchi, T., and Tsuchiyama, A. 2010. A New Variant of Saponite-Rich Micrometeorites Recovered from Recent Antarctic Snowfall. Meteoritics & Planetary Science 45: 220–237.
- Sandford, S. A., and Bradley, J. P. 1989. Interplanetary Dust Particles Collected in the Stratosphere: Observations of Atmospheric Heating and Constraints on their Interrelationships and Sources. Icarus 82: 146–166.
- Sandford, S. A., and Walker, R. M. 1985. Laboratory Infrared Transmission Spectra of Individual Interplanetary Dust Particles from 2.5 to 25 Microns. Astrophysical Journal 291: 838–851.
- Six, D., Fily, M., Alvain, S., Henry, P., and Benoist, J.-P. 2004. Surface Characterisation of the Dome Concordia Area (Antarctica) as a Potential Satellite Calibration Site, Using Spot 4/Vegetation Instrument. Remote Sensing of Environment 89: 83–94.
- Suavet, C., Alexandre, A., Franchi, I. A., Gattacceca, J., Sonzogni, C., Greenwood, R. C., Folco, L., and Rochette, P. 2010. Identification of the Parent Bodies of Micrometeorites with High-Precision Oxygen Isotope Ratios. Earth and Planetary Science Letters 293: 313–320.
- Suavet, C., Rochette, P., Kars, M., Gattacceca, J., Folco, L., and Harvey, R. P. 2009. Statistical Properties of the Transantarctic Mountains (TAM) Micrometeorite Collection. Polar Science 3: 100–109. https://doi.org/10.1016/j.polar.2009.06.003.
- Suttle, M. D., Hasse, T., and Hecht, L. 2021. Evaluating Urban Micrometeorites as a Research Resource—A Large Population Collected from a Single Rooftop. Meteoritics & Planetary Science 56: 1531–1555.
- Suttle, S. D., and Folco, L. 2020. The Extraterrestrial Dust Flux: Size Distribution and Mass Contribution Estimates Inferred from the Transantarctic Mountains (TAM) Micrometeorite Collection. Journal of Geophysical Research Planets 125: e2019JE006241. https://doi.org/10.1029/2019JE006241.
- Takahashi, S., Kameda, T., Shiraiwa, T., Kodama, Y., Fujita, S., Motoyama, H., Watanabe, O., Weidner, G. A., and Stearns, C. R. 1998. Automatic Weather Station Program during Dome Fuji Project by JARE in East Dronning Maud Land, Antarctica. Annals of Glaciology 27: 528–534.
- Takayanagi, M., and Ozima, M. 1987. Temporal Variation of 3He/4He Ratio Recorded in Deep-Sea Sediment Cores. Journal of Geophysical Research 92: 12531–12538.
- Taylor, S., and Brownlee, D. E. 1991. Cosmic Spherules in the Geologic Record. Meteoritics 26: 203–211.
- Taylor, S., Lever, J. H., Burgess, K. D., Stroud, R. M., Brownlee, D. E., Nittler, L. R., Bardyn, A., et al. 2020. Sampling Interplanetary Dust from Antarctic Air. Meteoritics & Planetary Science 55: 1128–1145. https://doi.org/10.1111/maps.13483.
- Taylor, S., Lever, J. H., and Harvey, R. P. 1998. Accretion Rate of Cosmic Spherules Measured at the South Pole. Nature 392: 899–903.
- Taylor, S., Lever, J. H., and Harvey, R. P. 2000. Numbers, Types, and Compositions of an Unbiased Collection of Cosmic Spherules. Meteoritics & Planetary Science 35: 651–666.
- van Ginneken, M., Wozniakiewicz, P., Debaille, V., Delauche, L., Duprat, J., Engrand, C., Folco, L., et al. 2024. Micrometeorite Collections, a Review, and their Current Status. Transaction of Royal Society of London A 382: 20230195. https://doi.org/10.1098/rsta.2023.0195.
- Wisdom, J. 1985. Meteorites May Follow a Chaotic Route to Earth. Nature 315: 731–733.
- Wisdom, J. 2017. Meteorite Transport—Revisited. Meteoritics & Planetary Science 52: 1660–1668. https://doi.org/10.1111/maps.12876.
- Yabuta, H., Noguchi, T., Itoh, S., Nakamura, T., Miyake, A., Tsujimoto, S., Ohashi, N., et al. 2017. Formation of an Ultracarbonaceous Antarctic Micrometeorite through Minimum Aqueous Alteration in a Small Porous Icy Body. Geochimica et Cosmochimica Acta 214: 172–190. https://doi.org/10.1016/j.gca.2017.06.047.
- Yada, T., Nakamura, T., Takaoka, N., Noguchi, T., Terada, K., Yano, H., Nakazawa, T., and Kojima, H. 2004. The Global Accretion Rate of Extraterrestrial Materials in the Last Glacial Period Estimated from the Abundance of Micrometeorites in Antarctic Glacier Ice. Earth Planets Space 56: 67–79.
- Yamaguchi, A., Tomioka, N., Ito, M., Shirai, N., Kimura, M., Greenwood, R. C., Liu, M.-C., et al. 2023. Insight into Multi-Step Geological Evolution of C-Type Asteroids from Ryugu Particles. Nature Astronomy 7: 398–405.
- Yiou, F., Raisbeck, G. M., and Jéhanno, C. 1989. Influx of Cosmic Spherules to the Earth during the Last ~105 Years as Deduced from Concentration in Antarctic Ice Cores. Meteoritics 23: 344.