The Vehicle of Administration and Prandial State May Reduce the Spectrum of Oral Broad-Spectrum Antibiotics (Oxytetracycline, Fosfomycin and Amoxicillin) Administered to Piglets: A Pharmacokinetic/Pharmacodynamic Approach
Corresponding Author
Julieta M. Decundo
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Correspondence:
Julieta M. Decundo ([email protected])
Search for more papers by this authorSusana N. Dieguez
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
Search for more papers by this authorGuadalupe Martínez
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Search for more papers by this authorFabián A. Amanto
Área de Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Search for more papers by this authorDenisa S. Pérez Gaudio
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Search for more papers by this authorAlejandro L. Soraci
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Search for more papers by this authorCorresponding Author
Julieta M. Decundo
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Correspondence:
Julieta M. Decundo ([email protected])
Search for more papers by this authorSusana N. Dieguez
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
Search for more papers by this authorGuadalupe Martínez
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Search for more papers by this authorFabián A. Amanto
Área de Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Search for more papers by this authorDenisa S. Pérez Gaudio
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Search for more papers by this authorAlejandro L. Soraci
Laboratorio de Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET), Tandil, Argentina
Search for more papers by this authorFunding: This work was supported by CIVETAN-CONICET.
ABSTRACT
The objective of this study was to assess the impact of the vehicle of administration and the prandial state of post weaning piglets on the indices of therapeutic efficacy for different broad-spectrum antibiotic/pathogen combinations. Pharmacokinetic data were retrieved from previous studies, in which we orally administered oxytetracycline (OTC), fosfomycin (FOS), or amoxicillin (AMX) according to the following treatments: dissolved in soft water to fasted or non-fasted piglets, dissolved in hard water to fasted or non-fasted piglets, and mixed with feed. Minimum inhibitory concentration (MIC) values for susceptible strains of bacteria causing swine diseases were obtained from the database of European Committee on Antimicrobial Susceptibility Testing (EUCAST) for each antibiotic. Pharmacokinetic/pharmacodynamic (PK/PD) indices of therapeutic efficacy—drug exposure over the dosing interval (fAUC/MIC) for OTC and FOS; time that free drug concentration remains above MIC (%fT>MIC) for AMX—were calculated for each antibiotic/pathogen combination under each treatment. After all OTC and in-feed FOS and AMX treatments, the indices of therapeutic efficacy were below the target value for all the study microorganisms. When FOS or AMX were delivered dissolved in soft or hard water, the indices were above the target value over which therapeutic efficacy would be expected for Escherichia coli treated with FOS and, Glaesserella parasuis, Pasteurella multocida, and Actinobacillus pleuropneumoniae treated with AMX. The prandial state of piglets showed no influence on the indices of therapeutic efficacy. Pharmacokinetic profiles of broad-spectrum antibiotics, specifically the ability to achieve target concentrations, may be largely reduced due to drug interactions with components present in feed or water resulting in a discrepancy with PK/PD principles of prudent and responsible use of antibiotics.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
Data that support this work are available from the corresponding author upon reasonable request.
References
- Agwuh, K. N., and A. MacGowan. 2006. “Pharmacokinetics and Pharmacodynamics of the Tetracyclines Including Glycylcyclines.” Journal of Antimicrobial Chemotherapy 58, no. 2: 256–265.
- Barbosa Da Silva, A., M. Back, H. Daguer, et al. 2019. “Carry-Over and Contamination of Veterinary Drugs in Feed Production Lines for Poultry and Pigs.” Food Additives & Contaminants: Part A 36, no. 5: 740–751.
- Bimazubute, M., C. Cambier, K. Baert, S. Vanbelle, P. Chiap, and P. Gustin. 2011. “Penetration of Oxytetracycline Into the Nasal Secretions and Relationship Between Nasal Secretions and Plasma Oxytetracycline Concentrations After Oral and Intramuscular Administration in Healthy Pigs.” Journal of Veterinary Pharmacology and Therapeutics 34, no. 2: 176–183.
- Burch, D. G. S., and D. Sperling. 2018. “Amoxicillin—Current Use in Swine Medicine.” Journal of Veterinary Pharmacology and Therapeutics 41, no. 3: 356–368.
- Clinical and Laboratory Standards Institute. 2020. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
- Craig, W. A. 1998. “Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men.” Clinical Infectious Diseases 26, no. 1: 1–10.
- Decundo, J. M., S. N. Diéguez, F. A. Amanto, et al. 2021. “Potential Interactions Between an Oral Fosfomycin Formulation and Feed or Drinking Water: Impact on Bioavailability in Piglets.” Journal of Veterinary Pharmacology and Therapeutics 44, no. 5: 783–792.
- Decundo, J. M., S. N. Dieguez, G. Martínez, F. A. Amanto, D. S. Pérez Gaudio, and A. L. Soraci. 2024. “The Vehicle of Administration, Feed or Water, and Prandial State Influence the Oral Bioavailability of Amoxicillin in Piglets.” Veterinary Research Communications 48: 2135–2144. https://doi.org/10.1007/s11259-024-10378-0.
- Decundo, J. M., S. N. Diéguez, G. Martínez, et al. 2019. “Impact of Water Hardness on Oxytetracycline Oral Bioavailability in Fed and Fasted Piglets.” Veterinary Medicine and Science 5, no. 4: 517–525.
- Del Castillo, J. R., J. Elsener, and G. P. Martineau. 1998. “Pharmacokinetic Modeling of In-Feed Tetracyclines in Pigs Using a Meta-Analytic Compartmental Approach.” Journal of Swine Health and Production 6, no. 5: 189–202.
- Del Castillo, J. R. E., and T. Wolff. 2006. “ Therapeutic Lung Exposure to Feed Administered Chlortetracycline Is Premix Brand Dependent.” In Proceedings/AASV, edited by B. Straw and B. Paja, 143–148. Iowa: AASV.
-
Dewulf, J., P. Joosten, I. Chantziaras, et al. 2022. “Antibiotic Use in European Pig Production: Less Is More.” Antibiotics 11, no. 11: 1493.
10.3390/antibiotics11111493 Google Scholar
-
Došen, R., J. Prodanov, D. Milanov, I. Stojanov, and I. Pušić. 2007. “The Bacterial Infections of Respiratory Tract of Swine.” Biotechnology in Animal Husbandry 23, no. 5–6: 237–243.
10.2298/BAH0702237D Google Scholar
- EMA-CVMP. 2021. Reflection Paper on Dose Optimisation of Established Veterinary Antibiotics in the Context of SPC Harmonization. London, UK: European Medicines Agency. EMA/CVMP/849775/2017.
- ESVAC. 2021. “Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021.” https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2021-trends-2010-2021-twelfth-esvac_en.pdf.
- European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA), & European Medicines Agency (EMA). 2017. “ECDC/EFSA/EMA Second Joint Report on the Integrated Analysis of the Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria From Humans and Food-Producing Animals: Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report.” EFSA Journal 15, no. 7: e04872.
- European Committee on Antimicrobial Susceptibility Testing. 2023. “Data From the EUCAST MIC Distribution Website.” http://www.eucast.org.
- Farrier, D. S. 1997. PK Solutions (ver. 2.0. 2): A Noncompartmental Pharmacokinetic Data Analysis Program. Ashlanh, OH: Summit Research Services.
- Ferran, A. A., and B. B. Roques. 2019. “Can Oral Group Medication Be Improved to Reduce Antimicrobial Use?” Veterinary Record 185, no. 13: 402–404.
-
Gebhardt, J. T., M. D. Tokach, S. S. Dritz, et al. 2020. “Postweaning Mortality in Commercial Swine Production II: Review of Infectious Contributing Factors.” Translational Animal Science 4: 485–506.
10.1093/tas/txaa052 Google Scholar
- Gibaldi, M. 1991. Gastrointestinal Absorption—Biologic Considerations. Biopharmaceutics and Clinical Pharmacokinetics. 4th ed, 24–39. Malvern, Pennsylvania: Lea & Febiger.
- Gibaldi, M., and D. Perrier. 2007. “ Noncompartmental Analysis Based on Statistical Moment Theory.” In Pharmacokinetics, edited by I. M. Gibaldi and D. Perrier, 2nd ed., 413. New York: Informa Healthcare.
- Gustave, D. H. 2010. “ Como Tener Éxito En La Medicación Por El Agua De Bebida En Cerdos.” In Memorias Del X Congreso Nacional De Producción Porcina, edited by A. Ambrogi, H. Gabosi, B. Pelliza, P. Tamiozzo, R. Yaciuk, G. Zielinski, G. Di Cola, I. Dolso, A. Carranza, and M. Acerbo, 75–87. Rio Cuarto, Argentina: Universidad Nacional De Rio Cuarto.
- Herrero-Fresno, A., C. Zachariasen, N. Nørholm, A. Holm, L. E. Christiansen, and J. E. Olsen. 2017. “Effect of Different Oral Oxytetracycline Treatment Regimes on Selection of Antimicrobial Resistant Coliforms in Nursery Pigs.” Veterinary Microbiology 208: 1–7.
- Holman, D. B., and M. R. Chénier. 2013. “Impact of Subtherapeutic Administration of Tylosin and Chlortetracycline on Antimicrobial Resistance in Farrow-to-Finish Swine.” FEMS Microbiology Ecology 85, no. 1: 1–13.
- Lekagul, A., V. Tangcharoensathien, and S. Yeung. 2019. “Patterns of Antibiotic Use in Global Pig Production: A Systematic Review.” Veterinary and Animal Science 7: 100058.
- Lepak, A. J., M. Zhao, B. VanScoy, et al. 2017. “In Vivo Pharmacokinetics and Pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the Neutropenic Murine Thigh Infection Model Against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa .” Antimicrobial Agents and Chemotherapy 61, no. 6: e00476.
- Monger, X. C., A. A. Gilbert, L. Saucier, and A. T. Vincent. 2021. “Antibiotic Resistance: From Pig to Meat.” Antibiotics 10, no. 10: 1209.
- Morthorst, D. 2002. “Bio-Availability of Amoxicillin in Weaning Piglets After Oral and Parenteral Administration By Feed and Water Under Different Conditions [in German, With English Abstract].” Inaugural-Dissertation, Tierärztliche Hochschule, Hannover.
- Nielsen, P., and N. Gyrd-Hansen. 1996. “Bioavailability of Oxytetracycline, Tetracycline and Chlortetracycline After Oral Administration to Fed and Fasted Pigs.” Journal of Veterinary Pharmacology and Therapeutics 19, no. 4: 305–311. https://doi.org/10.1111/j.1365-2885.1996.tb00054.x.
- Nunan, C. 2022. “ Ending Routine Farm Antibiotic Use in Europe. Achieving Responsible Farm Antibiotic Use Through Improving Animal Health and Welfare in Pig and Poultry Production.” https://epha.org/ending-routine-farm-antibiotic-use/.
- Papich, M. G. 2014. “Pharmacokinetic–Pharmacodynamic (PK–PD) Modeling and the Rational Selection of Dosage Regimes for the Prudent Use of Antimicrobial Drugs.” Veterinary Microbiology 171, no. 3–4: 480–486.
- Pérez, D. S., A. L. Soraci, and M. O. Tapia. 2012. “Pharmacokinetics and Bioavailability of Calcium Fosfomycin in Post Weaning Piglets After Oral Administration.” International Journal of Advanced Veterinary and Medical Science 6, no. 6: 424–435.
- Pijpers, A., E. J. Schoevers, N. Haagsma, and J. H. M. Verheijden. 1991. “Plasma Levels of Oxytetracycline, Doxycycline, and Minocycline in Pigs After Oral Administration in Feed.” Journal of Animal Science 69, no. 11: 4512–4522.
- Pijpers, A., E. J. Schoevers, H. Van Gogh, et al. 1991. “The Influence of Disease on Feed and Water Consumption and on Pharmacokinetics of Orally Administered Oxytetracycline in Pigs.” Journal of Animal Science 69, no. 7: 2947–2954.
- Polianciuc, S. I., A. E. Gurzău, B. Kiss, M. G. Ştefan, and F. Loghin. 2020. “Antibiotics in the Environment: Causes and Consequences.” Medical and Pharmaceutical Reports 93, no. 3: 231.
- Ricker, N., J. Trachsel, P. Colgan, et al. 2020. “Toward Antibiotic Stewardship: Route of Antibiotic Administration Impacts the Microbiota and Resistance Gene Diversity in Swine Feces.” Frontiers in Veterinary Science 7: 255.
- Rodríguez-Gascón, A., M. Á. Solinís, and A. Isla. 2021. “The Role of PK/PD Analysis in the Development and Evaluation of Antimicrobials.” Pharmaceutics 13, no. 6: 833.
- Sarrazin, S., P. Joosten, L. Van Gompel, et al. 2019. “Quantitative and Qualitative Analysis of Antimicrobial Usage Patterns in 180 Selected Farrow-To-Finish Pig Farms From Nine European Countries Based on Single Batch and Purchase Data.” Journal of Antimicrobial Chemotherapy 74, no. 3: 807–816.
- Soraci, A. L., F. Amanto, M. O. Tapia, E. de La Torre, and P. L. Toutain. 2014. “Exposure Variability of Fosfomycin Administered to Pigs in Food or Water: Impact of Social Rank.” Research in Veterinary Science 96, no. 1: 153–159.
- Tiseo, K., L. Huber, M. Gilbert, T. P. Robinson, and T. P. Van Boeckel. 2020. “Global Trends in Antimicrobial Use in Food Animals From 2017 to 2030.” Antibiotics 9, no. 12: 918.
- Toutain, P. L., and A. Bousquet-Mélou. 2006. “ How Antibiotic Dosage Regimens Based on PK-PD Concepts May Be an Important Contribution to the Resistance Problem.” In 24th World Buiatrics Congress, 15–19 October 2006, Nice, France. (Proc.), edited by H. Navetat and F. Schelcher, 421–430. Nice, France: World Association for Buiatrics.
- Toutain, P. L., L. Pelligand, P. Lees, A. Bousquet-Mélou, A. A. Ferran, and J. D. Turnidge. 2021. “The Pharmacokinetic/Pharmacodynamic Paradigm for Antimicrobial Drugs in Veterinary Medicine: Recent Advances and Critical Appraisal.” Journal of Veterinary Pharmacology and Therapeutics 44, no. 2: 172–200.
- Vasuntrarak, K., S. Wittayalertpanya, J. Wongtavatchai, and N. Suanpairintr. 2022. “Pharmacokinetics and Pharmacokinetic/Pharmacodynamic-Based Dosing Regimens of Long-Acting Oxytetracycline in Nile tilapia (Oreochromis niloticus) Broodstock to Minimize Selection of Drug Resistance.” Aquaculture 557: 738302.
- WOAH. 2022. Report of the Meeting of the WOAH Working Group on Antimicrobial Resistance. Paris, France: WOAH. https://www.woah.org/app/uploads/2022/08/woah-wg-amr-report-08-08-22-3.pdf.
- You, Y., and E. K. Silbergeld. 2014. “Learning From Agriculture: Understanding Low-Dose Antimicrobials as Drivers of Resistome Expansion.” Frontiers in Microbiology 5: 284.