Pharmacokinetics of oral clonazepam in growing commercial pigs (Sus scrofa domestica)
Corresponding Author
Chiara E. Hampton
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Correspondence
Chiara E. Hampton, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
Email: [email protected]
Search for more papers by this authorStephanie A. Kleine
Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorJoe S. Smith
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorPierre-Yves Mulon
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorChristopher K. Smith
Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorGregory A. Shanks
College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorLucille Ruth Vanecek
Animal Sciences, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorReza Seddighi
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorSherry Cox
Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorCorresponding Author
Chiara E. Hampton
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Correspondence
Chiara E. Hampton, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
Email: [email protected]
Search for more papers by this authorStephanie A. Kleine
Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorJoe S. Smith
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorPierre-Yves Mulon
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorChristopher K. Smith
Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorGregory A. Shanks
College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorLucille Ruth Vanecek
Animal Sciences, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorReza Seddighi
Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorSherry Cox
Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
Search for more papers by this authorAbstract
Clonazepam causes sedation and psychomotor impairment in people. Due to similarities between people and swine in response to benzodiazepines, clonazepam may represent a viable option to produce mild-to-moderate tranquillization in pigs. The objective of this study was to determine the pharmacokinetic profile of a single oral dose (0.5 mg/kg) of clonazepam in eight healthy, growing commercial cross pigs. Serial plasma samples were collected at baseline and up to 96 h after administration. Plasma concentrations were quantified using reverse-phase high-performance liquid chromatography, and compartment models were fit to time–concentration data. A one-compartment first-order model best fits the data. Maximum plasma concentration was 99.5 ng/mL, and time to maximum concentration was 3.4 h. Elimination half-life was 7.3 h, mean residence time 7.4 h, and apparent volume of distribution 5.7 L/kg. Achieved plasma concentrations exceeded those associated with psychomotor impairment in people although pharmacodynamic effects have not been investigated in pigs. A simulated oral regimen consisting of 0.35 mg/kg administered every 8 h to pigs would achieve plasma concentrations above 32 ng/mL which are shown to produce psychomotor impairment in people. Further studies to test the clinical efficacy of these dosages in commercial and miniature pigs are warranted.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest for the present study.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Adlard, K. (2008). Examining the push—Pull method of blood sampling from central venous access devices. Journal of Pediatric Oncology Nursing, 25(4), 200–207.
- Al-Tahan, F., Löscher, W., & Frey, H. (1984). Pharmacokinetics of clonazepam in the dog. Archives Internationales de Pharmacodynamie et de Thérapie, 268(2), 180–193.
- Andre, M., Boutroy, M., Dubruc, C., Thenot, J. P., Bianchetti, G., Sola, L., Vert, P., & Morselli, P. L. (1986). Clonazepam pharmacokinetics and therapeutic efficacy in neonatal seizures. European Journal of Clinical Pharmacology, 30(5), 585–589.
- Carter, G. (2011). Animal behavior case of the month. Journal of the American Veterinary Medical Association, 239(10), 1300–1302.
- Colburn, W. A., Bekersky, I., Min, B. H., Hodshon, B. J., & Garland, W. A. (1980). Contribution of gut contents, intestinal wall and liver to the first-pass metabolism of clonazepam in the rat. Research Communications in Chemical Pathology and Pharmacology, 27(1), 73–90.
- Crevoisier, C., Delisle, M., Joseph, I., & Foletti, G. (2003). Comparative single-dose pharmacokinetics of clonazepam following intravenous, intramuscular and oral administration to healthy volunteers. European Neurology, 49(3), 173–177.
- dos Santos, F. M., Gonçalves, J. C. S., Caminha, R., da Silveira, G. E., Neves, C. S., Gram, K. R., Ferreira, C. T., Jacqmin, P., & Noël, F. (2009). Pharmacokinetic/pharmacodynamic modeling of psychomotor impairment induced by oral clonazepam in healthy volunteers. Therapeutic Drug Monitoring, 31(5), 566–574.
- European Monitoring Center for Drugs and Drug Addiction Benzodiazepine drug profile. https://www.emcdda.europa.eu/publications/drug-profiles/benzodiazepines_en#:~:text=Different%20benzodiazepines%20vary%20in%20the,lives%20greater%20than%2024%20hours%2C
- Foury, A., Devillers, N., Sanchez, M. P., Griffon, H., Le Roy, P., & Mormède, P. (2005). Stress hormones, carcass composition and meat quality in large white× Duroc pigs. Meat Science, 69(4), 703–707.
- Frey, H., & Löscher, W. (1985). Pharmacokinetics of anti-epileptic drugs in the dog: A review. Journal of Veterinary Pharmacology and Therapeutics, 8(3), 219–233.
- Gonzalez, F. J., & Tukey, R. H. (2006). Drug metabolism. Goodman & Gilman's the Pharmacologic Basis of Therapeutics, 11, 71–91.
- Greenblatt, D. J., Blaskovich, P. D., Nuwayser, E., Harmatz, J. S., Chen, G., & Zinny, M. A. (2005). Clonazepam pharmacokinetics: Comparison of subcutaneous microsphere injection with multiple-dose oral administration. The Journal of Clinical Pharmacology, 45(11), 1288–1293.
- Grimm, K. A., Lamont, L. A., Tranquilli, W. J., Greene, S. A., & Robertson, S. A. (Eds.). (2015). Veterinary anesthesia and analgesia (pp. 928–940). John Wiley & Sons.
10.1002/9781119421375 Google Scholar
- Hampton, C. E., Queiroz-Williams, P., Oubre, M. J., Martin, A., Gisclair, A. T., & Pypendop, B. H. (2021). Pharmacokinetics of oral and compounded intravenous gabapentin in Duroc swine (Sus scrofa). Journal of Veterinary Pharmacology and Therapeutics, 44, 776–782.
- Kaplan, S., Alexander, K., Jack, M., Puglisi, C. V., De Silva, J. A., Lee, T. L., & Weinfeld, R. E. (1974). Pharmacokinetic profiles of clonazepam in dog and humans and of flunitrazepam in dog. Journal of Pharmaceutical Sciences, 63(4), 527–532.
- Klonopin Insert. www.accessdata.fda.gov/drugsatfda_docs/label/2013/017533s053,020813s009lbl.pdf
- Knop, H., Kleijn, E., & Edmunds, L. (1975). Pharmacokinetics of clonazepam in man and laboratory animals. In H. Schneider, D. Janz, C. Gardner-Thorpe, H. Meinardi, & A. L. Sherwin (Eds.), Clinical pharmacology of anti-epileptic drugs (pp. 247–260). Springer.
10.1007/978-3-642-85921-2_26 Google Scholar
- Lacoste, L., Bouquet, S., Ingrand, P., Caritez, J., Carretier, M., & Debaene, B. (2000). Intranasal midazolam in piglets: Pharmacodynamics (0.2 vs 0.4 mg/kg) and pharmacokinetics (0.4 mg/kg) with bioavailability determination. Laboratory Animals, 34(1), 29–35.
- Liatis, T., Gutierrez-Quintana, R., Mari, L., Czopowicz, M., Polidoro, D., Bhatti, S. F. M., Cozzi, F., Tirrito, F., Brocal, J., José-López, R., Kaczmarska, A., Cappello, R., Harris, G., Alves, L., Rusbridge, C., & Rossmeisl, J. H. (2022). Primary orthostatic tremor and orthostatic tremor-plus in dogs: 60 cases (2003-2020). Journal of Veterinary Internal Medicine, 36(1), 179–189.
- Martínez-Miró, S., Tecles, F., Ramón, M., Escribano, D., Hernández, F., Madrid, J., Orengo, J., Martínez-Subiela, S., Manteca, X., & Cerón, J. J. (2016). Causes, consequences and biomarkers of stress in swine: An update. BMC Veterinary Research, 12(1), 1–9.
- McNamara, J. O. (2006). Pharmacotherapy of the epilepsies. Goodman and Gilman's the Pharmacological Basis of Therapeutics, 11, 501.
- Miller, M. E., Garland, W., Min, B., Ludwick, B., Ballard, R., & Levy, R. (1981). Clonazepam acetylation in fast and slow acetylators. Clinical Pharmacology & Therapeutics, 30(3), 343–347.
- Moesta, A. (2014). Animal behavior case of the month. Journal of the American Veterinary Medical Association, 244(5), 538–540.
- Mwanza, A., Englund, P., Kindahl, H., Lundeheim, N., & Einarsson, S. (2000). Effects of post-ovulatory food deprivation on the hormonal profiles, activity of the oviduct and ova transport in sows. Animal Reproduction Science, 59(3–4), 185–199.
- Naito, H., Wachi, M., & Nishida, M. (1987). Clinical effects and plasma concentrations of long-term clonazepam monotherapy in previously untreated epileptics. Acta Neurologica Scandinavica, 76(1), 58–63.
- Nilsson, A. (1991). Pharmacokinetics of benzodiazepines and their antagonists. Baillière's Clinical Anaesthesiology, 5(3), 615–634.
10.1016/S0950-3501(05)80046-7 Google Scholar
- Orebaugh, S. L., & Bradford, S. M. (1994). Intravenous versus intramuscular midazolam in treatment of chemically induced generalized seizures in swine. The American Journal of Emergency Medicine, 12(3), 284–287.
- Posner, L., & Burns, P. (2018). Sedative agents: Tranquilizers, alpha-2 agonists, and related agents. In J. E. Riviere & M. G. Papich (Eds.), Veterinary pharmacology and therapeutics (pp. 337–380). John Wiley & Sons.
- Riss, J., Cloyd, J., Gates, J., & Collins, S. (2008). Benzodiazepines in epilepsy: Pharmacology and pharmacokinetics. Acta Neurologica Scandinavica, 118(2), 69–86.
- Riviere, J., & Chittenden, J. (1999). Study design and data analysis. Comparative Pharmacokinetics, 2, 311.
- Scherkl, R., & Frey, H. H. (1986). Physical dependence on clonazepam in dogs. Pharmacology, 32(1), 18–24.
- Scherkl, R., Scheuler, W., & Frey, H. (1985). Anticonvulsant effect of clonazepam in the dog: Development of tolerance and physical dependence. Archives Internationales de Pharmacodynamie et de Thérapie, 278(2), 249–260.
- Setlakwe, E. L., & Johnson, A. L. (2017). Acute encephalopathy in a 2-year-old pot-bellied pig following accidental intoxication with clonazepam. Journal of Veterinary Emergency and Critical Care, 27(3), 369–372.
- Sjö, O., Hvidberg, E., Naestoft, J., & Lund, M. (1975). Pharmacokinetics and side-effects of clonazepam and its 7-amino-metabolite in man. European Journal of Clinical Pharmacology, 8(3), 249–254.
- Smith, J. S., & Seddighi, R. (2022). Miniature companion pig sedation and anesthesia. Veterinary Clinics: Exotic Animal Practice, 25(1), 297–319.
- Smulders, D., Verbeke, G., Mormède, P., & Geers, R. (2006). Validation of a behavioral observation tool to assess pig welfare. Physiology & Behavior, 89(3), 438–447.
- Song, L., Liu, F., Liu, Y., Zhang, R., Ji, H., & Jia, Y. (2018). Clonazepam add-on therapy for refractory epilepsy in adults and children. Cochrane Database of Systematic Reviews, 5(5), CD012253.
- Tafet, G. E., & Nemeroff, C. B. (2020). Pharmacological treatment of anxiety disorders: The role of the HPA axis. Frontiers in Psychiatry, 11, 443.
- Toutain, P. L., Ferran, A., & Bousquet-Mélou, A. (2010). Species differences in pharmacokinetics and pharmacodynamics. In F. M. Cunningham, J. Elliott, & P. Lees (Eds.), Comparative and veterinary pharmacology (pp. 19–48). Springer.
- Wang, S. M., Kim, J. B., Sakong, J. K., Suh, H. S., Oh, K. S., Woo, J. M., Yoo, S. W., Lee, S. M., Lee, S. Y., Lim, S. W., Cho, S. J., Chee, I. S., Chae, J. H., Hong, J. P., & Lee, K. U. (2016). The efficacy and safety of clonazepam in patients with anxiety disorder taking newer antidepressants: A multicenter naturalistic study. Clinical Psychopharmacology and Neuroscience, 14(2), 177–183.
- Yeh, F., Chang, C., & Chen, H. I. (1988). Effects of midazolam (a benzodiazepine) on cerebral perfusion and oxygenation in dogs. Proceedings of the National Science Council, Republic of China Part B, Life Sciences, 12(3), 174–179.
- Yukawa, E. (1996). Optimisation of antiepileptic drug therapy: The importance of serum drug concentration monitoring. Clinical Pharmacokinetics, 31(2), 120–130.