Volume 28, Issue 7 pp. 1223-1233
Hepatology

Paeonol inhibits hepatic fibrogenesis via disrupting nuclear factor-κB pathway in activated stellate cells: In vivo and in vitro studies

Desong Kong

Desong Kong

National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China

Search for more papers by this author
Feng Zhang

Feng Zhang

National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China

Search for more papers by this author
Donghua Wei

Donghua Wei

Department of Chinese Materia Medica and Pharmaceutical Botany, College of Pharmacy, Daqing Branch of Harbin Medical University, Daqing, China

Search for more papers by this author
Xiaojing Zhu

Xiaojing Zhu

National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China

Search for more papers by this author
Xiaoping Zhang

Xiaoping Zhang

National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China

Search for more papers by this author
Li Chen

Li Chen

National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China

Search for more papers by this author
Yin Lu

Yin Lu

National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China

Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China

Search for more papers by this author
Shizhong Zheng

Corresponding Author

Shizhong Zheng

National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China

Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China

Correspondence

Professor Shizhong Zheng, Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, Jiangsu 210029, China. Email: [email protected]

Search for more papers by this author
First published: 21 February 2013
Citations: 32
Conflict of interest: The authors disclose no conflicts.

Abstract

Background and Aims

Hepatic fibrosis represents a major cause of morbidity and mortality worldwide. The present study was to evaluate the antifibrogenesis effect of paeonol and involved mechanisms.

Methods

The degree of liver injury was evaluated biochemically by measuring serum and fibrotic markers and pathological examination. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and trypan blue staining. Cytotoxic effects were determined using lactate dehydrogenase release assay. Cell cycle was determined using single dyeing methods of propidium iodide (PI) by flow cytometry. Apoptosis was confirmed using double-staining of annexin V/PI and Hoechst. Western blot, immunofluorescence and real-time polymerase chain reaction were used to explore the molecular mechanisms.

Results

Treatment with paeonol significantly protected the liver from injury by reducing the activities of serum aspartate aminotransferase, alanine aminotransferase, improving the histological architecture of the liver, and by inhibiting activation of hepatic stellate cells (HSCs) in vivo. Interestingly, paeonol had no apparent cytotoxic effects but could markedly inhibit primary HSC proliferation and induced HSC cell cycle arrest at the G2/M checkpoint. These effects were caused by paeonol suppression of phosphorylation of cycle protein cdc2 and of CDK2. Moreover, that paeonol triggered mitochondrial apoptosis pathway and led to activation of caspase cascades in HSCs was found. Mechanistic investigations revealed that the nuclear factor-κB (NF-κB) pathway inhibition resulted in the earlier events. Furthermore, paeonol altered the expression of some marker proteins relevant to HSCs activation.

Conclusion

Paeonol could inhibit HSC proliferation and induce mitochondrial apoptosis via disrupting NF-κB pathway, which might be the mechanisms of paeonol reduction of liver fibrosis.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.