Health benefits of polyphenols: A concise review
Ananya Rana
Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
Search for more papers by this authorMrinal Samtiya
Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
Search for more papers by this authorCorresponding Author
Tejpal Dhewa
Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
Correspondence
Tejpal Dhewa, Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India.
Email: [email protected]
Vijendra Mishra, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, 131028, India.
Email: [email protected]
Rotimi E. Aluko, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Vijendra Mishra
Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
Correspondence
Tejpal Dhewa, Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India.
Email: [email protected]
Vijendra Mishra, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, 131028, India.
Email: [email protected]
Rotimi E. Aluko, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Rotimi E. Aluko
Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
Correspondence
Tejpal Dhewa, Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India.
Email: [email protected]
Vijendra Mishra, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, 131028, India.
Email: [email protected]
Rotimi E. Aluko, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Email: [email protected]
Search for more papers by this authorAnanya Rana
Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
Search for more papers by this authorMrinal Samtiya
Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
Search for more papers by this authorCorresponding Author
Tejpal Dhewa
Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
Correspondence
Tejpal Dhewa, Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India.
Email: [email protected]
Vijendra Mishra, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, 131028, India.
Email: [email protected]
Rotimi E. Aluko, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Vijendra Mishra
Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
Correspondence
Tejpal Dhewa, Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India.
Email: [email protected]
Vijendra Mishra, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, 131028, India.
Email: [email protected]
Rotimi E. Aluko, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Rotimi E. Aluko
Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
Correspondence
Tejpal Dhewa, Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India.
Email: [email protected]
Vijendra Mishra, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, 131028, India.
Email: [email protected]
Rotimi E. Aluko, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Email: [email protected]
Search for more papers by this authorAbstract
Plants produce polyphenols, which are considered highly essential functional foods in our diet. They are classified into several groups according to their diverse chemical structures. Flavanoids, lignans, stilbenes, and phenolic acids are the four main families of polyphenols. Several in vivo and in vitro research have been conducted so far to evaluate their health consequences. Polyphenols serve a vital function in the protection of the organism from external stimuli and in eliminating reactive oxygen species (ROS), which are instigators of several illnesses. Polyphenols are present in tea, chocolate, fruits, and vegetables with the potential to positively influence human health. For instance, cocoa flavan-3-ols have been associated with a decreased risk of myocardial infarction, stroke, and diabetes. Polyphenols in the diet also help to improve lipid profiles, blood pressure, insulin resistance, and systemic inflammation. Quercetin, a flavonoid, and resveratrol, a stilbene, have been linked to improved cardiovascular health. Dietary polyphenols potential to elicit therapeutic effects might be attributed, at least in part, to a bidirectional association with the gut microbiome. This is because polyphenols are known to affect the gut microbiome composition in ways that lead to better human health. Specifically, the gut microbiome converts polyphenols into bioactive compounds that have therapeutic effects. In this review, the antioxidant, cytotoxicity, anti-inflammatory, antihypertensive, and anti-diabetic actions of polyphenols are described based on findings from in vivo and in vitro experimental trials.
Practical applications
The non-communicable diseases (NCDs) burden has been increasing worldwide due to the sedentary lifestyle and several other factors such as smoking, junk food, etc. Scientific literature evidence supports the use of plant-based food polyphenols as therapeutic agents that could help to alleviate NCD's burden. Thus, consuming polyphenolic compounds from natural sources could be an effective solution to mitigate NCDs concerns. It is also discussed how natural antioxidants from medicinal plants might help prevent or repair damage caused by free radicals, such as oxidative stress.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Abolaji, A. O., Adedara, A. O., Adie, M. A., Vicente-Crespo, M., & Farombi, E. O. (2018). Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 503(2), 1042–1048. https://doi.org/10.1016/j.bbrc.2018.06.114
- Addepalli, V., & Suryavanshi, S. V. (2018). Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomedicine & Pharmacotherapy, 108, 1517–1523. https://doi.org/10.1016/j.biopha.2018.09.179
- Afaq, F., & Katiyar, S. K. (2012). Polyphenols: Skin photoprotection and inhibition of photocarcinogenesis. Mini-Reviews in Medicinal Chemistry, 11, 1200–1215.
- Afrin, S., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T., Varela-López, A., Quiles, J., Mezzetti, B., & Battino, M. (2016). Chemopreventive and therapeutic effects of edible berries: A focus on colon cancer prevention and treatment. Molecules, 21(2), 169. https://doi.org/10.3390/molecules21020169
- Agarwal, B., Campen, M. J., Channell, M. M., Wherry, S. J., Varamini, B., Davis, J. G., Baur, J. A., & Smoliga, J. M. (2013). Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. International Journal of Cardiology, 166(1), 246–248. https://doi.org/10.1016/j.ijcard.2012.09.027
- Agunloye, O. M., Oboh, G., Ademiluyi, A. O., Ademosun, A. O., Akindahunsi, A. A., Oyagbemi, A. A., Omobowale, T. O., Ajibade, T. O., & Adedapo, A. A. (2019). Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomedicine & Pharmacotherapy, 109, 450–458. https://doi.org/10.1016/j.biopha.2018.10.044
- Ampofo, A. G., & Boateng, E. B. (2020). Beyond 2020: Modelling obesity and diabetes prevalence. Diabetes Research and Clinical Practice, 167, 108362. https://doi.org/10.1016/j.diabres.2020.108362
- Angelino, D., Carregosa, D., Domenech-Coca, C., Savi, M., Figueira, I., Brindani, N., Jang, S., Lakshman, S., Molokin, A., Urban, J. F., Jr., Davis, C. D., Brito, M. A., Kim, K. S., Brighenti, F., Curti, C., Bladé, C., del Bas, J., Stilli, D., Solano-Aguilar, G. I., … Mena, P. (2019). 5-(Hydroxyphenyl)-γ-valerolactone-sulfate, a key microbial metabolite of flavan-3-ols, is able to reach the brain: Evidence from different in silico, in vitro and in vivo experimental models. Nutrients, 11(11), 2678. https://doi.org/10.3390/nu11112678
- Arora, I., Sharma, M., & Tollefsbol, T. O. (2019). Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. International Journal of Molecular Sciences, 20(18), 4567. https://doi.org/10.3390/ijms20184567
- Azam, S., Jakaria, M., Kim, I.-S., Kim, J., Haque, M. E., & Choi, D.-K. (2019). Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: Focus on TLR4 signaling. Frontiers in Immunology, 10, 1000. https://doi.org/10.3389/fimmu.2019.01000
- Bagniewska-Zadworna, A., Barakat, A., Łakomy, P., Smoliński, D. J., & Zadworny, M. (2014). Lignin and lignans in plant defence: Insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. Plant Science, 229, 111–121. https://doi.org/10.1016/j.plantsci.2014.08.015
- Bakoyiannis, I., Daskalopoulou, A., Pergialiotis, V., & Perrea, D. (2019). Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomedicine & Pharmacotherapy, 109, 1488–1497. https://doi.org/10.1016/j.biopha.2018.10.086
- Balea, Ş. S., Pârvu, A. E., Pop, N., Marín, F. Z., & Pârvu, M. (2018). Polyphenolic compounds, antioxidant, and cardioprotective effects of pomace extracts from Fetească Neagră cultivar. Oxidative Medicine and Cellular Longevity, 2018, 1–11. https://doi.org/10.1155/2018/8194721
- Basholli-Salihu, M., Schuster, R., Mulla, D., Praznik, W., Viernstein, H., & Mueller, M. (2016). Bioconversion of piceid to resveratrol by selected probiotic cell extracts. Bioprocess and Biosystems Engineering, 39(12), 1879–1885. https://doi.org/10.1007/s00449-016-1662-1
- Bhandarkar, N. S., Brown, L., & Panchal, S. K. (2019). Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutrition Research, 62, 78–88. https://doi.org/10.1016/j.nutres.2018.11.002
- Bhat, F. M., & Riar, C. S. (2017). Characterizing the pigmented traditional rice cultivars grown in temperate regions of Kashmir (India) for free and bound phenolics compounds and in vitro antioxidant properties. Journal of Cereal Science, 76, 253–262. https://doi.org/10.1016/j.jcs.2017.06.018
- Biesalski, H. K. (2007). Polyphenols and inflammation: Basic interactions. Current Opinion in Clinical Nutrition and Metabolic Care, 10(6), 724–728. https://doi.org/10.1097/MCO.0b013e3282f0cef2
- Biesecker, L. G. (2013). Hypothesis-generating research and predictive medicine. Genome Research, 23(7), 1051–1053. https://doi.org/10.1101/gr.157826.113
- Bird, J. K., Raederstorff, D., Weber, P., & Steinert, R. E. (2017). Cardiovascular and antiobesity effects of resveratrol mediated through the gut microbiota. Advances in Nutrition: An International Review Journal, 8(6), 839–849. https://doi.org/10.3945/an.117.016568
- Boccellino, M., & D'Angelo, S. (2020). Anti-obesity effects of polyphenol intake: Current status and future possibilities. International Journal of Molecular Sciences, 21(16), 5642. https://doi.org/10.3390/ijms21165642
- Bode, L. M., Bunzel, D., Huch, M., Cho, G.-S., Ruhland, D., Bunzel, M., Bub, A., Franz, C. M., & Kulling, S. E. (2013). In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. The American Journal of Clinical Nutrition, 97(2), 295–309. https://doi.org/10.3945/ajcn.112.049379
- Bondonno, N. P., Dalgaard, F., Kyrø, C., Murray, K., Bondonno, C. P., Lewis, J. R., Croft, K. D., Gislason, G., Scalbert, A., Cassidy, A., Tjønneland, A., Overvad, K., & Hodgson, J. M. (2019). Flavonoid intake is associated with lower mortality in the Danish diet cancer and health cohort. Nature Communications, 10(1), 3651. https://doi.org/10.1038/s41467-019-11622-x
- Bravo, L. (2009). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317–333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
10.1111/j.1753?4887.1998.tb01670.x Google Scholar
- Bucciantini, M., Leri, M., Nardiello, P., Casamenti, F., & Stefani, M. (2021). Olive polyphenols: Antioxidant and anti-inflammatory properties. Antioxidants, 10(7), 1044. https://doi.org/10.3390/antiox10071044
- Cantos, E., Espín, J. C., López-Bote, C., de la Hoz, L., Ordóñez, J. A., & Tomás-Barberán, F. A. (2003). Phenolic compounds and fatty acids from acorns ( Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. Journal of Agricultural and Food Chemistry, 51(21), 6248–6255. https://doi.org/10.1021/jf030216v
- Cao, H., Ou, J., Chen, L., Zhang, Y., Szkudelski, T., Delmas, D., Daglia, M., & Xiao, J. (2019). Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Critical Reviews in Food Science and Nutrition, 59(20), 3371–3379. https://doi.org/10.1080/10408398.2018.1492900
- Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C., Kay, A., & Damiani, E. (2013). Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Research International, 53(2), 900–908. https://doi.org/10.1016/j.foodres.2012.07.057
- Carnevale, R., Loffredo, L., Nocella, C., Bartimoccia, S., Bucci, T., de Falco, E., Peruzzi, M., Chimenti, I., Biondi-Zoccai, G., Pignatelli, P., Violi, F., & Frati, G. (2014). Epicatechin and Catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease. Oxidative Medicine and Cellular Longevity, 2014, 1–9. https://doi.org/10.1155/2014/691015
- Cassidy, A. (2018). Berry anthocyanin intake and cardiovascular health. Molecular Aspects of Medicine, 61, 76–82. https://doi.org/10.1016/j.mam.2017.05.002
- Catalkaya, G., Venema, K., Lucini, L., Rocchetti, G., Delmas, D., Daglia, M., De Filippis, A., Xiao, H., Quiles, J. L., Xiao, J., & Capanoglu, E. (2020). Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 1(2), 109–133. https://doi.org/10.1002/fft2.25
- Chen, H., & Sang, S. (2014). Biotransformation of tea polyphenols by gut microbiota. Journal of Functional Foods, 7, 26–42. https://doi.org/10.1016/j.jff.2014.01.013
- Chen, L., Gnanaraj, C., Arulselvan, P., El-Seedi, H., & Teng, H. (2019). A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of type 2 diabetes. Trends in Food Science & Technology, 85, 149–162. https://doi.org/10.1016/j.tifs.2018.11.026
- Chiva-Blanch, G., & Badimon, L. (2017). Effects of polyphenol intake on metabolic syndrome: Current evidences from human trials. Oxidative Medicine and Cellular Longevity, 2017, 1–18. https://doi.org/10.1155/2017/5812401
- Chiva-Blanch, G., Urpi-Sarda, M., Ros, E., Valderas-Martinez, P., Casas, R., Arranz, S., Guillén, M., Lamuela-Raventós, R. M., Llorach, R., Andres-Lacueva, C., & Estruch, R. (2013). Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clinical Nutrition, 32(2), 200–206. https://doi.org/10.1016/j.clnu.2012.08.022
- Clark, R. I., & Walker, D. W. (2018). Role of gut microbiota in aging-related health decline: Insights from invertebrate models. Cellular and Molecular Life Sciences, 75(1), 93–101. https://doi.org/10.1007/s00018-017-2671-1
- Compaore, M., Bakasso, S., Meda, R., & Nacoulma, O. (2018). Antioxidant and anti-inflammatory activities of fractions from Bidens engleri O.E. Schulz (Asteraceae) and Boerhavia erecta L. (Nyctaginaceae). Medicines, 5(2), 53. https://doi.org/10.3390/medicines5020053
- Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition, 5, 87. https://doi.org/10.3389/fnut.2018.00087
- Cucciolla, V., Borriello, A., Oliva, A., Galletti, P., Zappia, V., & Ragione, F. D. (2007). Resveratrol: From basic science to the clinic. Cell Cycle, 6(20), 2495–2510. https://doi.org/10.4161/cc.6.20.4815
- Cueva, C., Gil-Sánchez, I., Ayuda-Durán, B., González-Manzano, S., González-Paramás, A., Santos-Buelga, C., Bartolomé, B., & Moreno-Arribas, M. V. (2017). An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules, 22(1), 99. https://doi.org/10.3390/molecules22010099
- Cueva, C., Sánchez-Patán, F., Monagas, M., Walton, G. E., Gibson, G. R., Martín-Álvarez, P. J., Bartolomé, B., & Moreno-Arribas, M. V. (2013). In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: Changes in microbial groups and phenolic metabolites. FEMS Microbiology Ecology, 83(3), 792–805. https://doi.org/10.1111/1574-6941.12037
- De Silva, S. F., & Alcorn, J. (2019). Flaxseed Lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals, 12(2), 68. https://doi.org/10.3390/ph12020068
- Debelo, H., Li, M., & Ferruzzi, M. G. (2020). Processing influences on food polyphenol profiles and biological activity. Current Opinion in Food Science, 32, 90–102. https://doi.org/10.1016/j.cofs.2020.03.001
- Debnath-Canning, M., Unruh, S., Vyas, P., Daneshtalab, N., Igamberdiev, A. U., & Weber, J. T. (2020). Fruits and leaves from wild blueberry plants contain diverse polyphenols and decrease neuroinflammatory responses in microglia. Journal of Functional Foods, 68, 103906. https://doi.org/10.1016/j.jff.2020.103906
- Devi, S., Kumar, V., Singh, S. K., Dubey, A. K., & Kim, J.-J. (2021). Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicine, 9(2), 99. https://doi.org/10.3390/biomedicines9020099
- Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C., & Restani, P. (2021). Polyphenols and human health: The role of bioavailability. Nutrients, 13(1), 273. https://doi.org/10.3390/nu13010273
- Di Meo, F., Donato, S., Di Pardo, A., Maglione, V., Filosa, S., & Crispi, S. (2018). New therapeutic drugs from bioactive natural molecules: The role of gut microbiota metabolism in neurodegenerative diseases. Current Drug Metabolism, 19(6), 478–489. https://doi.org/10.2174/1389200219666180404094147
- Di Meo, F., Margarucci, S., Galderisi, U., Crispi, S., & Peluso, G. (2019). Curcumin, gut microbiota, and neuroprotection. Nutrients, 11(10), 2426. https://doi.org/10.3390/nu11102426
- Di Meo, F., Valentino, A., Petillo, O., Peluso, G., Filosa, S., & Crispi, S. (2020). Bioactive polyphenols and neuromodulation: Molecular mechanisms in neurodegeneration. International Journal of Molecular Sciences, 21(7), 2564. https://doi.org/10.3390/ijms21072564
- Ding, S., Xu, S., Fang, J., & Jiang, H. (2020). The protective effect of polyphenols for colorectal cancer. Frontiers in Immunology, 11, 1407. https://doi.org/10.3389/fimmu.2020.01407
- Ding, Y., Yao, H., Yao, Y., Fai, L., & Zhang, Z. (2013). Protection of dietary polyphenols against Oral cancer. Nutrients, 5(6), 2173–2191. https://doi.org/10.3390/nu5062173
- Dominguez-Perles, R., Moreno, D. A., Carvajal, M., & Garcia-Viguera, C. (2011). Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innovative Food Science & Emerging Technologies, 12(3), 361–368. https://doi.org/10.1016/j.ifset.2011.04.005
- Dueñas, M., Muñoz-González, I., Cueva, C., Jiménez-Girón, A., Sánchez-Patán, F., Santos-Buelga, C., Moreno-Arribas, M. V., & Bartolomé, B. (2015). A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International, 2015, 1–15. https://doi.org/10.1155/2015/850902
- Edwards, C. A., Havlik, J., Cong, W., Mullen, W., Preston, T., Morrison, D. J., & Combet, E. (2017). Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition Bulletin, 42(4), 356–360. https://doi.org/10.1111/nbu.12296
- Efenberger-Szmechtyk, M., Nowak, A., & Czyzowska, A. (2021). Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61(1), 149–178. https://doi.org/10.1080/10408398.2020.1722060
- Elekofehinti, O. O. (2015). Saponins: Anti-diabetic principles from medicinal plants – A review. Pathophysiology, 22(2), 95–103. https://doi.org/10.1016/j.pathophys.2015.02.001
- Espín, J. C., González-Sarrías, A., & Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical Pharmacology, 139, 82–93. https://doi.org/10.1016/j.bcp.2017.04.033
- Espinoza, J. L., Trung, L. Q., Inaoka, P. T., Yamada, K., An, D. T., Mizuno, S., Nakao, S., & Takami, A. (2017). The repeated administration of resveratrol has measurable effects on circulating T-cell subsets in humans. Oxidative Medicine and Cellular Longevity, 2017, 1–10. https://doi.org/10.1155/2017/6781872
- Fan, J., Johnson, M. H., Lila, M. A., Yousef, G., & de Mejia, E. G. (2013). Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management. Evidence-based Complementary and Alternative Medicine, 2013, 1–13. https://doi.org/10.1155/2013/479505
- Ferrándiz, M. L., & Alcaraz, M. J. (1991). Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents and Actions, 32(3–4), 283–288. https://doi.org/10.1007/BF01980887
- Ferrazzano, G., Amato, I., Ingenito, A., Zarrelli, A., Pinto, G., & Pollio, A. (2011). Plant polyphenols and their anti-cariogenic properties: A review. Molecules, 16(2), 1486–1507. https://doi.org/10.3390/molecules16021486
- Ferreira, C., Viana, S. D., & Reis, F. (2020). Gut microbiota dysbiosis-immune hyperresponse-inflammation triad in coronavirus disease 2019 (COVID-19): Impact of pharmacological and nutraceutical approaches. Microorganisms, 8(10), 1514. https://doi.org/10.3390/microorganisms8101514
- Firuzi, O., Moosavi, F., Hosseini, R., & Saso, L. (2015). Modulation of neurotrophic signaling pathways by polyphenols. Drug Design, Development and Therapy, 23, 23–42. https://doi.org/10.2147/DDDT.S96936
- Flanagan, E., Müller, M., Hornberger, M., & Vauzour, D. (2018). Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Current Nutrition Reports, 7(2), 49–57. https://doi.org/10.1007/s13668-018-0226-1
- Foley, T. D. (2019). Reductive reprogramming: A not-so-radical hypothesis of neurodegeneration linking redox perturbations to neuroinflammation and excitotoxicity. Cellular and Molecular Neurobiology, 39(5), 577–590. https://doi.org/10.1007/s10571-019-00672-w
- Fraga, C. G., Croft, K. D., Kennedy, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514–528. https://doi.org/10.1039/C8FO01997E
- Fu, Z., Yang, J., Wei, Y., & Li, J. (2016). Effects of piceatannol and pterostilbene against β-amyloid-induced apoptosis on the PI3K/Akt/bad signaling pathway in PC12 cells. Food & Function, 7(2), 1014–1023. https://doi.org/10.1039/C5FO01124H
- Gaballah, H. H., Zakaria, S. S., Elbatsh, M. M., & Tahoon, N. M. (2016). Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson's disease. Chemico-Biological Interactions, 251, 10–16. https://doi.org/10.1016/j.cbi.2016.03.023
- Ganesan, K., & Xu, B. (2017). A critical review on polyphenols and health benefits of black soybeans. Nutrients, 9(5), 455. https://doi.org/10.3390/nu9050455
- Garros, L., Drouet, S., Corbin, C., Decourtil, C., Fidel, T., Lebas de Lacour, J., Leclerc, E. A., Renouard, S., Tungmunnithum, D., Doussot, J., Abassi, B. H., Maunit, B., Lainé, É., Fliniaux, O., Mesnard, F., & Hano, C. (2018). Insight into the influence of cultivar type, cultivation year, and site on the Lignans and related phenolic profiles, and the health-promoting antioxidant potential of flax (Linum usitatissimum L.) seeds. Molecules, 23(10), 2636. https://doi.org/10.3390/molecules23102636
- Giovannelli, L., Pitozzi, V., Jacomelli, M., Mulinacci, N., Laurenzana, A., Dolara, P., & Mocali, A. (2011). Protective effects of resveratrol against senescence-associated changes in cultured human fibroblasts. The Journals of Gerontology: Series A, 66A(1), 9–18. https://doi.org/10.1093/gerona/glq161
- Godos, J., Marventano, S., Mistretta, A., Galvano, F., & Grosso, G. (2017). Dietary sources of polyphenols in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. International Journal of Food Sciences and Nutrition, 68(6), 750–756. https://doi.org/10.1080/09637486.2017.1285870
- González Arbeláez, L. F., Ciocci Pardo, A., Fantinelli, J. C., Schinella, G. R., Mosca, S. M., & Ríos, J.-L. (2018). Cardioprotection and natural polyphenols: An update of clinical and experimental studies. Food & Function, 9(12), 6129–6145. https://doi.org/10.1039/C8FO01307A
- González-Gallego, J., García-Mediavilla, M. V., Sánchez-Campos, S., & Tuñón, M. J. (2010). Fruit polyphenols, immunity and inflammation. British Journal of Nutrition, 104(S3), S15–S27. https://doi.org/10.1017/S0007114510003910
- González-Sarrías, A., Espín, J. C., & Tomás-Barberán, F. A. (2017). Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends in Food Science & Technology, 69, 281–288. https://doi.org/10.1016/j.tifs.2017.07.010
- Grussu, D., Stewart, D., & McDougall, G. J. (2011). Berry polyphenols inhibit α-amylase in vitro: Identifying active components in rowanberry and raspberry. Journal of Agricultural and Food Chemistry, 59(6), 2324–2331. https://doi.org/10.1021/jf1045359
- Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950–988.
- Handschin, C., & Meyer, U. A. (2003). Induction of drug metabolism: The role of nuclear receptors. Pharmacological Reviews, 55(4), 649–673. https://doi.org/10.1124/pr.55.4.2
- Hano, C., & Tungmunnithum, D. (2020). Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases. Medicines, 7(5), 26. https://doi.org/10.3390/medicines7050026
10.3390/medicines7050026 Google Scholar
- Henning, S. M., Wang, P., Said, J. W., Huang, M., Grogan, T., Elashoff, D., Carpenter, C. L., Heber, D., & Aronson, W. J. (2015). Randomized clinical trial of brewed green and black tea in men with prostate cancer prior to prostatectomy: Green and black tea in prostate cancer. The Prostate, 75(5), 550–559. https://doi.org/10.1002/pros.22943
- Hervert-Hernández, D., & Goñi, I. (2011). Dietary polyphenols and human gut microbiota: A review. Food Reviews International, 27(2), 154–169. https://doi.org/10.1080/87559129.2010.535233
- Hidalgo, M., Oruna-Concha, M. J., Kolida, S., Walton, G. E., Kallithraka, S., Spencer, J. P. E., & de Pascual-Teresa, S. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60(15), 3882–3890. https://doi.org/10.1021/jf3002153
- Hou, D.-X., Luo, D., Tanigawa, S., Hashimoto, F., Uto, T., Masuzaki, S., Fujii, M., & Sakata, Y. (2007). Prodelphinidin B-4 3′-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-κB pathway. Biochemical Pharmacology, 74(5), 742–751. https://doi.org/10.1016/j.bcp.2007.06.006
- Hou, D.-X., Masuzaki, S., Hashimoto, F., Uto, T., Tanigawa, S., Fujii, M., & Sakata, Y. (2007). Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated mouse macrophages: Molecular mechanisms and structure–activity relationship. Archives of Biochemistry and Biophysics, 460(1), 67–74. https://doi.org/10.1016/j.abb.2007.01.009
- Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., & Rahu, N. (2016). Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity, 2016, 1–9. https://doi.org/10.1155/2016/7432797
- Huyut, Z., Beydemir, Ş., & Gülçin, İ. (2017). Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry Research International, 2017, 1–10. https://doi.org/10.1155/2017/7616791
- Iglesias-Carres, L., Mas-Capdevila, A., Bravo, F. I., Aragonès, G., Arola-Arnal, A., & Muguerza, B. (2019). A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food Chemistry, 299, 125092. https://doi.org/10.1016/j.foodchem.2019.125092
- Imamura, H., Yamaguchi, T., Nagayama, D., Saiki, A., Shirai, K., & Tatsuno, I. (2017). Resveratrol ameliorates arterial stiffness assessed by cardio-ankle vascular index in patients with type 2 diabetes mellitus. International Heart Journal, 58(4), 577–583. https://doi.org/10.1536/ihj.16-373
- Jang, M., Park, Y.-I., Cha, Y.-E., Park, R., Namkoong, S., Lee, J. I., & Park, J. (2020). Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evidence-based Complementary and Alternative Medicine, 2020, 1–7. https://doi.org/10.1155/2020/5630838
- Jiang, X., Wang, J., Deng, X., Xiong, F., Zhang, S., Gong, Z., Li, X., Cao, K., Deng, H., He, Y., Liao, Q., Xiang, B., Zhou, M., Guo, C., Zeng, Z., Li, G., Li, X., & Xiong, W. (2020). The role of microenvironment in tumor angiogenesis. Journal of Experimental & Clinical Cancer Research, 39(1), 204. https://doi.org/10.1186/s13046-020-01709-5
- Jiao, X., Wang, Y., Lin, Y., Lang, Y., Li, E., Zhang, X., Zhang, Q., Feng, Y., Meng, X., & Li, B. (2019). Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. The Journal of Nutritional Biochemistry, 64, 88–100. https://doi.org/10.1016/j.jnutbio.2018.07.008
- Johnson, S. L., Kirk, R. D., DaSilva, N. A., Ma, H., Seeram, N. P., & Bertin, M. J. (2019). Polyphenol microbial metabolites exhibit gut and blood⁻brain barrier permeability and protect murine microglia against LPS-induced inflammation. Metabolites, 9(4), 78. https://doi.org/10.3390/metabo9040078
- Kamaraj, S., Vinodhkumar, R., Anandakumar, P., Jagan, S., Ramakrishnan, G., & Devaki, T. (2007). The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biological and Pharmaceutical Bulletin, 30(12), 2268–2273. https://doi.org/10.1248/bpb.30.2268
- Karak, P. (2019). Biological activities of flavonoids: An overview. International Journal of Pharmaceutical Sciences and Research, 10, 1567–1574. https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74
- Khan, H., Reale, M., Ullah, H., Sureda, A., Tejada, S., Wang, Y., Zhang, Z. J., & Xiao, J. (2020). Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnology Advances, 38, 107385. https://doi.org/10.1016/j.biotechadv.2019.04.007
- Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779
- Kim, H. P., Mani, I., Iversen, L., & Ziboh, V. A. (1998). Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from Guinea-pigs. Prostaglandins, Leukotrienes and Essential Fatty Acids, 58(1), 17–24. https://doi.org/10.1016/S0952-3278(98)90125-9
- Kinarivala, N., Patel, R., Boustany, R.-M., Al-Ahmad, A., & Trippier, P. C. (2017). Discovery of aromatic carbamates that confer neuroprotective activity by enhancing autophagy and inducing the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Journal of Medicinal Chemistry, 60(23), 9739–9756. https://doi.org/10.1021/acs.jmedchem.7b01199
- Kluth, D., Banning, A., Paur, I., Blomhoff, R., & Brigelius-Flohé, R. (2007). Modulation of pregnane X receptor-and electrophile responsive element-mediated gene expression by dietary polyphenolic compounds. Free Radical Biology and Medicine, 42(3), 315–325. https://doi.org/10.1016/j.freeradbiomed.2006.09.028
- Ko, J.-H., Sethi, G., Um, J.-Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., Bishayee, A., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. International Journal of Molecular Sciences, 18(12), 2589. https://doi.org/10.3390/ijms18122589
- Koczka, N., Stefanovits-Bányai, É., & Ombódi, A. (2018). Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicine, 5(3), 84. https://doi.org/10.3390/medicines5030084
- Kokubo, Y., Iso, H., Ishihara, J., Okada, K., Inoue, M., & Tsugane, S. (2007). Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in japanese populations: The Japan Public Health Center–based (JPHC) Study Cohort I. Circulation, 116(22), 2553–2562. https://doi.org/10.1161/CIRCULATIONAHA.106.683755
- Kulkarni, S. R., Donepudi, A. C., Xu, J., Wei, W., Cheng, Q. C., Driscoll, M. V., Johnson, D. A., Johnson, J. A., Li, X., & Slitt, A. L. (2014). Fasting induces nuclear factor E2-related factor 2 and ATP-binding cassette transporters via protein kinase a and Sirtuin-1 in mouse and human. Antioxidants & Redox Signaling, 20(1), 15–30. https://doi.org/10.1089/ars.2012.5082
- Kumar, S., Sharma, D. U., Sharma, A., & Pandey, A. K. (2012). Protective efficacy of solanum xanthocarpum root extracts against free radical damage: Phytochemical analysis and antioxidant effect (Vol. 58, pp. 174–181). Cellular and Molecular Biology (Noisy-Le-Grand. https://doi.org/10.1170/T938
- Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1), 71. https://doi.org/10.1186/s12937-016-0186-5
- Lavefve, L., Howard, L. R., & Carbonero, F. (2020). Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function, 11(1), 45–65. https://doi.org/10.1039/C9FO01634A
- Lee, J.-H., Moon, J.-H., Kim, S.-W., Jeong, J.-K., Nazim, U. M. D., Lee, Y.-J., Seol, J. W., & Park, S. Y. (2015). EGCG-mediated autophagy flux has a neuroprotection effect via a class III histone deacetylase in primary neuron cells. Oncotarget, 6(12), 9701–9717. https://doi.org/10.18632/oncotarget.3832
- Leri, M., Scuto, M., Ontario, M. L., Calabrese, V., Calabrese, E. J., Bucciantini, M., & Stefani, M. (2020). Healthy effects of plant polyphenols: Molecular mechanisms. International Journal of Molecular Sciences, 21(4), 1250. https://doi.org/10.3390/ijms21041250
- Li, H., Xia, N., & Förstermann, U. (2012). Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide, 26(2), 102–110. https://doi.org/10.1016/j.niox.2011.12.006
- Little, C. H., Combet, E., McMillan, D. C., Horgan, P. G., & Roxburgh, C. S. D. (2017). The role of dietary polyphenols in the moderation of the inflammatory response in early stage colorectal cancer. Critical Reviews in Food Science and Nutrition, 57(11), 2310–2320. https://doi.org/10.1080/10408398.2014.997866
- Long, J., Guan, P., Hu, X., Yang, L., He, L., Lin, Q., Luo, F., Li, J., He, X., du, Z., & Li, T. (2021). Natural polyphenols as targeted modulators in colon cancer: Molecular mechanisms and applications. Frontiers in Immunology, 12, 635484. https://doi.org/10.3389/fimmu.2021.635484
- Luceri, C., Caderni, G., Sanna, A., & Dolara, P. (2002). Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in Azoxymethane-induced F344 rat colon tumors. The Journal of Nutrition, 132(6), 1376–1379. https://doi.org/10.1093/jn/132.6.1376
- Ma, T. K., Kam, K. K., Yan, B. P., & Lam, Y.-Y. (2010). Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: Current status: RAAS blockade. British Journal of Pharmacology, 160(6), 1273–1292. https://doi.org/10.1111/j.1476-5381.2010.00750.x
- Magyar, K., Halmosi, R., Palfi, A., Feher, G., Czopf, L., Fulop, A., Battyany, I., Sumegi, B., Toth, K., & Szabados, E. (2012). Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clinical Hemorheology and Microcirculation, 50(3), 179–187. https://doi.org/10.3233/CH-2011-1424
- Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
- Mandalari, G., Bennett, R. N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C. B., Gasson, M. J., & Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry: Antimicrobials from bergamot. Journal of Applied Microbiology, 103(6), 2056–2064. https://doi.org/10.1111/j.1365-2672.2007.03456.x
- Mandel, S., Amit, T., Reznichenko, L., Weinreb, O., & Youdim, M. B. H. (2006). Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Molecular Nutrition & Food Research, 50(2), 229–234. https://doi.org/10.1002/mnfr.200500156
- Marchesi, J. R., Adams, D. H., Fava, F., Hermes, G. D. A., Hirschfield, G. M., Hold, G., Quraishi, M. N., Kinross, J., Smidt, H., Tuohy, K. M., Thomas, L. V., Zoetendal, E. G., & Hart, A. (2016). The gut microbiota and host health: A new clinical frontier. Gut, 65(2), 330–339. https://doi.org/10.1136/gutjnl-2015-309990
- Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International, 2015, 1–18. https://doi.org/10.1155/2015/905215
- Mikuła-Pietrasik, J., Kuczmarska, A., Rubiś, B., Filas, V., Murias, M., Zieliński, P., Piwocka, K., & Książek, K. (2012). Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radical Biology and Medicine, 52(11–12), 2234–2245. https://doi.org/10.1016/j.freeradbiomed.2012.03.014
- Mirza-Aghazadeh-Attari, M., Ekrami, E. M., Aghdas, S. A. M., Mihanfar, A., Hallaj, S., Yousefi, B., Safa, A., & Majidinia, M. (2020). Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sciences, 255, 117481. https://doi.org/10.1016/j.lfs.2020.117481
- Mocanu, M.-M., Nagy, P., & Szöllősi, J. (2015). Chemoprevention of breast cancer by dietary polyphenols. Molecules, 20(12), 22578–22620. https://doi.org/10.3390/molecules201219864
- Momiyama, Y., Adachi, H., Fairweather, D., Ishizaka, N., & Saita, E. (2014). Inflammation, atherosclerosis and coronary artery disease. Clinical Medicine Insights Cardiology, 8s3, CMC.S39423–CMC.S39470. https://doi.org/10.4137/CMC.S39423
10.4137/CMC.S39423 Google Scholar
- Moorthy, M., Chaiyakunapruk, N., Jacob, S. A., & Palanisamy, U. D. (2020). Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: A systematic review of randomised controlled trials. Trends in Food Science & Technology, 99, 634–649. https://doi.org/10.1016/j.tifs.2020.03.036
- Moradi, S. Z., Jalili, F., Farhadian, N., Joshi, T., Wang, M., Zou, L., Cao, H., Farzaei, M. H., & Xiao, J. (2022). Polyphenols and neurodegenerative diseases: Focus on neuronal regeneration. Critical Reviews in Food Science and Nutrition, 62, 3421–3436. https://doi.org/10.1080/10408398.2020.1865870
- Mozos, I., Flangea, C., Vlad, D. C., Gug, C., Mozos, C., Stoian, D., Luca, C. T., Horbańczuk, J. O., Horbańczuk, O. K., & Atanasov, A. G. (2021). Effects of anthocyanins on vascular health. Biomolecules, 11(6), 811. https://doi.org/10.3390/biom11060811
- Munekata, P. E. S., Domínguez, R., Pateiro, M., & Lorenzo, J. M. (2020). Influence of plasma treatment on the polyphenols of food products—A review. Food, 9(7), 929. https://doi.org/10.3390/foods9070929
- Nakaso, K., Ito, S., & Nakashima, K. (2008). Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells. Neuroscience Letters, 432(2), 146–150. https://doi.org/10.1016/j.neulet.2007.12.034
- Nash, V., Ranadheera, C. S., Georgousopoulou, E. N., Mellor, D. D., Panagiotakos, D. B., McKune, A. J., Kellett, J., & Naumovski, N. (2018). The effects of grape and red wine polyphenols on gut microbiota – A systematic review. Food Research International, 113, 277–287. https://doi.org/10.1016/j.foodres.2018.07.019
- Ndisang, J. F., Vannacci, A., & Rastogi, S. (2017). Insulin resistance, type 1 and type 2 diabetes, and related complications 2017. Journal of Diabetes Research, 2017, 1–3. https://doi.org/10.1155/2017/1478294
- Nijveldt, R. J., van Nood, E., van Hoorn, D. E., Boelens, P. G., van Norren, K., & van Leeuwen, P. A. (2001). Flavonoids: A review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74(4), 418–425. https://doi.org/10.1093/ajcn/74.4.418
- Obrenovich, M. E., Nair, N. G., Beyaz, A., Aliev, G., & Reddy, V. P. (2010). The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Research, 13(6), 631–643. https://doi.org/10.1089/rej.2010.1043
- Ogawa, S., Matsumae, T., Kataoka, T., Yazaki, Y., & Yamaguchi, H. (2013). Effect of acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: A randomized multicenter feeding trial. Experimental and Therapeutic Medicine, 5(6), 1566–1572. https://doi.org/10.3892/etm.2013.1029
- Ortiz-López, L., Márquez-Valadez, B., Gómez-Sánchez, A., Silva-Lucero, M. D. C., Torres-Pérez, M., Téllez-Ballesteros, R. I., Ichwan, M., Meraz-Ríos, M. A., Kempermann, G., & Ramírez-Rodríguez, G. B. (2016). Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience, 322, 208–220. https://doi.org/10.1016/j.neuroscience.2016.02.040
- Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49(4), 396–402. https://doi.org/10.3109/13880209.2010.519390
- Pala, D., Barbosa, P. O., Silva, C. T., de Souza, M. O., Freitas, F. R., Volp, A. C. P., Maranhão, R. C., & Freitas, R. N. (2018). Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clinical Nutrition, 37(2), 618–623. https://doi.org/10.1016/j.clnu.2017.02.001
- Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
- Pandey, K. B., & Rizvi, S. I. (2009a). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498
- Pandey, K. B., & Rizvi, S. I. (2009b). Protective effect of resveratrol on formation of membrane protein carbonyls and lipid peroxidation in erythrocytes subjected to oxidative stress. Applied Physiology, Nutrition, and Metabolism, 34(6), 1093–1097. https://doi.org/10.1139/H09-115
- Parage, C., Tavares, R., Réty, S., Baltenweck-Guyot, R., Poutaraud, A., Renault, L., Heintz, D., Lugan, R., Marais, G. A., Aubourg, S., & Hugueney, P. (2012). Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiology, 160(3), 1407–1419. https://doi.org/10.1104/pp.112.202705
- Patel, S. K., Velkoska, E., Freeman, M., Wai, B., Lancefield, T. F., & Burrell, L. M. (2014). From gene to protein—experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Frontiers in Physiology, 5, 227. https://doi.org/10.3389/fphys.2014.00227
- Pawlowska, E., Szczepanska, J., Koskela, A., Kaarniranta, K., & Blasiak, J. (2019). Dietary polyphenols in age-related macular degeneration: Protection against oxidative stress and beyond. Oxidative Medicine and Cellular Longevity, 2019, 1–13. https://doi.org/10.1155/2019/9682318
- Peron, G., Hidalgo-Liberona, N., González-Domínguez, R., Garcia-Aloy, M., Guglielmetti, S., Bernardi, S., Kirkup, B., Kroon, P. A., Cherubini, A., Riso, P., & Andrés-Lacueva, C. (2020). Exploring the molecular pathways behind the effects of nutrients and dietary polyphenols on gut microbiota and intestinal permeability: A perspective on the potential of metabolomics and future clinical applications. Journal of Agricultural and Food Chemistry, 68(7), 1780–1789. https://doi.org/10.1021/acs.jafc.9b01687
- Pfeifer, M. A., Halter, J. B., & Porte, D. (1981). Insulin secretion in diabetes mellitus. The American Journal of Medicine, 70(3), 579–588. https://doi.org/10.1016/0002-9343(81)90579-9
- Pietta, P.-G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042. https://doi.org/10.1021/np9904509
- Polivka, J., & Janku, F. (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology & Therapeutics, 142(2), 164–175. https://doi.org/10.1016/j.pharmthera.2013.12.004
- Prasad, C., Davis, K. E., Imrhan, V., Juma, S., & Vijayagopal, P. (2019). Advanced glycation end products and risks for chronic diseases: Intervening through lifestyle modification. American Journal of Lifestyle Medicine, 13(4), 384–404. https://doi.org/10.1177/1559827617708991
- Rasines-Perea, Z., & Teissedre, P.-L. (2017). Grape Polyphenols' effects in human cardiovascular diseases and diabetes. Molecules, 22(1), 68. https://doi.org/10.3390/molecules22010068
- Rasouli, H., Farzaei, M. H., & Khodarahmi, R. (2017). Polyphenols and their benefits: A review. International Journal of Food Properties, 20, 1–42. https://doi.org/10.1080/10942912.2017.1354017
- Reddy, V. P., Aryal, P., Robinson, S., Rafiu, R., Obrenovich, M., & Perry, G. (2020). Polyphenols in Alzheimer's Disease and in the gut-brain axis. Microorganisms, 8(2), 199. https://doi.org/10.3390/microorganisms8020199
- Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(12), 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
- Reinisalo, M., Kårlund, A., Koskela, A., Kaarniranta, K., & Karjalainen, R. O. (2015). Polyphenol stilbenes: Molecular mechanisms of Defence against oxidative stress and aging-related diseases. Oxidative Medicine and Cellular Longevity, 2015, 1–24. https://doi.org/10.1155/2015/340520
- Ros, E., Martínez-González, M. A., Estruch, R., Salas-Salvadó, J., Fitó, M., Martínez, J. A., & Corella, D. (2014). Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Advances in Nutrition, 5(3), 330S–336S. https://doi.org/10.3945/an.113.005389
- Rotelli, M. T., Bocale, D., de Fazio, M., Ancona, P., Scalera, I., Memeo, R., Travaglio, E., Zbar, A. P., & Altomare, D. F. (2015). IN-VITRO evidence for the protective properties of the main components of the Mediterranean diet against colorectal cancer: A systematic review. Surgical Oncology, 24(3), 145–152. https://doi.org/10.1016/j.suronc.2015.08.001
- Russo, G. L., Spagnuolo, C., Russo, M., Tedesco, I., Moccia, S., & Cervellera, C. (2020). Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochemical Pharmacology, 173, 113719. https://doi.org/10.1016/j.bcp.2019.113719
- Sama, I. E., Ravera, A., Santema, B. T., van Goor, H., ter Maaten, J. M., Cleland, J. G. F., Rienstra, M., Friedrich, A. W., Samani, N. J., Ng, L. L., Dickstein, K., Lang, C. C., Filippatos, G., Anker, S. D., Ponikowski, P., Metra, M., van Veldhuisen, D., & Voors, A. A. (2020). Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone inhibitors. European Heart Journal, 41(19), 1810–1817. https://doi.org/10.1093/eurheartj/ehaa373
- Sanches-Silva, A., Testai, L., Nabavi, S. F., Battino, M., Pandima Devi, K., Tejada, S., Sureda, A., Xu, S., Yousefi, B., Majidinia, M., Russo, G. L., Efferth, T., Nabavi, S. M., & Farzaei, M. H. (2020). Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacological Research, 152, 104626. https://doi.org/10.1016/j.phrs.2019.104626
- Santhakumar, A. B., Battino, M., & Alvarez-Suarez, J. M. (2018). Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food and Chemical Toxicology, 113, 49–65. https://doi.org/10.1016/j.fct.2018.01.022
- Serino, A., & Salazar, G. (2018). Protective role of polyphenols against vascular inflammation, aging and cardiovascular disease. Nutrients, 11(1), 53. https://doi.org/10.3390/nu11010053
- Sharma, R., & Padwad, Y. (2020). Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends in Food Science & Technology, 98, 41–52. https://doi.org/10.1016/j.tifs.2020.02.004
- Shi, G.-J., Li, Y., Cao, Q.-H., Wu, H.-X., Tang, X.-Y., Gao, X.-H., Yu, J. Q., Chen, Z., & Yang, Y. (2019). In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy, 109, 1085–1099. https://doi.org/10.1016/j.biopha.2018.10.130
- Shi, Y., Zhou, S., Fan, S., Ma, Y., Li, D., Tao, Y., & Han, Y. (2021). Encapsulation of bioactive polyphenols by starch and their impacts on gut microbiota. Current Opinion in Food Science, 38, 102–111. https://doi.org/10.1016/j.cofs.2020.11.001
- Si, T.-L., Liu, Q., Ren, Y.-F., Li, H., Xu, X.-Y., Li, E.-H., Pan, S. Y., Zhang, J. L., & Wang, K. X. (2016). Enhanced anti-inflammatory effects of DHA and quercetin in lipopolysaccharide-induced RAW264.7 macrophages by inhibiting NF-κB and MAPK activation. Molecular Medicine Reports, 14(1), 499–508. https://doi.org/10.3892/mmr.2016.5259
- Sinha, D., Sarkar, N., Biswas, J., & Bishayee, A. (2016). Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Seminars in Cancer Biology, 40–41, 209–232. https://doi.org/10.1016/j.semcancer.2015.11.001
- Smolensky, D., Rhodes, D., McVey, D. S., Fawver, Z., Perumal, R., Herald, T., & Noronha, L. (2018). High-polyphenol sorghum bran extract inhibits cancer cell growth through ROS induction, cell cycle arrest, and apoptosis. Journal of Medicinal Food, 21(10), 990–998. https://doi.org/10.1089/jmf.2018.0008
- Sobhani, M., Farzaei, M. H., Kiani, S., & Khodarahmi, R. (2021). Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites. Food Reviews International, 37(8), 759–811. https://doi.org/10.1080/87559129.2020.1717523
- Spencer, J. P. E., Abd El Mohsen, M. M., Minihane, A.-M., & Mathers, J. C. (2008). Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. British Journal of Nutrition, 99(1), 12–22. https://doi.org/10.1017/S0007114507798938
- Stockley, C., Teissedre, P.-L., Boban, M., Di Lorenzo, C., & Restani, P. (2012). Bioavailability of wine-derived phenolic compounds in humans: A review. Food & Function, 3(10), 995–1007. https://doi.org/10.1039/c2fo10208k
- Sun, H., Chen, Y., Cheng, M., Zhang, X., Zheng, X., & Zhang, Z. (2018). The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. Journal of Food Science and Technology, 55(1), 399–407. https://doi.org/10.1007/s13197-017-2951-7
- Teixeira, L. L., Costa, G. R., Dörr, F. A., Ong, T. P., Pinto, E., Lajolo, F. M., & Hassimotto, N. M. A. (2017). Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.). Food & Function, 8(6), 2266–2274. https://doi.org/10.1039/C7FO00076F
- Teng, H., & Chen, L. (2019). Polyphenols and bioavailability: An update. Critical Reviews in Food Science and Nutrition, 59(13), 2040–2051. https://doi.org/10.1080/10408398.2018.1437023
- Tikellis, C., & Thomas, M. C. (2012). Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. International Journal of Peptides, 2012, 1–8. https://doi.org/10.1155/2012/256294
- Tili, E., & Michaille, J.-J. (2016). Promiscuous effects of some phenolic natural products on inflammation at least in part arise from their ability to modulate the expression of global regulators, namely microRNAs. Molecules, 21(9), 1263. https://doi.org/10.3390/molecules21091263
- Tresserra-Rimbau, A., Lamuela-Raventos, R. M., & Moreno, J. J. (2018). Polyphenols, food and pharma. Current knowledge and directions for future research. Biochemical Pharmacology, 156, 186–195. https://doi.org/10.1016/j.bcp.2018.07.050
- Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicine, 5(3), 93. https://doi.org/10.3390/medicines5030093
- Uddin, M. S., al Mamun, A., Kabir, M. T., Ahmad, J., Jeandet, P., Sarwar, M. S., Ashraf, G. M., & Aleya, L. (2020). Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. European Journal of Pharmacology, 886, 173412. https://doi.org/10.1016/j.ejphar.2020.173412
- Vaisman, N., & Niv, E. (2015). Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: A double blind, placebo-controlled, randomized study. International Journal of Food Sciences and Nutrition, 66(3), 342–349. https://doi.org/10.3109/09637486.2014.1000840
- van Duynhoven, J., Vaughan, E. E., Jacobs, D. M., Kemperman, R. A., van Velzen, E. J. J., Gross, G., Roger, L. C., Possemiers, S., Smilde, A. K., Doré, J., Westerhuis, J. A., & van de Wiele, T. (2011). Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences, 108(Suppl 1), 4531–4538. https://doi.org/10.1073/pnas.1000098107
- Vauzour, D., Rodriguez-Mateos, A., Corona, G., Oruna-Concha, M. J., & Spencer, J. P. E. (2010). Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131. https://doi.org/10.3390/nu2111106
- Wakabayashi, N., Shin, S., Slocum, S. L., Agoston, E. S., Wakabayashi, J., Kwak, M.-K., Misra, V., Biswal, S., Yamamoto, M., & Kensler, T. W. (2010). Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Science Signaling, 3(130), ra52. https://doi.org/10.1126/scisignal.2000762
- Wan, D., Zhou, Y., Wang, K., Hou, Y., Hou, R., & Ye, X. (2016). Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Research Bulletin, 121, 255–262. https://doi.org/10.1016/j.brainresbull.2016.02.011
- Wang, H., Yang, Y.-J., Qian, H.-Y., Zhang, Q., Xu, H., & Li, J.-J. (2012). Resveratrol in cardiovascular disease: What is known from current research? Heart Failure Reviews, 17(3), 437–448. https://doi.org/10.1007/s10741-011-9260-4
- Wang, W., Wang, S., Liu, T., Ma, Y., Huang, S., Lei, L., Wen, A., & Ding, Y. (2020). Resveratrol: Multi-targets mechanism on neurodegenerative diseases based on network pharmacology. Frontiers in Pharmacology, 11, 694. https://doi.org/10.3389/fphar.2020.00694
- Ward, R. J. (2015). Ageing neuroinflammation and neurodegeneration. Frontiers in Bioscience, 7(1), 189–204. https://doi.org/10.2741/s433
10.2741/s433 Google Scholar
- Wojtunik-Kulesza, K., Oniszczuk, A., Oniszczuk, T., Combrzyński, M., Nowakowska, D., & Matwijczuk, A. (2020). Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients, 12(5), 1401. https://doi.org/10.3390/nu12051401
- Wong, R., Raederstorff, D., & Howe, P. (2016). Acute resveratrol consumption improves neurovascular coupling capacity in adults with type 2 diabetes mellitus. Nutrients, 8(7), 425. https://doi.org/10.3390/nu8070425
- Wu, M., Luo, Q., Nie, R., Yang, X., Tang, Z., & Chen, H. (2020). Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Critical Reviews in Food Science and Nutrition, 1–19, 2175–2193. https://doi.org/10.1080/10408398.2020.1773390
- Wu, M., Yang, Q., Wu, Y., & Ouyang, J. (2021). Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Bioscience, 43, 101224. https://doi.org/10.1016/j.fbio.2021.101224
- Wu, W.-K., Chen, C.-C., Liu, P.-Y., Panyod, S., Liao, B.-Y., Chen, P.-C., Kao, H. L., Kuo, H. C., Kuo, C. H., Chiu, T. H. T., Chen, R. A., Chuang, H. L., Huang, Y. T., Zou, H. B., Hsu, C. C., Chang, T. Y., Lin, C. L., Ho, C. T., Yu, H. T., … Wu, M. S. (2019). Identification of TMAO-producer phenotype and host–diet–gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut, 68(8), 1439–1449. https://doi.org/10.1136/gutjnl-2018-317155
- Yang, X., & Kong, F. (2016). Evaluation of the in vitro α -glucosidase inhibitory activity of green tea polyphenols and different tea types: α-glucosidase inhibitory activity of tea. Journal of the Science of Food and Agriculture, 96(3), 777–782. https://doi.org/10.1002/jsfa.7147
- Yeung, A. W. K., et al. (2019). Resveratrol, a popular dietary supplement for human and animal health: Quantitative research literature analysis - a review. Animal Science Papers and Reports, 37(2), 103–118.
- Yuan, H., Zhang, J., Liu, H., & Li, Z. (2013). The protective effects of resveratrol on Schwann cells with toxicity induced by ethanol in vitro. Neurochemistry International, 63(3), 146–153. https://doi.org/10.1016/j.neuint.2013.05.011
- Yunes, R. A., Poluektova, E. U., Dyachkova, M. S., Klimina, K. M., Kovtun, A. S., Averina, O. V., Orlova, V. S., & Danilenko, V. N. (2016). GABA production and structure of gadB/gadC genes in lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe, 42, 197–204. https://doi.org/10.1016/j.anaerobe.2016.10.011
- Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394. https://doi.org/10.1111/jfbc.13394
- Zhang, F., Wang, Y.-Y., Liu, H., Lu, Y.-F., Wu, Q., Liu, J., & Shi, J.-S. (2012). Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting Astroglial BDNF and GDNF release. Evidence-based Complementary and Alternative Medicine, 2012, 1–7. https://doi.org/10.1155/2012/937605
- Zhang, X., Wu, M., Lu, F., Luo, N., He, Z.-P., & Yang, H. (2014). Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-amyloid-induced apoptotic cortical neuronal insults. Molecular Neurobiology, 49(1), 66–77. https://doi.org/10.1007/s12035-013-8491-x
- Zhang, Y.-J., Gan, R.-Y., Li, S., Zhou, Y., Li, A.-N., Xu, D.-P., & Li, H.-B. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20(12), 21138–21156. https://doi.org/10.3390/molecules201219753
- Zheng, C., Liu, R., Xue, B., Luo, J., Gao, L., Wang, Y., Ou, S., Li, S., & Peng, X. (2017). Impact and consequences of polyphenols and fructooligosaccharide interplay on gut microbiota in rats. Food & Function, 8(5), 1925–1932. https://doi.org/10.1039/C6FO01783E
- Zhi, C., Huang, J., Wang, J., Cao, H., Bai, Y., Guo, J., & Su, Z. (2019). Connection between gut microbiome and the development of obesity. European Journal of Clinical Microbiology & Infectious Diseases, 38(11), 1987–1998. https://doi.org/10.1007/s10096-019-03623-x
- Zorraquín, I., Sánchez-Hernández, E., Ayuda-Durán, B., Silva, M., González-Paramás, A. M., Santos-Buelga, C., Moreno-Arribas, M. V., & Bartolomé, B. (2020). Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. Journal of the Science of Food and Agriculture, 100(10), 3789–3802. https://doi.org/10.1002/jsfa.10378