Concept, mechanism, and applications of phenolic antioxidants in foods
Corresponding Author
Alam Zeb
Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
Correspondence
Alam Zeb, Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Alam Zeb
Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
Correspondence
Alam Zeb, Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan.
Email: [email protected]
Search for more papers by this authorAbstract
In this review, the concept of phenolic antioxidants, mechanisms of action, and applications have been reviewed. Phenolic compounds (PCs) acts as an antioxidant by reacting with a variety of free radicals. The mechanism of antioxidant actions involved either by hydrogen atom transfer, transfer of a single electron, sequential proton loss electron transfer, and chelation of transition metals. In foods, the PCs act as antioxidants which are measured with several in vitro spectroscopic methods. The PCs have been found in milk and a wide range of dairy products with sole purposes of color, taste, storage stability, and quality enhancement. The role of PCs in three types of food additives, that is, antimicrobial, antioxidant, and flavoring agents have been critically reviewed. The literature revealed that PCs present in a variety of foods possess several health benefits such as antibacterial, antihyperlipidemic, anticancer, antioxidants, cardioprotective, neuroprotective, and antidiabetic properties.
Practical applications
Phenolic compounds are strong antioxidants and are safer than synthetic antioxidants. The wide occurrence in plant foods warranted continuous review applications. This review, therefore, presented an updated comprehensive overview of the concept, mechanism, and applications of phenolic antioxidants in foods.
CONFLICT OF INTEREST
The author declares no conflict of interest.
REFERENCES
- Abas, F., Alkan, T., Goren, B., Taskapilioglu, O., Sarandol, E., & Tolunay, S. (2010). Neuroprotective effects of postconditioning on lipid peroxidation and apoptosis after focal cerebral ischemia/reperfusion injury in rats. Turkish Neurosurgery, 20(1), 1–8.
- Adebamowo, C. A., Cho, E., Sampson, L., Katan, M. B., Spiegelman, D., Willett, W. C., & Holmes, M. D. (2005). Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. International Journal of Cancer, 114(4), 628–633. https://doi.org/10.1002/ijc.20741
- Ademiluyi, A. O., & Oboh, G. (2013). Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, 65(3), 305–309. https://doi.org/10.1016/j.etp.2011.09.005
- Aerts, R. J., Barry, T. N., & McNabb, W. C. (1999). Polyphenols and agriculture: Beneficial effects of proanthocyanidins in forages. Agriculture, Ecosystems & Environment, 75(1), 1–12. https://doi.org/10.1016/S0167-8809(99)00062-6
- Aguiar, S. C., Cottica, S. M., Boeing, J. S., Samensari, R. B., Santos, G. T., Visentainer, J. V., & Zeoula, L. M. (2014). Effect of feeding phenolic compounds from propolis extracts to dairy cows on milk production, milk fatty acid composition, and the antioxidant capacity of milk. Animal Feed Science and Technology, 193, 148–154. https://doi.org/10.1016/j.anifeedsci.2014.04.006
- Agunloye, O. M., Oboh, G., Ademiluyi, A. O., Ademosun, A. O., Akindahunsi, A. A., Oyagbemi, A. A., … Adedapo, A. A. (2019). Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomedicine & Pharmacotherapy, 109, 450–458. https://doi.org/10.1016/j.biopha.2018.10.044
- Ahmad, S., & Zeb, A. (2019). Effects of phenolic compounds from aqueous extract of Trifolium repens against acetaminophen-induced hepatotoxicity in mice. Journal of Food Biochemistry, 43(9), e12963. https://doi.org/10.1111/jfbc.12963
- Ahmad, S., Zeb, A., Ayaz, M., & Murkovic, M. (2020). Characterization of phenolic compounds using UPLC-HRM and HPLC-DAD and anticholinesterase and antioxidant activities of Trifolium repens L. leaves. European Food Research & Technology, 246(3), 485–496. https://doi.org/10.1007/s00217-00019-03416-00218
- Ahmadi, L., El-Kubbe, A., & Roney, S. K. (2019). Potential cardio-protective effects of green grape juice: A review. Current Nutrition & Food Science, 15(3), 202–207.
- Ahmadinejad, F., Geir Møller, S., Hashemzadeh-Chaleshtori, M., Bidkhori, G., & Jami, M.-S. (2017). Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants, 6(3), 51.
- Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002
- Alisi, I. O., Uzairu, A., & Abechi, S. E. (2020). Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: Thermodynamics of O-H and N–H bond cleavage. Heliyon, 6(3), e03683. https://doi.org/10.1016/j.heliyon.2020.e03683
- Alonso-Amelot, M. E., Castillo, U., Smith, B. L., & Lauren, D. R. (1996). Bracken ptaquiloside in milk. Nature, 382(6592), 587.
- Alshikh, N., de Camargo, A. C., & Shahidi, F. (2015). Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. Journal of Medicinal Food, 18, 1022–1038.
- Amarowicz, R., Karamać, M., Dueñas, M., & Pegg, R. B. (2017). Antioxidant activity and phenolic composition of a red bean (Phasoelus vulgaris) extract and its Fractions. Natural Product Communications, 12(4), 541–544. https://doi.org/10.1177/1934578x1701200420
- Andarwulan, N., Kurniasih, D., Apriady, R. A., Rahmat, H., Roto, A. V., & Bolling, B. W. (2012). Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables. Journal of Functional Foods, 4(1), 339–347. https://doi.org/10.1016/j.jff.2012.01.003
- Anitha, S., Krishnan, S., Senthilkumar, K., & Sasirekha, V. (2020). Theoretical investigation on the structure and antioxidant activity of (+) catechin and (−) epicatechin – A comparative study. Molecular Physics, 1–12, https://doi.org/10.1080/00268976.2020.1745917
- Apak, R. A., Özyürek, M., Güçlü, K., & Çapanoğlu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997–1027.
- Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L'. U., Łuczaj, W., … Žarković, N. (2010). Natural and synthetic antioxidants: An updated overview. Free Radical Research, 44(10), 1216–1262.
- Axten, L., Wohlers, M., & Wegrzyn, T. (2008). Using phytochemicals to enhance health benefits of milk: Impact of polyphenols on flavor profile. Journal of Food Science, 73(6), H122–H126.
- Ayala-Zavala, J. F., Vega-Vega, V., Rosas-Domínguez, C., Palafox-Carlos, H., Villa-Rodriguez, J. A., Siddiqui, M. W., … González-Aguilar, G. A. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International, 44(7), 1866–1874. https://doi.org/10.1016/j.foodres.2011.02.021
- Bagchi, D., Sen, C. K., Ray, S. D., Das, D. K., Bagchi, M., Preuss, H. G., & Vinson, J. A. (2003). Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutation Research, 523–524, 87–97. https://doi.org/10.1016/S0027-5107(02)00324-X
- Bai, Y., Xu, Y., Wang, B., Li, S., Guo, F., Hua, H., … Yu, Z. (2017). Comparison of phenolic compounds, antioxidant and antidiabetic activities between selected edible beans and their different growth periods leaves. Journal of Functional Foods, 35, 694–702. https://doi.org/10.1016/j.jff.2017.06.036
- Balasubashini, M. S., Rukkumani, R., Viswanathan, P., & Menon, V. P. (2004). Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytotherapy Research, 18(4), 310–314. https://doi.org/10.1002/ptr.1440
- Balasubramaniam, V., Mustar, S., Mustafa Khalid, N., Abd Rashed, A., Mohd Noh, M. F., Wilcox, M. D., … Pearson, J. P. (2013). Inhibitory activities of three Malaysian edible seaweeds on lipase and α-amylase. Journal of Applied Phycology, 25(5), 1405–1412. https://doi.org/10.1007/s10811-012-9964-4
- Barraza-Garza, G., Pérez-León, J. A., Castillo-Michel, H., de la Rosa, L. A., Martinez-Martinez, A., Cotte, M., & Alvarez-Parrilla, E. (2020). Antioxidant effect of phenolic compounds (PC) at different concentrations in IEC-6 cells: A spectroscopic analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227, 117570. https://doi.org/10.1016/j.saa.2019.117570
- Basli, A., Soulet, S., Chaher, N., Mérillon, J.-M., Chibane, M., Monti, J.-P., & Richard, T. (2012). Wine polyphenols: potential agents in neuroprotection. Oxidative Medicine & Cellular Longevity, 2012, 805762. https://doi.org/10.1155/2012/805762.
- Bastianetto, S., Dumont, Y., Han, Y., & Quirion, R. (2009). Comparative neuroprotective properties of stilbene and catechin analogs: Action via a plasma membrane receptor site? CNS Neuroscience & Therapeutics, 15(1), 76–83. https://doi.org/10.1111/j.1755-5949.2008.00074.x
- Bento-Silva, A., Koistinen, V. M., Mena, P., Bronze, M. R., Hanhineva, K., Sahlstrøm, S., … Aura, A.-M. (2020). Factors affecting intake, metabolism and health benefits of phenolic acids: Do we understand individual variability? European Journal of Nutrition, 59, 1275–1293. https://doi.org/10.1007/s00394-019-01987-6
- Bertelli, M., Kiani, A. K., Paolacci, S., Manara, E., Kurti, D., Dhuli, K., … Michelini, S. (2020). Hydroxytyrosol: A natural compound with promising pharmacological activities. Journal of Biotechnology, 309, 29–33.
- Bodoira, R., & Maestri, D. (2020). Phenolic compounds from nuts: Extraction, chemical profiles, and bioactivity. Journal of Agricultural and Food Chemistry, 68(4), 927–942. https://doi.org/10.1021/acs.jafc.9b07160
- Bonta, R. K. (2020). Dietary phenolic acids and flavonoids as potential anti-cancer agents: Current state of the art and future perspectives. Anti-Cancer Agents in Medicinal Chemistry, 20(1), 29–48. https://doi.org/10.2174/1871520619666191019112712
- Bortolomeazzi, R., Sebastianutto, N., Toniolo, R., & Pizzariello, A. (2007). Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chemistry, 100(4), 1481–1489. https://doi.org/10.1016/j.foodchem.2005.11.039
- Brewer, M. S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
- Brown, E. J., Khodr, H., Hider, C. R., & Rice-evans, C. A. (1998). Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochemical Journal, 330(3), 1173–1178.
- Burri, J., Graf, M., Lambelet, P., & Löliger, J. (1989). Vanillin: More than a flavouring agent—a potent antioxidant. Journal of the Science of Food and Agriculture, 48(1), 49–56. https://doi.org/10.1002/jsfa.2740480107
- Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253.
- Burton-Freeman, B. (2010). Postprandial metabolic events and fruit-derived phenolics: A review of the science. British Journal of Nutrition, 104(S3), S1–S14. https://doi.org/10.1017/S0007114510003909
- Byrd, S. (2001). Using antioxidants to increase shelf life of food products. Cereal Foods World, 46(2), 48–53.
- Caleja, C., Barros, L., Antonio, A. L., Ciric, A., Barreira, J. C. M., Sokovic, M., … Ferreira, I. C. F. R. (2015). Development of a functional dairy food: Exploring bioactive and preservation effects of chamomile (Matricaria recutita L.). Journal of Functional Foods, 16, 114–124. https://doi.org/10.1016/j.jff.2015.04.033
- Călinoiu, L. F., & Vodnar, D. C. (2018). Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients, 10(11), 1615.
- Cao, Y., & Cao, R. (1999). Angiogenesis inhibited by drinking tea. Nature, 398(6726), 381. https://doi.org/10.1038/18793
- Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. F. R. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13(4), 377–399. https://doi.org/10.1111/1541-4337.12065
- Chen, C., Pearson, A., & Gray, J. (1992). Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chemistry, 43(3), 177–183.
- Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 2611. https://doi.org/10.1038/s41598-020-59451-z
- Choe, E., & Min, D. B. (2009). Mechanisms of antioxidants in the oxidation of foods. Comprehensive Reviews in Food Science and Food Safety, 8(4), 345–358.
- Chouchouli, V., Kalogeropoulos, N., Konteles, S. J., Karvela, E., Makris, D. P., & Karathanos, V. T. (2013). Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT - Food Science and Technology, 53(2), 522–529. https://doi.org/10.1016/j.lwt.2013.03.008
- Chvátalová, K., Slaninová, I., Březinová, L., & Slanina, J. (2008). Influence of dietary phenolic acids on redox status of iron: Ferrous iron autoxidation and ferric iron reduction. Food Chemistry, 106(2), 650–660.
- Cianciosi, D., Forbes-Hernández, T., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P., … Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322.
- Cooksey, K. (2005). Effectiveness of antimicrobial food packaging materials. Food Additives and Contaminants, 22(10), 980–987.
- Cooper, S. R., McArdle, J. V., & Raymond, K. N. (1978). Siderophore electrochemistry: Relation to intracellular iron release mechanism. Proceedings of the National Academy of Sciences, 75(8), 3551–3554. https://doi.org/10.1073/pnas.75.8.3551.
- Corso, M., Perreau, F., Mouille, G., & Lepiniec, L. (2020). Specialized phenolic compounds in seeds: Structures, functions, and regulations. Plant Science, 296, 110471. https://doi.org/10.1016/j.plantsci.2020.110471
- Crozier, A., Jaganath, I. B., & Clifford, M. N. (2009). Dietary phenolics: Chemistry, bioavailability and effects on health. Natural Product Reports, 26(8), 1001–1043. https://doi.org/10.1039/B802662A
- Cueva, C., Moreno-Arribas, M. V., Martín-Álvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., … Bartolomé, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 161(5), 372–382. https://doi.org/10.1016/j.resmic.2010.04.006
- Dangles, O. (2012). Antioxidant activity of plant phenols: Chemical mechanisms and biological significance. Current Organic Chemistry, 16(6), 692–714.
- De Pascual-Teresa, S., Moreno, D. A., & García-Viguera, C. (2010). Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11(4), 1679–1703.
- Dimitrios, B. (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17(9), 505–512. https://doi.org/10.1016/j.tifs.2006.04.004
- do Carmo, M. A. V., Pressete, C. G., Marques, M. J., Granato, D., & Azevedo, L. (2018). Polyphenols as potential antiproliferative agents: Scientific trends. Current Opinion in Food Science, 24, 26–35. https://doi.org/10.1016/j.cofs.2018.10.013
- Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., … Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221–2243. https://doi.org/10.1002/ptr.6419
- El Khawand, T., Courtois, A., Valls, J., Richard, T., & Krisa, S. (2018). A review of dietary stilbenes: Sources and bioavailability. Phytochemistry Reviews, 17(5), 1007–1029.
- El-Said, M. M., Haggag, H. F., Fakhr El-Din, H. M., Gad, A. S., & Farahat, A. M. (2014). Antioxidant activities and physical properties of stirred yoghurt fortified with pomegranate peel extracts. Annals of Agricultural Sciences, 59(2), 207–212. https://doi.org/10.1016/j.aoas.2014.11.007
10.1016/j.aoas.2014.11.007 Google Scholar
- Escarpa, A., & Gonzalez, M. C. (2001). An Overview of Analytical Chemistry of Phenolic Compounds in Foods. Critical Reviews in Analytical Chemistry, 31(2), 57–139. https://doi.org/10.1080/20014091076695
- Fki, I., Bouaziz, M., Sahnoun, Z., & Sayadi, S. (2005). Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorganic & Medicinal Chemistry, 13(18), 5362–5370. https://doi.org/10.1016/j.bmc.2005.05.036
- Foti, M. C. (2007). Antioxidant properties of phenols. Journal of Pharmacy and Pharmacology, 59(12), 1673–1685.
- Fraga, C. G. (2010). Plant phenolics and human health: Biochemistry, nutrition, and pharmacology (pp. 1–593). Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470531792
- García-Alonso, J., Ros, G., Vidal-Guevara, M. L., & Periago, M. J. (2006). Acute intake of phenolic-rich juice improves antioxidant status in healthy subjects. Nutrition Research, 26(7), 330–339. https://doi.org/10.1016/j.nutres.2006.06.004
- Geleijnse, J. M., & Hollman, P. C. (2008). Flavonoids and cardiovascular health: Which compounds, what mechanisms? The American Journal of Clinical Nutrition, 88(1), 12–13. https://doi.org/10.1093/ajcn/88.1.12
- Ghaffari, M. H., Tahmasbi, A. M., Khorvash, M., Naserian, A. A., & Vakili, A. R. (2014). Effects of pistachio by-products in replacement of alfalfa hay on ruminal fermentation, blood metabolites, and milk fatty acid composition in Saanen dairy goats fed a diet containing fish oil. Journal of Applied Animal Research, 42(2), 186–193.
- Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I. C. F. R. (2019). Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science & Technology, 88, 302–315. https://doi.org/10.1016/j.tifs.2019.03.029
- Göçer, H., & Gülçin, İ. (2011). Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. International Journal of Food Sciences and Nutrition, 62(8), 821–825. https://doi.org/10.3109/09637486.2011.585963
- Gorzynik-Debicka, M., Przychodzen, P., Cappello, F., Kuban-Jankowska, A., Marino Gammazza, A., Knap, N., … Gorska-Ponikowska, M. (2018). Potential health benefits of olive oil and plant polyphenols. International Journal of Molecular Sciences, 19(3), 686. https://doi.org/10.3390/ijms19030686
- Graf, B. A., Milbury, P. E., & Blumberg, J. B. (2005). Flavonols, flavones, flavanones, and human health: Epidemiological evidence. Journal of Medicinal Food, 8(3), 281–290. https://doi.org/10.1089/jmf.2005.8.281
- Granato, D., Mocan, A., & Câmara, J. S. (2020). Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo. Trends in Food Science & Technology, 98, 162–166. https://doi.org/10.1016/j.tifs.2020.01.010
- Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L. D., Hidalgo, F. J., … Finglas, P. (2018). Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry, 264, 471–475. https://doi.org/10.1016/j.foodchem.2018.04.012
- Gutiérrez-Grijalva, E. P., Picos-Salas, M. A., Leyva-López, N., Criollo-Mendoza, M. S., Vazquez-Olivo, G., & Heredia, J. B. (2018). Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits. Plants, 7(1), 2.
- Gutiérrez-Uribe, J. A., Romo-Lopez, I., & Serna-Saldívar, S. O. (2011). Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. Journal of Functional Foods, 3(4), 290–297. https://doi.org/10.1016/j.jff.2011.05.004
- Hajji, H. E., Nkhili, E., Tomao, V., & Dangles, O. (2006). Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radical Research, 40(3), 303–320.
- Halliwell, B. (1990). How to characterize a biological antioxidant. Free Radical Research Communications, 9(1), 1–32.
- Halliwell, B. (1995). Antioxidant characterization. Methodology and mechanism. Biochemical Pharmacology, 49(10), 1341–1348.
- Han, J., Britten, M., St-Gelais, D., Champagne, C. P., Fustier, P., Salmieri, S., & Lacroix, M. (2011). Polyphenolic compounds as functional ingredients in cheese. Food Chemistry, 124(4), 1589–1594. https://doi.org/10.1016/j.foodchem.2010.08.021
- Harnly, J. (2017). Antioxidant methods. Journal of Food Composition and Analysis, 64, 145–146. https://doi.org/10.1016/j.jfca.2017.08.011
- He, J., & Giusti, M. M. (2010). Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1(1), 163–187. https://doi.org/10.1146/annurev.food.080708.100754
- Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5
- Heleno, S. A., Martins, A., Queiroz, M. J. R. P., & Ferreira, I. C. F. R. (2015). Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 173, 501–513. https://doi.org/10.1016/j.foodchem.2014.10.057
- Hertog, M. G. L., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., … Katan, M. B. (1995). Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Archives of Internal Medicine, 155(4), 381–386. https://doi.org/10.1001/archinte.1995.00430040053006
- Himo, F., Eriksson, L. A., Blomberg, M. R. A., & Siegbahn, P. E. M. (2000). Substituent effects on OH bond strength and hyperfine properties of phenol, as model for modified tyrosyl radicals in proteins. International Journal of Quantum Chemistry, 76(6), 714–723. https://doi.org/10.1002/(sici)1097-461x(2000)76:6<714::Aid-qua4>3.0.Co;2-f
- Hinneburg, I., Damien Dorman, H. J., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97(1), 122–129. https://doi.org/10.1016/j.foodchem.2005.03.028
- Ianni, A., Di Maio, G., Pittia, P., Grotta, L., Perpetuini, G., Tofalo, R., … Martino, G. (2019). Chemical–nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. Journal of the Science of Food and Agriculture, 99(7), 3635–3643. https://doi.org/10.1002/jsfa.9584
- Jiang, J., & Xiong, Y. L. (2016). Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Science, 120, 107–117.
- Jung, Y. D., Kim, M. S., Shin, B. A., Chay, K. O., Ahn, B. W., Liu, W., … Ellis, L. M. (2001). EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. British Journal of Cancer, 84(6), 844–850. https://doi.org/10.1054/bjoc.2000.1691
- Kanatt, S. R., Chander, R., & Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science & Technology, 45(2), 216–222. https://doi.org/10.1111/j.1365-2621.2009.02124.x
- Karaaslan, M., Ozden, M., Vardin, H., & Turkoglu, H. (2011). Phenolic fortification of yogurt using grape and callus extracts. LWT - Food Science and Technology, 44(4), 1065–1072. https://doi.org/10.1016/j.lwt.2010.12.009
- Karakaya, S., El, S. N., & Taş, A. A. (2001). Antioxidant activity of some foods containing phenolic compounds. International Journal of Food Sciences and Nutrition, 52(6), 501–508. https://doi.org/10.1080/09637480020027000-6-6
- Khalatbary, A. R., & Khademi, E. (2020). The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutritional Neuroscience, 23(4), 281–294.
- Khan, M., Liu, H., Wang, J., & Sun, B. (2020). Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Research International, 130, 108933.
- Kilic, M., & Lindsay, R. C. (2005). Distribution of conjugates of alkylphenols in milk from different ruminant species. Journal of Dairy Science, 88(1), 7–12. https://doi.org/10.3168/jds.S0022-0302(05)72656-4
- King, R. A., Mano, M. M., & Head, R. J. (1998). Assessment of isoflavonoid concentrations in Australian bovine milk samples. Journal of Dairy Research, 65(3), 479–489.
- Koley, T. K., Maurya, A., Tripathi, A., Singh, B. K., Singh, M., Bhutia, T. L., … Singh, B. (2019). Antioxidant potential of commonly consumed underutilized leguminous vegetables. International Journal of Vegetable Science, 25(4), 362–372. https://doi.org/10.1080/19315260.2018.1519866
10.1080/19315260.2018.1519866 Google Scholar
- Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370
- Kumar, N., Singh, A., Sharma, D. K., & Kishore, K. (2019). Toxicity of food additives. In Food safety and human health (pp. 67–98). Elsevier.
10.1016/B978-0-12-816333-7.00003-5 Google Scholar
- Kumar, S., & Pandey, G. (2020). Biofortification of pulses and legumes to enhance nutrition. Heliyon, 6(3), e03682.
- Lasekan, O., & Abbas, K. A. (2012). Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: A review. Critical Reviews in Food Science and Nutrition, 52(8), 726–735. https://doi.org/10.1080/10408398.2010.507910
- Lavelli, V., Hippeli, S., Dornisch, K., Peri, C., & Elstner, E. F. (2001). Properties of tomato powders as additives for food fortification and stabilization. Journal of Agricultural and Food Chemistry, 49(4), 2037–2042. https://doi.org/10.1021/jf000490e
- Lee, C. Y., Sharma, A., Semenya, J., Anamoah, C., Chapman, K. N., & Barone, V. (2020). Computational study of ortho-substituent effects on antioxidant activities of phenolic dendritic antioxidants. Antioxidants, 9(3), 189. https://doi.org/10.3390/antiox9030189
- Lee, O.-H., & Lee, B.-Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, 101(10), 3751–3754. https://doi.org/10.1016/j.biortech.2009.12.052
- Lee, S., Kuan, C., Yang, C., & Yang, S. (1998). Bioflavonoids commonly and potently induce tyrosine dephosphorylation/inactivation of oncogenic proline-directed protein kinase FA in human prostate carcinoma cells. Anticancer Research, 18(2A), 1117–1121.
- Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108(22), 4916–4922.
- Leopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125(2), 288–306. https://doi.org/10.1016/j.foodchem.2010.08.012
- Levites, Y., Amit, T., Mandel, S., & Youdim, M. B. H. (2003). Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB Journal, 17(8), 952–954. https://doi.org/10.1096/fj.02-0881fje
- Levites, Y., Weinreb, O., Maor, G., Youdim, M. B., & Mandel, S. (2001). Green tea polyphenol (–)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. Journal of Neurochemistry, 78(5), 1073–1082.
- Li, C.-C., Liu, C., Fu, M., Hu, K.-Q., Aizawa, K., Takahashi, S., … Wang, X.-D. (2018). Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adiponectin function independent of carotenoid cleavage enzymes in mice. Molecular Nutrition & Food Research, 62(8), 1700738. https://doi.org/10.1002/mnfr.201700738
- López, A., El-Naggar, T., Dueñas, M., Ortega, T., Estrella, I., Hernández, T., … Carretero, M. E. (2013). Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chemistry, 138(1), 547–555. https://doi.org/10.1016/j.foodchem.2012.10.107
- Lopez, V., & Lindsay, R. C. (1993). Metabolic conjugates as precursors for characterizing flavor compounds in ruminant milks. Journal of Agricultural and Food Chemistry, 41(3), 446–454.
- López-Alarcón, C., & Lissi, E. (2005). Interaction of pyrogallol red with peroxyl radicals. A basis for a simple methodology for the evaluation of antioxidant capabilities. Free Radical Research, 39(7), 729–736. https://doi.org/10.1080/10715760500143452
- Lotito, S. B., & Frei, B. (2006). Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radical Biology and Medicine, 41(12), 1727–1746. https://doi.org/10.1016/j.freeradbiomed.2006.04.033
- Lu, Z., Nie, G., Belton, P. S., Tang, H., & Zhao, B. (2006). Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International, 48(4), 263–274.
- Lück, E., & Jager, M. (1997). Antimicrobial food additives: Characteristics, uses, effects (Vol. 2). Berlin, Germany: Springer-Verlag. https://doi.org/10.1007/978-3-642-59202-7
10.1007/978-3-642-59202-7 Google Scholar
- Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175.
- Magrone, T., Magrone, M., Russo, M. A., & Jirillo, E. (2020). Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants, 9(1), 35. https://doi.org/10.3390/antiox9010035
- Mahal, H. S., Badheka, L. P., & Mukherjee, T. (2001). Radical scavenging properties of a flavouring agent–Vanillin. Research on Chemical Intermediates, 27(6), 595–604. https://doi.org/10.1163/156856701317051699
- Mahesh, T., Sri Balasubashini, M. M., & Menon, V. P. (2004). Photo-irradiated curcumin supplementation in streptozotocin-induced diabetic rats: Effect on lipid peroxidation. Therapie, 59(6), 639–644.
- Mancini, S., Paci, G., & Preziuso, G. (2017). Effect of dietary Curcuma longa L. powder on lipid oxidation of frozen pork. Large Animal Review, 23(3), 111–113.
- Manjunatha, S., Shaik, A. H., Prasad, M. E., Al Omar, S. Y., Mohammad, A., & Kodidhela, L. D. (2020). Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Scientific Reports, 10(1), 3426. https://doi.org/10.1038/s41598-020-59925-0
- Maqsood, S., Benjakul, S., Abushelaibi, A., & Alam, A. (2014). Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1125–1140. https://doi.org/10.1111/1541-4337.12106
- Maqsood, S., Benjakul, S., & Shahidi, F. (2013). Emerging role of phenolic compounds as natural food additives in fish and fish products. Critical Reviews in Food Science and Nutrition, 53(2), 162–179. https://doi.org/10.1080/10408398.2010.518775
- Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., & Delgado-Adámez, J. (2017). Application of phenolic compounds for food preservation: Food additive and active packaging. In M. Soto-Hernández, M. Palma Tenango, & G. García-Mateos (Eds.), Phenolic compounds—Biological activity (pp. 39–58). London, UK: IntechOpen.
10.5772/66885 Google Scholar
- Martín, S., González-Burgos, E., Carretero, M. E., & Gómez-Serranillos, M. P. (2011). Neuroprotective properties of Spanish red wine and its isolated polyphenols on astrocytes. Food Chemistry, 128(1), 40–48. https://doi.org/10.1016/j.foodchem.2011.02.074
- Mathew, S., Abraham, T. E., & Zakaria, Z. A. (2015). Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science Technology, 52(9), 5790–5798. https://doi.org/10.1007/s13197-014-1704-0
- McBryde, W. (1964). A spectrophotometric reexamination of the spectra and stabilities of the iron (III)–tiron complexes. Canadian Journal of Chemistry, 42(8), 1917–1927.
- Milani, P. G., Formigoni, M., Lima, Y. C., Piovan, S., Peixoto, G. M. L., Camparsi, D. M., … da Costa, S. C. (2017). Fortification of the whey protein isolate antioxidant and antidiabetic activity with fraction rich in phenolic compounds obtained from Stevia rebaudiana (Bert.). Bertoni leaves. Journal of Food Science and Technology, 54(7), 2020–2029. https://doi.org/10.1007/s13197-017-2638-0
- Miller, G. J., & Quackenbush, F. W. (1957). A comparison of alkylated phenols as antioxidants for lard. Journal of the American Oil Chemist's Society, 34(5), 249–250. https://doi.org/10.1007/bf02640261
- Mohd Sairazi, N. S., & Sirajudeen, K. (2020). Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evidence-Based Complementary and Alternative Medicine, 2020, 6565396. https://doi.org/10.1155/2020/6565396
- Mojica, L., Meyer, A., Berhow, M. A., & de Mejía, E. G. (2015). Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Research International, 69, 38–48. https://doi.org/10.1016/j.foodres.2014.12.007
- Munné-Bosch, S. (2011). Phenolic acids : Composition, applications, and health benefits. New York, NY: Nova Science Publishers Inc.
- Murcia, M. A., Egea, I., Romojaro, F., Parras, P., Jiménez, A. M., & Martínez-Tomé, M. (2004). Antioxidant evaluation in dessert spices compared with common food additives. Influence of irradiation procedure. Journal of Agricultural and Food Chemistry, 52(7), 1872–1881. https://doi.org/10.1021/jf0303114
- Naz, D., Muhamad, A., Zeb, A., & Shah, I. (2019). In vitro and in vivo antidiabetic properties of phenolic antioxidants from Sedum adenotrichum. Frontiers in Nutrition, 6, 177. https://doi.org/10.3389/fnut.2019.00177
- Nehlig, A. (2013). The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. British Journal of Clinical Pharmacology, 75(3), 716–727. https://doi.org/10.1111/j.1365-2125.2012.04378.x
- Nwosu, F., Morris, J., Lund, V. A., Stewart, D., Ross, H. A., & McDougall, G. J. (2011). Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chemistry, 126(3), 1006–1012. https://doi.org/10.1016/j.foodchem.2010.11.111
- O’Connell, J. E., & Fox, P. F. (2001). Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. International Dairy Journal, 11(3), 103–120. https://doi.org/10.1016/S0958-6946(01)00033-4
- O'Connell, J. E., & Fox, P. F. (1999). Effects of phenolic compounds on the heat stability of milk and concentrated milk. Journal of Dairy Research, 66(3), 399–407.
- Oliveras-López, M.-J., Berná, G., Jurado-Ruiz, E., López-García de la Serrana, H., & Martín, F. (2014). Consumption of extra-virgin olive oil rich in phenolic compounds has beneficial antioxidant effects in healthy human adults. Journal of Functional Foods, 10, 475–484. https://doi.org/10.1016/j.jff.2014.07.013
- Oroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10–36. https://doi.org/10.1016/j.foodres.2015.04.018
- Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Delikanli, B. (2014). Phenolics in human health. International Journal of Chemical Engineering Applications, 5(5), 393–396.
- Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., & Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Frontiers in. Nutrition, 7, 60.
- Paz, M., Gúllon, P., Barroso, M. F., Carvalho, A. P., Domingues, V. F., Gomes, A. M., … Delerue-Matos, C. (2015). Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chemistry, 172, 462–468. https://doi.org/10.1016/j.foodchem.2014.09.102
- Peng, X., Ma, J., Cheng, K.-W., Jiang, Y., Chen, F., & Wang, M. (2010). The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry, 119(1), 49–53. https://doi.org/10.1016/j.foodchem.2009.05.083
- Perron, N. R., & Brumaghim, J. L. (2009). A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics, 53(2), 75–100.
- Perron, N. R., Wang, H. C., DeGuire, S. N., Jenkins, M., Lawson, M., & Brumaghim, J. L. (2010). Kinetics of iron oxidation upon polyphenol binding. Dalton Transactions, 39(41), 9982–9987.
- Phonsatta, N., Deetae, P., Luangpituksa, P., Grajeda-Iglesias, C., Figueroa-Espinoza, M. C., Le Comte, J., … Panya, A. (2017). Comparison of antioxidant evaluation assays for investigating antioxidative activity of gallic acid and its alkyl esters in different food matrices. Journal of Agricultural and Food Chemistry, 65(34), 7509–7518.
- Pinelo, M., Manzocco, L., Nuñez, M. J., & Nicoli, M. C. (2004). Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. Journal of Agricultural and Food Chemistry, 52(5), 1177–1180. https://doi.org/10.1021/jf0350515
- Potì, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. International Journal of Molecular Sciences, 20(2), 351.
- Powell, H. K. J., & Taylor, M. C. (1982). Interactions of iron (II) and iron (III) with gallic acid and its homologues: A potentiometric and spectrophotometric study. Australian Journal of Chemistry, 35(4), 739–756.
- Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95–105.
- Quiñones, M., Miguel, M., & Aleixandre, A. (2013). Beneficial effects of polyphenols on cardiovascular disease. Pharmacological Research, 68(1), 125–131. https://doi.org/10.1016/j.phrs.2012.10.018
- Raccach, M. (1984). The antimicrobial activity of phenolic antioxidants in foods: A review. Journal of Food Safety, 6(3), 141–170. https://doi.org/10.1111/j.1745-4565.1984.tb00479.x
- Rahaiee, S., Assadpour, E., Faridi Esfanjani, A., Silva, A. S., & Jafari, S. M. (2020). Application of nano/microencapsulated phenolic compounds against cancer. Advances in Colloid and Interface Science, 279, 102153. https://doi.org/10.1016/j.cis.2020.102153
- Rajan, V. K., & Muraleedharan, K. (2017). A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chemistry, 220, 93–99.
- Rangel-Huerta, O. D., Pastor-Villaescusa, B., Aguilera, C. M., & Gil, A. (2015). A systematic review of the efficacy of bioactive compounds in cardiovascular disease: Phenolic compounds. Nutrients, 7(7), 5177–5216.
- Rashmi, H. B., & Negi, P. S. (2020). Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, 136, 109298. https://doi.org/10.1016/j.foodres.2020.109298
- Rasouli, H., Farzaei, M. H., & Khodarahmi, R. (2017). Polyphenols and their benefits: A review. International Journal of Food Properties, 20(sup2), 1700–1741. https://doi.org/10.1080/10942912.2017.1354017
- Rhile, I. J., Markle, T. F., Nagao, H., DiPasquale, A. G., Lam, O. P., Lockwood, M. A., … Mayer, J. M. (2006). Concerted proton− electron transfer in the oxidation of hydrogen-bonded phenols. Journal of the American Chemical Society, 128(18), 6075–6088.
- Riahi-Chebbi, I., Souid, S., Othman, H., Haoues, M., Karoui, H., Morel, A., … Essafi-Benkhadir, K. (2019). The phenolic compound kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Scientific Reports, 9(1), 1–20.
- Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159.
- Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. J. (2019). Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 8(5), 137.
- Rodriguez-Mateos, A., Heiss, C., Borges, G., & Crozier, A. (2014). Berry (poly)phenols and cardiovascular health. Journal of Agricultural and Food Chemistry, 62(18), 3842–3851. https://doi.org/10.1021/jf403757g
- Rodríguez-Pérez, C., Segura-Carretero, A., & del Mar Contreras, M. (2019). Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical Reviews in Food Science and Nutrition, 59(8), 1212–1229.
- Roopchand, D. E., Grace, M. H., Kuhn, P., Cheng, D. M., Plundrich, N., Poulev, A., … Raskin, I. (2012). Efficient sorption of polyphenols to soybean flour enables natural fortification of foods. Food Chemistry, 131(4), 1193–1200. https://doi.org/10.1016/j.foodchem.2011.09.103
- Ruiz-Torralba, A., Guerra-Hernández, E. J., & García-Villanova, B. (2018). Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA - Journal of Food, 16(1), 1131–1138. https://doi.org/10.1080/19476337.2018.1517828
- Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287–306. https://doi.org/10.1080/1040869059096
- Schaich, K. M., Tian, X., & Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111–125. https://doi.org/10.1016/j.jff.2015.01.043
- Sedighi-Vesagh, R., Naserian, A. A., Ghaffari, M. H., & Petit, H. V. (2015). Effects of pistachio by-products on digestibility, milk production, milk fatty acid profile and blood metabolites in Saanen dairy goats. Journal of Animal Physiology and Animal Nutrition, 99(4), 777–787. https://doi.org/10.1111/jpn.12233
- Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., & Heber, D. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agricultural and Food Chemistry, 56(4), 1415–1422. https://doi.org/10.1021/jf073035s
- Sefi, M., Elwej, A., Chaâbane, M., Bejaoui, S., Marrekchi, R., Jamoussi, K., … Soudani, N. (2019). Beneficial role of vanillin, a polyphenolic flavoring agent, on maneb-induced oxidative stress, DNA damage, and liver histological changes in Swiss albino mice. Human & Experimental Toxicology, 38(6), 619–631. https://doi.org/10.1177/0960327119831067
- Shahidi, F. (2015). Handbook of antioxidants for food preservation. Cambridge, UK: Woodhead Publishing.
- Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18, 820–897.
- Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067–4079. https://doi.org/10.1039/b922183m
- Silva, R. F., & Pogačnik, L. (2020). Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants, 9(1), 61.
- Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, 1–16. https://doi.org/10.1016/j.foodres.2017.09.026
- Singh, P., Singh, T. P., & Gandhi, N. (2018). Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review. Food Reviews International, 34(3), 226–247. https://doi.org/10.1080/87559129.2016.1261297
- Sobeh, M., Esmat, A., Petruk, G., Abdelfattah, M. A. O., Dmirieh, M., Monti, D. M., … Wink, M. (2018). Phenolic compounds from Syzygium jambos (Myrtaceae) exhibit distinct antioxidant and hepatoprotective activities in vivo. Journal of Functional Foods, 41, 223–231. https://doi.org/10.1016/j.jff.2017.12.055
- Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research, 579(1), 200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023
- Soto-Vaca, A., Gutierrez, A., Losso, J. N., Xu, Z., & Finley, J. W. (2012). Evolution of phenolic compounds from color and flavor problems to health benefits. Journal of Agricultural and Food Chemistry, 60(27), 6658–6677. https://doi.org/10.1021/jf300861c
- Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41–49. https://doi.org/10.1016/j.foodchem.2018.09.040
- St Angelo, A. J. (1996). Lipid oxidation on foods. Critical Reviews in Food Science and Nutrition, 36(3), 175–224. https://doi.org/10.1080/10408399609527723
- Swieca, M., Seczyk, L., Gawlik-Dziki, U., & Dziki, D. (2014). Bread enriched with quinoa leaves - The influence of protein-phenolics interactions on the nutritional and antioxidant quality. Food Chemistry, 162, 54–62. https://doi.org/10.1016/j.foodchem.2014.04.044
- Tabart, J., Kevers, C., Pincemail, J., Defraigne, J.-O., & Dommes, J. (2009). Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chemistry, 113(4), 1226–1233. https://doi.org/10.1016/j.foodchem.2008.08.013
- Tan, Y., Chang, S. K. C., & Zhang, Y. (2017). Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214, 259–268. https://doi.org/10.1016/j.foodchem.2016.06.100
- Tangney, C. C., & Rasmussen, H. E. (2013). Polyphenols, inflammation, and cardiovascular disease. Current Atherosclerosis Reports, 15(5), 324. https://doi.org/10.1007/s11883-013-0324-x
- Teissedre, P.-L., & Landrault, N. (2000). Wine phenolics: Contribution to dietary intake and bioavailability. Food Research International, 33(6), 461–467.
- Teixeira-Guedes, C. I., Oppolzer, D., Barros, A. I., & Pereira-Wilson, C. (2019). Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines. Journal of Functional Foods, 60, 103452.
- Telles, A. C., Kupski, L., & Furlong, E. B. (2017). Phenolic compound in beans as protection against mycotoxins. Food Chemistry, 214, 293–299. https://doi.org/10.1016/j.foodchem.2016.07.079
- Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003
- Thavasi, V., Leong, L. P., & Bettens, R. P. A. (2006). Investigation of the Influence of Hydroxy Groups on the Radical Scavenging Ability of Polyphenols. The Journal of Physical Chemistry A, 110(14), 4918–4923. https://doi.org/10.1021/jp057315r
- Toaldo, I. M., Cruz, F. A., da Silva, E. L., & Bordignon-Luiz, M. T. (2016). Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals. Nutrition Research, 36(8), 808–817. https://doi.org/10.1016/j.nutres.2016.04.010
- Toscano, L. T., Silva, A. S., Toscano, L. T., Tavares, R. L., Biasoto, A. C. T., de Camargo, A. C., … Shahidi, F. (2017). Phenolics from purple grape juice increase serum antioxidant status and improve lipid profile and blood pressure in healthy adults under intense physical training. Journal of Functional Foods, 33, 419–424. https://doi.org/10.1016/j.jff.2017.03.063
- Tsao, R. (2010). Chemistry and Biochemistry of Dietary Polyphenols. Nutrients, 2(12), 1231–1246.
- Tsao, R., & Li, H. (2012). Antioxidant properties in vitro and in vivo: Realistic assessments of efficacy of plant extracts. Plant Sciences Reviews, 7(9), 11–13.
- Tsen, S. Y., Siew, J., Lau, E. K. L., Afiqah bte Roslee, F., Chan, H. M., & Loke, W. M. (2014). Cow’s milk as a dietary source of equol and phenolic antioxidants: Differential distribution in the milk aqueous and lipid fractions. Journal of Dairy Science, 94(6), 625–632. https://doi.org/10.1007/s13594-014-0183-4
- Uchegbu, N. N., & Ishiwu, C. N. (2016). Germinated Pigeon Pea (Cajanus cajan): A novel diet for lowering oxidative stress and hyperglycemia. Food Science & Nutrition, 4(5), 772–777. https://doi.org/10.1002/fsn3.343
- Van Acker, S. A. B. E., Van Den Berg, D.-J., Tromp, M. N. J. L., Griffioen, D. H., Van Bennekom, W. P., Van Der Vijgh, W. J. F., & Bast, A. (1996). Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine, 20(3), 331–342. https://doi.org/10.1016/0891-5849(95)02047-0
- Vitaglione, P., & Fogliano, V. (2004). Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. Journal of Chromatography B, 802(1), 189–199. https://doi.org/10.1016/j.jchromb.2003.09.029
- Vo, Q. V., Tam, N. M., Hieu, L. T., Van Bay, M., Thong, N. M., Le Huyen, T., … Mechler, A. (2020). The antioxidant activity of natural diterpenes: Theoretical insights. Rsc Advances, 10(25), 14937–14943. https://doi.org/10.1039/D0RA02681F
- Volf, I., Ignat, I., Neamtu, M., & Popa, V. I. (2014). Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chemical Papers, 68(1), 121–129. https://doi.org/10.2478/s11696-013-0417-6
- Wang, G., Liu, Y., Zhang, L., An, L., Chen, R., Liu, Y., … Xue, Y. (2020). Computational study on the antioxidant property of coumarin-fused coumarins. Food Chemistry, 304, 125446. https://doi.org/10.1016/j.foodchem.2019.125446
- Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y., & Tsao, R. (2011). Can phytochemical antioxidant rich foods act as anti-cancer agents? Food Research International, 44(9), 2545–2554. https://doi.org/10.1016/j.foodres.2011.05.021
- Wang, Z., Li, S., Ge, S., & Lin, S. (2020). Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. Journal of Agricultural and Food Chemistry, 68(11), 3330–3343. https://doi.org/10.1021/acs.jafc.9b06574
- Waterhouse, A. L. (2002). Wine phenolics. Annals of the New York Academy of Sciences, 957(1), 21–36.
- Wollin, S. D., & Jones, P. J. H. (2001). Alcohol, red wine and cardiovascular disease. The Journal of Nutrition, 131(5), 1401–1404. https://doi.org/10.1093/jn/131.5.1401
- Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173–1183. https://doi.org/10.1021/ja002455u
- Xu, B., & Chang, S. K. C. (2010). Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the northern United States. Journal of Agricultural and Food Chemistry, 58(3), 1509–1517. https://doi.org/10.1021/jf903532y
- Xu, M., Rao, J., & Chen, B. (2020). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical Reviews in Food Science and Nutrition, 60(5), 740–759. https://doi.org/10.1080/10408398.2018.1550051
- Xue, Y., Zheng, Y., An, L., Dou, Y., & Liu, Y. (2014). Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins. Food Chemistry, 151, 198–206.
- Yamane, K., & Kato, Y. (2012). Handbook on flavonoids: Dietary sources, properties, and health benefits. Hauppauge, NY: Nova Science Publishers.
- Yoshino, M., & Murakami, K. (1998). Interaction of iron with polyphenolic compounds: Application to antioxidant characterization. Analytical Biochemistry, 257(1), 40–44.
- Yousefian, M., Shakour, N., Hosseinzadeh, H., Hayes, A. W., Hadizadeh, F., & Karimi, G. (2019). The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine, 55, 200–213. https://doi.org/10.1016/j.phymed.2018.08.002
- Zadernowski, R., Naczk, M., & Nesterowicz, J. (2005). Phenolic acid profiles in some small berries. Journal of Agricultural and Food Chemistry, 53(6), 2118–2124. https://doi.org/10.1021/jf040411p
- Zeb, A. (2015a). Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols. Free Radical Research, 49(5), 549–564. https://doi.org/10.3109/10715762.2015.1022540
- Zeb, A. (2015b). Phenolic profile and antioxidant potential of wild watercress (Nasturtium officinale L.). Springerplus, 4, 714. https://doi.org/10.1186/s40064-015-1514-5
- Zeb, A. (2016). Phenolic profile and antioxidant activity of melon (Cucumis Melo L.) seeds from Pakistan. Foods, 5(4), 67. https://doi.org/10.3390/foods5040067
- Zeb, A. (2018). Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Molecular and Cellular Biochemistry, 448(1–2), 27–41. https://doi.org/10.1007/s11010-018-3310-3
- Zeb, A. (2019). Food frying: Chemistry, biochemistry and safety (Vol. 1, pp. 1–469). London, UK: John Wiley & Sons. https://doi.org/10.1002/9781119468417
10.1002/9781119468417.ch1 Google Scholar
- Zeb, A., & Akbar, A. (2018). Ellagic acid suppresses the oxidative stress induced by dietary-oxidized tallow. Oxidative Medicine and Cellular Longevity, 2018, 7408370. https://doi.org/10.1155/2018/7408370
- Zeb, A., & Habib, A. (2018). Lipid oxidation and changes in the phenolic profile of Watercress (Nasturtium officinale L.) leaves during frying. Journal of Food Measurement and Characterization, 12(4), 2677–2684. https://doi.org/10.1007/s11694-018-9885-2
- Zeb, A., Haq, A., & Murkovic, M. (2018). Effects of microwave cooking on carotenoids, phenolic compounds and antioxidant activity of Cichorium intybus L. (chicory) leaves. European Food Research and Technology, 245(2), 365–374. https://doi.org/10.1007/s00217-018-3168-3
- Zeb, A., & Haq, I. (2016). The protective role of tomato powder in the toxicity, fatty infiltration and necrosis induced by oxidized tallow in rabbits. Journal of Food Biochemistry, 40, 428–435. https://doi.org/10.1111/jfbc.12234
- Zeb, A., & Haq, I. (2018). Polyphenolic composition, lipid peroxidation and antioxidant properties of chapli kebab during repeated frying process. Journal of Food Measurement and Characterization, 12(1), 555–563. https://doi.org/10.1007/s11694-017-9667-2
- Zeb, A., & Hussain, S. (2014). Sea buckthorn seed powder provides protection in the oxidative stress produced by thermally oxidized sunflower oil in rabbits. Journal of Food Biochemistry, 38(5), 498–508. https://doi.org/10.1111/jfbc.12082
- Zeb, A., Muhammad, B., & Ullah, F. (2017). Characterization of sesame (Sesamum indicum L.) seed oil from Pakistan for phenolic composition, quality characteristics and potential beneficial properties. Journal of Food Measurement and Characterization, 11(3), 1362–1369. https://doi.org/10.1007/s11694-017-9514-5
- Zhang, B., Deng, Z., Ramdath, D. D., Tang, Y., Chen, P. X., Liu, R., … Tsao, R. (2015). Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry, 172, 862–872. https://doi.org/10.1016/j.foodchem.2014.09.144
- Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33–42. https://doi.org/10.1016/j.cofs.2016.02.002
- Zhang, L., Li, J., Hogan, S., Chung, H., Welbaum, G. E., & Zhou, K. (2010). Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chemistry, 119(2), 592–599. https://doi.org/10.1016/j.foodchem.2009.06.063
- Zhang, Q., Saleh, A. S. M., Chen, J., & Shen, Q. (2012). Chemical alterations taken place during deep-fat frying based on certain reaction products: A review. Chemistry and Physics of Lipids, 165(6), 662–681. https://doi.org/10.1016/j.chemphyslip.2012.07.002
- Zhao, D., Simon, J. E., & Wu, Q. (2020). A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy. Critical Reviews in Food Science and Nutrition, 60(4), 597–625.
- Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I., & Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science & Technology, 43(8), 1410–1423. https://doi.org/10.1111/j.1365-2621.2007.01664.x