Understanding oxidants and antioxidants: Classical team with new players
Syed Saqib Ali
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Search for more papers by this authorHaseeb Ahsan
Faculty of Dentistry, Department of Biochemistry, Jamia Millia Islamia, New Delhi, India
Search for more papers by this authorMohammad Khalid Zia
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Search for more papers by this authorTooba Siddiqui
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Search for more papers by this authorCorresponding Author
Fahim Halim Khan
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Correspondence
Fahim Halim Khan, Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (202002), India.
Email: [email protected]; [email protected]
Search for more papers by this authorSyed Saqib Ali
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Search for more papers by this authorHaseeb Ahsan
Faculty of Dentistry, Department of Biochemistry, Jamia Millia Islamia, New Delhi, India
Search for more papers by this authorMohammad Khalid Zia
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Search for more papers by this authorTooba Siddiqui
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Search for more papers by this authorCorresponding Author
Fahim Halim Khan
Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Correspondence
Fahim Halim Khan, Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (202002), India.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
The free radical oxidants such as reactive oxygen species, reactive nitrogen species, and reactive sulfur species are produced inside cells through various metabolic processes. The body is equipped with an antioxidant defense system that guards against oxidative damage caused by these reactive oxidants and plays a major role in protecting cells from oxidative stress and damage. Antioxidants such as glutathione (GSH), thioredoxin, ascorbic acid and enzymes, for example, superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) counter the oxidative stress and protect lipids, proteins, and DNA. Antioxidants such as tocopherols, ascorbic acid, carotenoids, flavonoids, amino acids are also natural antioxidants present in foods. There is increasing demand and availability of designer foods fortified with antioxidants and probiotics that may be important in human health. The review article presents a brief overview of oxidants and antioxidant systems inside the human body including the role of probiotics and inflammation.
Practical applications
Antioxidants such as GSH, thioredoxin, ascorbic acid, etc. and protective enzymes, for example, SOD, GPx, CAT, etc. counter oxidative stress and protect cellular biomolecules. Antioxidants such as tocopherols, ascorbic acid, carotenoids, flavonoids, amino acids, phospholipids, and sterols are natural antioxidants found in consumed foods. They play a major role in scavenging free radical and non-radical oxidants, and protect cells from oxidative stress and damage. The importance of antioxidants can be understood from the fact that oxidative damage is now associated with a variety of diseases including cancer, neurodegeneration, diabetes, etc. Several approaches to improve human health and achieve longevity use dietary antioxidants as formulation in diet and fortified foods. Antioxidants also maintain freshness and prolonging the shelf life of food products. The fortified or designer foods that are added with antioxidant nutrients and the use of microorganisms as probiotics are increasingly available in the market as health foods and supplements.
CONFLICT OF INTEREST
The authors declare that they have no competing financial interests.
REFERENCES
- Ahsan, H., Ahad, A., Iqbal, J., & Siddiqui, W. A. (2014). Pharmacological potential of tocotrienols: A review. Nutrition & Metabolism, 11(1), 52. https://doi.org/10.1186/1743-7075-11-52
- Ahsan, H., Ahad, A., & Siddiqui, W. A. (2015). A review of characterization of tocotrienols from plant oils and foods. Journal of Chemical Biology, 8(2), 45–59. https://doi.org/10.1007/s12154-014-0127-8
- Aikens, J., & Dix, T. A. (1991). Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. Journal of Biological Chemistry, 266, 15091–15098.
- Al-Hooti, S. N., Sidhu, J. S., Al-Sager, J. M., & Al-Othman, A. (2002). Effect of raw wheat germ addition on the physical texture and objective color of a designer food (pan bread). Nahrung, 46(2), 68–72. https://doi.org/10.1002/1521-3803(20020301)46:2%3C68:AID-FOOD68%3E3.0.CO;2-W
- Alugoju, P., Dinesh, B. J., & Latha, P. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30, 11–26. https://doi.org/10.1007/s12291-014-0446-0
- Andrew, P. J., & Mayer, B. (1999). Enzymatic function of nitric oxide synthases. Cardiovascular Research, 43, 521–531. https://doi.org/10.1016/S0008-6363(99)00115-7
- Arner, E. S., & Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry, 267, 6102–6109.
- Aslani, B. A., & Ghobadi, S. (2016). Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sciences, 146, 163–173. https://doi.org/10.1016/j.lfs.2016.01.014
- Axten, L. G., Wohlers, M. W., & Wegrzyn, T. (2008). Using phytochemicals to enhance health benefits of milk: Impact of polyphenols on flavor profile. Journal of Food Science, 73(6), 122–126. https://doi.org/10.1111/j.1750-3841.2008.00808.x
- Bayani, U., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74.
- Bennett, D. C., & Cheng, K. M. (2010). Selenium enrichment of table eggs. Poultry Science, 89, 2166–2172. https://doi.org/10.3382/ps.2009-00571
- Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613
- Biswas, S. K. (2016). Does the Interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Medicine and Cellular Longevity, 2016, 5698931. https://doi.org/10.1155/2016/5698931
- Bogacz-Radomska, L., & Harasym, J. (2018). β-Carotene—Properties and production methods. Food Quality Safety, 2(2), 69–74. https://doi.org/10.1093/fqsafe/fyy004
- Bourre, J. M. (2006). Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 1: Micronutrients. Journal of Nutrition Health and Aging, 10(5), 377–385.
- Bowler, C., Van Montagu, M., & Inzé, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83–116. https://doi.org/10.1146/annurev.pp.43.060192.000503
- Health Canada. (1998) Health Canada policy paper. Retrieved from http://www.hcsc.gc.ca
- Carocho, M., & Ferreira, I. C. F. R. (2013). A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspective. Food and Chemical Toxicology, 50, 15–25.
- Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493.
- Chen, X. M., Chen, H. S., Xu, M. J., & Shen, J. G. (2013). Targeting reactive nitrogen species: A promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacologica Sinica, 34, 67–77.
- Craft, B. D., Kerrihard, A. L., Amarowicz, Z. R., & Pegg, R. B. (2002). Phenol-based antioxidants and the in vitro methods used for their assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173.
- Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: Current status and future prospects. JAPI, 52, 794–804.
- Dhawan, V. (2014). Reactive oxygen and nitrogen species: General considerations. In N. K. Ganguly, S. K. Jindal, S. Biswal, P. J. Barnes, & R. Pawankar (Eds.), Studies on respiratory disorders, oxidative stress in applied basic research and clinical practice. New York, NY: Springer Science+Business Media. https://doi.org/10.1007/978-1-4939-0497-6_2
10.1007/978-1-4939-0497-6_2 Google Scholar
- Duggett, N. A., Griffiths, L. A., McKenna, O. E., De Santis, V., Yongsanguanchai, N., Mokori, E. B., & Flatters, S. J. (2016). Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience, 333, 13–26. https://doi.org/10.1016/j.neuroscience.2016.06.050
- Duke, M. V., & Salin M. L. (1985). Purification and characterization of an iron-containing superoxide dismutase from a eukaryote Ginkgo biloba. Archives of Biochemistry and Biophysics, 243(1), 305–314.
- Engelman, R., Ziv, T., Arnér, E. S. J., & Benhar, M. (2016). Inhibitory nitrosylation of mammalian thioredoxin reductase 1: Molecular characterization and evidence for its functional role in cellular nitroso-redox imbalance. Free Radical Biology and Medicine, 97, 375–385. https://doi.org/10.1016/j.freeradbiomed.2016.06.032
- Fridovich, L. (1986). Superoxide dismutases. Advances in Enzymology and Related Areas of Molecular Biology, 58, 61–97.
- Gathwala, G., & Aggarwal, R. (2016). Selenium supplementation for the preterm Indian neonate. Indian Journal of Public Health, 60(2), 142–144. https://doi.org/10.4103/0019-557X.184571
- Giles, G. I., Nasim, M. J., Ali, W., & Jacob, C. (2017). The reactive sulfur species concept: 15 years on. Antioxidants, 6(2), E38. https://doi.org/10.3390/antiox6020038
- Gralla, E. B., & Kosman, D. J. (1992). Molecular genetics of superoxide dismutases in yeasts and related fungi. Advances in Genetics, 30, 251–319.
- Haendeler, J., Hoffmann, J., Tischler, V., Berk, B. C., Zeiher, A. M., & Dimmeler, S. (2002). Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nature Cell Biology, 4, 743–749. https://doi.org/10.1038/ncb851
- Hakansson, A., & Molin, G. (2011). Gut microbiota and inflammation. Nutrients, 3(6), 637–682. https://doi.org/10.3390/nu3060637
- Halliwell, B. (1995a). How to characterize an antioxidant: An update. Biochemical Society Symposia, 61, 73–101. https://doi.org/10.1042/bss0610073
- Halliwell, B. (1995b). Antioxidant characterization: methodology and mechanism. Biochemical Pharmacology, 49(10), 1341–1348. https://doi.org/10.1016/0006-2952(95)00088-H
- Halliwell, B., & Gutteridge, J. M. (1995). The definition and measurement of antioxidants in biological systems. Free Radical Biology and Medicine, 18(1), 125–126. https://doi.org/10.1016/0891-5849(95)91457-3
- Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine (5th ed.). New York: Oxford University Press.
10.1093/acprof:oso/9780198717478.001.0001 Google Scholar
- Harats, D., Chevion, S., Nahir, M., Norman, Y., Sagee, O., & Berry, E. M. (1998). Citrus fruit supplementation reduces lipoprotein oxidation in young men ingesting a diet high in saturated fat: Presumptive evidence for an interaction between vitamins C and E in vivo. American Journal of Clinical Nutrition, 67, 240–245. https://doi.org/10.1093/ajcn/67.2.240
- Hassan, H. M., & Scandalios, J. G. (1990). Superoxide dismutases in aerobic organisms. In R. Alscher, & J. Cumming (Eds.), Stress responses in plants: Adaptation to acclimation mechanisms (pp. 175–179). New York, NY: Wiley-Liss.
- He, L., Zhang, J., Zhao, J., Ma, N., Kim, S. W., Qiao, S., & Ma, X. (2018). Autophagy: The last defense against cellular nutritional stress. Advances in Nutrition, 9(4), 493–504. https://doi.org/10.1093/advances/nmy011
- Holmgren, A. (1985). Thioredoxin. Annual Review of Biochemistry, 54, 237–271. https://doi.org/10.1146/annurev.bi.54.070185.001321
- IFIC. (2011). Background on functional foods. Retrieved from https://www.foodinsight.org
- Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001
- Inan, S. (2019). The potential role of nutraceuticals in inflammation and oxidative stress. IntechOpen, https://doi.org/10.5772/intechopen.83797. Retrieved from https://www.intechopen.com/online-first/the-potential-role-of-nutraceuticals-in-inflammation-and-oxidative-stress
- IOM/NAS. (1994). Opportunities in the nutrition and food sciences: Research challenges and the next generation of investigators. In P. R. Thomas, & R. Earl (Eds.), Food and nutrition board. Washington, DC: National Academy Press.
- Jaffe, G. M. (1984). Vitamin C.In L. Machlin (Ed.), Hand book of vitamins. New York, NY: Marcel Dekker Inc.
- Jeffery, C. J. (1999). Moonlighting proteins. Trends in Biochemical Sciences, 24, 8–11.
- Jiang, Q. (2014). Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radical Biology and Medicine, 72, 76–90.
- Jimenez, A., Hernandez, J. A., Pastori, G., de Rio, L. A., & Sevilla, F. (1998). Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiology, 118, 1327–1335. https://doi.org/10.1104/pp.118.4.1327
- John, M. R. (2008). Reactive oxygen species in phagocytic leukocytes. Histochemistry and Cell Biology, 130, 281. https://doi.org/10.1007/s00418-008-0461-4
- Jonah, S. A. (2013). Pharmacology of free radicals and the impact of reactive oxygen species on the testis. Journal of reproduction & infertility, 14(4), 158–172.
- Kaimul, A. M., Nakamura, H., Masutani, H., & Yodoi, J. (2007). Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radical Biology and Medicine, 43(6), 861–868. https://doi.org/10.1016/j.freeradbiomed.2007.05.032
- Kalaivani, T., & Mathew, L. (2010). Free radical scavenging activity from leaves of Acacia nilotica (L.) Wild. ex Delile, an Indian medicinal tree. Food and Chemical Toxicology, 48(1), 298–305. https://doi.org/10.1016/j.fct.2009.10.013
- Kim, H. J., Chae, H. Z., Kim, Y. J., Kim, Y. H., Hwangs, T. S., Park, E. M., & Park, Y. M. (2003). Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues. Cell Biology and Toxicology, 19, 285–298.
- Kirkman, H. N., & Gaetani, G. F. (1984). Catalase: A tetrameric enzyme with four tightly bound molecules of NADPH. Proceedings of the National Academy of Sciences, 81(14), 4343–4347. https://doi.org/10.1073/pnas.81.14.4343
- Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1), 71. https://doi.org/10.1186/s12937-016-0186-5
- Lamattina, L., García-Mata, C., Graziano, M., & Pagnussat, G. (2003). Nitric oxide: The versatility of an extensive signal molecule. Annual Review of Plant Biology, 54, 109–136.
- Li, J., Lan, T., Zhang, C., Zeng, C., Hou, J., Yang, Z., … Liu, B. (2015). Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget, 6(2), 1031–1048. https://doi.org/10.18632/oncotarget.2671
- Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118–126. https://doi.org/10.4103/0973-7847.70902
- Lu, J., Lin, P. H., Yao, Q., & Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. Journal of Cellular and Molecular Medicine, 14(4), 840–860.
- Lubos, E., Loscalzo, J., & Handy, D. E. (2011). Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 15(7), 1957–1997. https://doi.org/10.1089/ars.2010.3586
- Mamantopoulos, M., Ronchi, F., McCoy, K. D., & Wullaert, A. (2018). Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions. Gut Microbes, 9(4), 374–381. https://doi.org/10.1080/19490976.2017.1421888
- Mamantopoulos, M., Ronchi, F., Van Hauwermeiren, F., Vieira-Silva, S., Yilmaz, B., Martens, L., … Wullaert, A. (2017). Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity, 47(2), 339–348.e4. https://doi.org/10.1016/j.immuni.2017.07.011
- Margis, R., Dunand, C., Teixeira, F. K., & Margis-Pinheiro, M. (2008). Glutathione peroxidase family—An evolutionary overview. FEBS Journal, 275(15), 3959–3970.
- Marnett, L. J., Riggins, J. N., & West, J. D. (2003). Endogenous generation of reactive oxidants and electrophiles and their reaction with DNA and proteins. The Journal of Clinical Investigation, 111, 583–593.
- Martfnez-Cayuela, M. (1995). Oxygen free radicals and human disease. Biochimie, 77(3), 147–216. https://doi.org/10.1016/0300-9084(96)88119-3
- Mathur, P., Ding, Z., Saldeen, T., & Mehta, J. L. (2015). Tocopherol in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clinical Cardiology, 38(9), 570–576. https://doi.org/10.1002/clc.22422
- McCord, J. M. & Fridovich, I. (1968). The reduction of cytochrome c by milk xanthine oxidase. The Biochemical Journal, 243, 5753–5760.
- Mccord, J. M., & Fridovich, I. (1969). Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049–6055.
- Meister, A., & Anderson, M. E. (1983). Glutathione. Annual Review of Biochemistry, 52, 711–760. https://doi.org/10.1146/annurev.bi.52.070183.003431
- Minich, D. M., & Brown, B. I. (2019). A review of dietary (Phyto) nutrients for glutathione support. Nutrients, 11(9), E2073. https://doi.org/10.3390/nu11092073
- Misak, A., Grman, M., Bacova, Z., Rezuchova, I., Hudecova, S., Ondriasova, E., … Ondrias, K. (2018). Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2. Nitric Oxide, 76, 136–151. https://doi.org/10.1016/j.niox.2017.09.006
- Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: A systematic review. Journal of agricultural and food chemistry, 63, 3615–3626.
- Miyazaki, K., Noda, N., Okada, S., Hagiwara, Y., Miyata, M., Sakurabayashi, I., … Wakasugi, H. (1998). Elevated serum level of thioredoxin in patients with hepatocellular carcinoma. Biotherapy, 11, 277–288.
- Monaghan, B. R., & Schmitt, F. O. (1932). The effects of carotene and vitamin A on the oxidation of linoleic acid. Journal of Biological Chemistry, 96, 387–395.
- Mukherjee, S., Joardar, N., Sengupta, S., & Sinha Babu, S. P. (2018). Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. Journal of Nutritional Biochemistry, 61, 111–128. https://doi.org/10.1016/j.jnutbio.2018.07.010
- Niki, E. (1987). Interaction of ascorbate and alphatocopherol. Annals of the New York Academy of Sciences, 498, 186–199.
- Nishiyama, A., Masutani, H., Nakamura, H., Nishinaka, Y., & Yodoi, J. (2001). Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life, 52, 29–33. https://doi.org/10.1080/15216540252774739
- Noctor, G., & Foyer, C. H. (1998). Asorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology, 49, 249–279.
- Olson, K. R., Gao, Y., Arif, F., Arora, K., Patel, S., DeLeon, E. R., … Straub, K. D. (2018). Metabolism of hydrogen sulfide (H(2)S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biology, 15, 74–85. https://doi.org/10.1016/j.redox.2017.11.009
- Oter, S., Jin, S., Cucullo, L., & Dorman, H. J. (2012). Oxidants and antioxidants: Friends or foes? Oxidants and Antioxidants in Medical Science, 1(1), 1–4. https://doi.org/10.5455/oams.080612.ed.001
- Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1), 315–424. https://doi.org/10.1152/physrev.00029.2006
- Pallavi, S., Ambuj, B. J., Rama, S. D., & Mohammad, P. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037
10.1155/2012/217037 Google Scholar
- Peskin, A. V., Koen, Y. M., & Zbarsky, I. B. (1977). Superoxide dismutase and glutathione peroxidase activities in tumors. FEBS Letters, 78, 41–45. https://doi.org/10.1016/0014-5793(77)80268-8
- Pryor, W. A. (1986). Oxy-radicals and related species, their formation, lifetimes, and reaction. Annual review of Physiology, 48, 657–667.
- Rajasekaran, A., & Kalaivani, M. J. (2013). Designer foods and their benefits: A review. Journal of Food Science and Technology, 50(1), 1–16. https://doi.org/10.1007/s13197-012-0726-8
- Richard, M. L., & Sokol, H. (2019). The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nature Reviews Gastroenterology & Hepatology, 16(6), 331–345. https://doi.org/10.1038/s41575-019-0121-2
- Riediger, N. D., Othman, R. A., Suh, M., & Moghadasian, M. H. (2009). A systemic review of the roles of n-3 fatty acids in health and disease. Journal of the American Dietetic Association, 109(4), 668–679. https://doi.org/10.1016/j.jada.2008.12.022
- Scandalios, J. G. (1990). Response of plant antioxidant defense genes to environmental stress. Advances in Genetics, 28, 1–41.
- Scandalios, J. G. (1992). Molecular biology of free radical scavenging systems. Cold Spring Harbor, New York, NY: Cold Spring Harbor Laboratory Press.
- Sharma, P., Jha, A. B., Dubey, R. S., & Pessarkli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 26. https://doi.org/10.1155/2012/217037
- Siddiqui, T., Zia, M. K., Ali, S. S., Ahsan, H., & Khan, F. H. (2018). Insight into the interactions of proteinase inhibitor-alpha-2-macroglobulin with hypochlorite. International Journal of Biological Macromolecules, 117, 401–406. https://doi.org/10.1016/j.ijbiomac.2018.05.112
- Siddiqui, T., Zia, M. K., Ali, S. S., Rehman, A. A., Ahsan, H., & Khan, F. H. (2016). Reactive oxygen species and antiproteinases. Archives of Physiology and Biochemistry, 122, 1–7. https://doi.org/10.3109/13813455.2015.1115525
- Sleator, R. D. (2010). The human super organism of microbes and men. Medical Hypotheses, 74(2), 214–215. https://doi.org/10.1016/j.mehy.2009.08.047
- Sokol, H., Jegou, S., McQuitty, C., Straub, M., Leducq, V., Landman, C., … Beaugerie, L. (2018). Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes, 9(1), 55–60.
- Traber, M. G., & Stevens, J. F. (2011). Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radical Biology and Medicine, 51(5), 1000–1013. https://doi.org/10.1016/j.freeradbiomed.2011.05.017
- Van der Veen, B. S., de Winther, M. P., & Heeringa, P. (2009). Myeloperoxidase: Molecular mechanism of action and their relevance to human health and disease. Antioxidants & Redox Signaling, 11, 2899–2937.
- Viennois, E., Chassaing, B., Tahsin, A., Pujada, A., Wang, L., Gewirtz, A. T., & Merlin, D. (2019). Host-derived fecal microRNAs can indicate gut microbiota healthiness and ability to induce inflammation. Theranostics, 9(15), 4542–4557. https://doi.org/10.7150/thno.35282
- Vitetta, L., Coulson, S., Thomsen, M., Nguyen, T., & Hall, S. (2017). Probiotics, D-Lactic acidosis, oxidative stress and strain specificity. Gut Microbes, 8(4), 311–322. https://doi.org/10.1080/19490976.2017.1279379
- Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D., … & Li, W. (2017). Antioxidant properties of probiotic bacteria. Nutrients, 9(5), 521.
- Welsh, S. J., Bellamy, W. T., Briehl, M. M., & Powis, G. (2009). The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Research, 62, 5089–5095.
- Winterbourn, C. C. (2002). Biological activity and biomarkers of the neutrophil oxidant hypochlorous acid. Toxicology, 181–2, 223–227.
- Woodall, A. A., & Ames, B. N. (1997). Diet and oxidative damage to DNA: The importance of ascorbate as an antioxidant. In L. Packer, & J. Fuchs (Eds.), Vitamin C in health and disease (pp. 193–203). New York, NY: Marcel Dekker Inc.
- Wu, S. M., & Pizzo, S. V. (2011). Alpha 2-macroglobulin from rheumatoid arthritis of synovial fluid: Functional analysis defines a role for oxidation in inflammation. Archives of Biochemistry and Biophysics, 391, 119–126.
- Wu, Y., Lu, J., Antony, S., Juhasz, A., Liu, H., Jiang, G., …Roy, K. (2013). Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-γ and lipopolysaccharide in human pancreatic cancer cell lines. The Journal of Immunology, 190(4), 1859–1872.
- Wyatt, A. R., Kumita, J. R., Mifsud, R. W., Gooden, C. A., Wilson, M. R., & Dobson, C. M. (2014). Hypochlorite-induced structural modifications enhance the chaperone activity of human α2-macroglobulin. PNAS, 111, 2081–2090.
- Yang, C. S., Ho, C. T., Zhang, J., Wan, X., Zhang, K., & Lim, J. (2018). Antioxidants: Differing meanings in food science and health science. Journal of Agriculture and Food Chemistry, 66(12), 3063–3068. https://doi.org/10.1021/acs.jafc.7b05830
- Zhang, L., Wang, X., Cueto, R., Effi, C., Zhang, Y., Tan, H., … Wang, H. (2019). Biochemical basis and metabolic interplay of redox regulation. Redox Biology, 26, 101284. https://doi.org/10.1016/j.redox.2019.101284
- Zitka, O., Skalickova, S., Gumulec, J., Masarik, M., Adam, V., Hubalek, J., … Kruseova, J. (2012). Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour pateints, Oncology Letters, 4(6), 1247–1253.