Historical environmental stability drives discordant niche filling dynamics across phylogenetic scales
Corresponding Author
Brunno F. Oliveira
Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, FL, USA
Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL, USA
Correspondence
Brunno F. Oliveira, Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, Florida, USA.
Email: [email protected]
Search for more papers by this authorJeffry M. Flenniken
Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, FL, USA
Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
Search for more papers by this authorRobert P. Guralnick
Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
Search for more papers by this authorStephen E. Williams
Centre for Tropical Environmental & Sustainability Science, James Cook University, Townsville, Australia
Search for more papers by this authorBrett R. Scheffers
Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, FL, USA
Search for more papers by this authorCorresponding Author
Brunno F. Oliveira
Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, FL, USA
Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL, USA
Correspondence
Brunno F. Oliveira, Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, Florida, USA.
Email: [email protected]
Search for more papers by this authorJeffry M. Flenniken
Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, FL, USA
Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
Search for more papers by this authorRobert P. Guralnick
Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
Search for more papers by this authorStephen E. Williams
Centre for Tropical Environmental & Sustainability Science, James Cook University, Townsville, Australia
Search for more papers by this authorBrett R. Scheffers
Department of Wildlife Ecology & Conservation, University of Florida/IFAS, Gainesville, FL, USA
Search for more papers by this authorAbstract
Aim
Regional diversity can increase owing to either the packing of species within regional niche space or the expansion of regional niche space. Yet, the primary factors dictating these dynamics remain poorly understood. Here, we assess the relative influence of current environmental conditions (net primary productivity, NPP) versus historic environmental stability over the Last Glacial Maximum on niche filling patterns of vertebrates (mammals, birds, amphibians and reptiles) in the Australian Wet Tropics (AWTs).
Location
Australian Wet Tropics.
Taxon
Vertebrates (mammals, birds, amphibians and reptiles).
Methods
We measured patterns of niche filling (niche packing vs. niche expansion) as the standardized departure of observed functional diversity (FD) from its null expectation. We fitted spatial models for vertebrates, and for each constituent class (mammals, birds, amphibians and reptiles) separately, to evaluate the relative effects of NPP and environmental stability on species richness and niche filling patterns.
Results
Historical environmental stability had a greater effect than NPP on species richness and niche filling patterns. However, the directionality of this effect depended on phylogenetic scale, with vertebrates exhibiting niche packing while each constituent class (except reptiles) exhibited niche expansion with increasing environmental stability.
Main Conclusion
Intra-class competition presumably leads to niche differentiation and expansion, whereas the overlap of functional traits among species from different classes leads to niche packing. That environmental stability over millennia is associated with an expanding niche space across multiple vertebrate classes suggests that the accumulation of FD within communities requires long recovery times.
CONFLICT OF INTERESTS
Authors declare no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
Species distribution and trait data are available from Williams et al. (2010), downloadable from https://doi.org/10.6084/m9.figshare.c.3303180.v1.
Supporting Information
Filename | Description |
---|---|
jbi13798-sup-0001-AppendixS1.csvapplication/csv, 9.4 KB | |
jbi13798-sup-0002-AppendixS2.docxWord document, 304.8 KB | |
jbi13798-sup-0003-VideoS1.gifGIF image, 2.3 MB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Accad, A., Neldner, V. J., Wilson, B. A., & Niehus, R. E. (2001). Remnant vegetation in Queensland: Analysis of pre-clearing, remnant 1997–1999 regional ecosystem information. Brisbane, Australia: Queensland Herbarium, Environmental Protection Agency.
- Bivand, R. (2019). “spdep”: spatial dependence: weighting schemes, statistics and models. R package version 1.2. Vienna, Austria: Comprehensive R Archive Network.
- Blom, M. P. K., Horner, P., & Moritz, C. (2016). Convergence across a continent: Adaptive diversification in a recent radiation of Australian lizards. Proceedings of the Royal Society B: Biological Sciences, 283(1832), 20160181. https://doi.org/10.1098/rspb.2016.0181
- Blonder, B., Enquist, B. J., Graae, B. J., Kattge, J., Maitner, B. S., Morueta-Holme, N., … Violle, C. (2018). Late Quaternary climate legacies in contemporary plant functional composition. Global Change Biology, 24(10), 4827–4840. https://doi.org/10.1111/gcb.14375
- Calaway, R., Corporation, M., Weston, S., & Tenenbaum, D. (2019). “doParallel”: Foreach parallel adaptor for the parallel package. R package version 1.0.15. Vienna, Austria: Comprehensive R Archive Network.
- Cooney, C. R., Bright, J. A., Capp, E. J. R., Chira, A. M., Hughes, E. C., Moody, C. J. A., … Thomas, G. H. (2017). Mega-evolutionary dynamics of the adaptive radiation of birds. Nature, 542(7641), 344–347. https://doi.org/10.1038/nature21074
- Cornwell, W. K., Schwilk, L. D. W., & Ackerly, D. D. (2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87(6), 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
- Costa, G. C., Mesquita, D. O., Colli, G. R., & Vitt, L. J. (2008). Niche expansion and the niche variation hypothesis: Does the degree of individual variation increase in depauperate assemblages? The American Naturalist, 172(6), 868–877. https://doi.org/10.1086/592998
- Davis, M., Faurby, S., & Svenning, J.-C. (2018). Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proceedings of the National Academy of Sciences, 115(44), 11262–11267. https://doi.org/10.1073/pnas.1804906115
- Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
- Faurby, S., & Svenning, J. C. (2015). Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Diversity and Distributions, 21(10), 1155–1166. https://doi.org/10.1111/ddi.12369
- Fine, P. V. A., & Ree, R. H. (2006). Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. The American Naturalist, 168(6), 796–804. https://doi.org/10.1086/508635
- Fischer, A. (1960). Latitudinal variations in organic diversity. Evolution, 14(1), 64–81. https://doi.org/10.2307/2405923. Retrieved from http://www.jstor.org/stable/2405923.
- Folk, R. A., Stubbs, R. L., Mort, M. E., Cellinese, N., Allen, J. M., Soltis, P. S., … Guralnick, R. P. (2019). Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences of the United States of America, 166(22), 10874–10882. https://doi.org/10.1073/pnas.1817999116
- Graham, C. H., Moritz, C., & Williams, S. E. (2006). Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 632–636. https://doi.org/10.1073/pnas.0505754103
- Graham, C. H., Storch, D., & Machac, A. (2018). Phylogenetic scale in ecology and evolution. Global Ecology and Biogeography, 27(2), 175–187. https://doi.org/10.1111/geb.12686
- Guisan, A., & Rahbek, C. (2011). SESAM - A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38(8), 1433–1444. https://doi.org/10.1111/j.1365-2699.2011.02550.x
- Harmon, L. J., & Harrison, S. (2015). Species diversity is dynamic and unbounded at local and continental scales. The American Naturalist, 185(5), 584–593. https://doi.org/10.1086/680859
- Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., … Turner, J. R. G. (2003). Energy, water, and broad-scale patterns of species richness. Ecology, 84(12), 3105–3117. https://doi.org/10.1890/03-8006
- Hilbert, D. W., Graham, A., & Hopkins, M. S. (2007). Glacial and interglacial refugia within a long-term rainforest refugium: The wet tropics bioregion of NE Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(1), 104–118. https://doi.org/10.1016/j.palaeo.2007.02.020
- Hutchinson, G. E. (1959). Homage to santa rosalia or why are there so many kinds of animals? The American Naturalist, 93(870), 145–159. https://doi.org/10.1086/282070
- Jansson, R. (2003). Global patterns in endemism explained by past climatic change. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1515), 583–590. https://doi.org/10.1098/rspb.2002.2283
- Kelly, S., Grenyer, R., & Scotland, R. W. (2014). Phylogenetic trees do not reliably predict feature diversity. Diversity and Distributions, 20(5), 600–612. https://doi.org/10.1111/ddi.12188
- Kissling, W. D., & Carl, G. (2008). Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17(1), 59–71. https://doi.org/10.1111/j.1466-8238.2007.00334.x
- Kissling, W. D., Field, R., & Böhning-Gaese, K. (2008). Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Global Ecology and Biogeography, 17(3), 327–339. https://doi.org/10.1111/j.1466-8238.2007.00379.x
- Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299–305. https://doi.org/10.1890/08-2244.1
- Laliberté, E., Legendre, P., & Shipley, B. (2015). FD: Measuring functional diversity from multiple traits, an other tools for functional ecology. R package version 1.0-12. Vienna, Austria: Comprehensive R Archive Network.
- Lamanna, C., Blonder, B., Violle, C., Kraft, N. J. B., Sandel, B., Imova, I., … Enquist, B. J. (2014). Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences, 111(38), 13745–13750. https://doi.org/10.1073/pnas.1317722111
- MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews, 40(4), 510–533. https://doi.org/10.1111/j.1469-185X.1965.tb00815.x
- MacArthur, R. H. (1972). Geographical ecology: Patterns in the distribution of species. Princeton, NJ: Princeton University Press.
10.2307/1937382 Google Scholar
- Machac, A., Graham, C. H., & Storch, D. (2018). Ecological controls of mammalian diversification vary with phylogenetic scale. Global Ecology and Biogeography, 27(1), 32–46. https://doi.org/10.1111/geb.12642
- McMahon, J. P., Hutchinson, M. F., Nix, H. A., & Ord, K. D. (1995). ANUCLIM user’s guide, version 1. Canberra, Australia: Centre for Resource and Environmental Studies, Australian National University.
- Moritz, C., Patton, J., Schneider, C., & Smith, T. (2000). Diversification of rainforest faunas: An integrated molecular approach. Annual Review of Ecology and Systematics, 31(1), 533–563. https://doi.org/10.1146/annurev.ecolsys.31.1.533. Retrieved from http://www.jstor.org/stable/10.2307/221742.
10.1146/annurev.ecolsys.31.1.533 Google Scholar
- Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x
- Oliveira, B. F., Machac, A., Costa, G. C., Brooks, T. M., Davidson, A. D., Rondinini, C., … Isaac, N. (2016). Species and functional diversity accumulate differently in mammals. Global Ecology and Biogeography, 25(9), 1119–1130. https://doi.org/10.1111/geb.12471
- Oliveira, B. F., & Scheffers, B. R. (2019). Vertical stratification influences global patterns of biodiversity. Ecography, 42(2), 249–249. https://doi.org/10.1111/ecog.03636
- Ordonez, A., & Svenning, J.-C. (2017). Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Scientific Reports, 7(1), 42988. https://doi.org/10.1038/srep42988
- Ordonez, A., & Svenning, J. C. (2015). Geographic patterns in functional diversity deficits are linked to glacial-interglacial climate stability and accessibility. Global Ecology and Biogeography, 24(7), 826–837. https://doi.org/10.1111/geb.12324
- Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S., & Daniel, H. (2009). On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos, 118(3), 391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x
- Pellissier, V., Barnagaud, J.-Y., Kissling, W. D., Şekercioğlu, Ç., & Svenning, J.-C. (2018). Niche packing and expansion account for species richness-productivity relationships in global bird assemblages. Global Ecology and Biogeography, 27(5), 604–615. https://doi.org/10.1111/geb.12723
- Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araujo, M. B. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.
10.23943/princeton/9780691136868.001.0001 Google Scholar
- Phillips, S. J., & Dudìk, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x
- Pigot, A. L., Trisos, C. H., & Tobias, J. A. (2016). Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proceedings of the Royal Society B: Biological Sciences, 283(1822), 20152013. https://doi.org/10.1098/rspb.2015.2013
- Pyron, R. A., Costa, G. C., Patten, M. A., & Burbrink, F. T. (2015). Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews, 90(4), 1248–1262. https://doi.org/10.1111/brv.12154
- Quintero, I., & Wiens, J. J. (2013). Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 16(8), 1095–1103. https://doi.org/10.1111/ele.12144
- Rabosky, D. L. (2009). Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters, 12(8), 735–743. https://doi.org/10.1111/j.1461-0248.2009.01333.x
- Rabosky, D. L., & Hurlbert, A. H. (2015). Species richness at continental scales is dominated by ecological limits. The American Naturalist, 185(5), 572–583. https://doi.org/10.1086/680850
- Reside, A. E., Critchell, K., Crayn, D. M., Goosem, M., Goosem, S., Hoskin, C. J., … Pressey, R. L. (2019). Beyond the model: Expert knowledge improves predictions of species’ fates under climate change. Ecological Applications, 29(1), e01824. https://doi.org/10.1002/eap.1824
- Ricklefs, R. E. (2006). Evolutionary diversification and the origin of the diversity–Environment relationship. Ecology, 87(sp7), S3–S13. https://doi.org/10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2
- Ricklefs, R. E. (2012). Species richness and morphological diversity of passerine birds. Proceedings of the National Academy of Sciences, 109, 14482–14487. https://doi.org/10.1073/pnas.1212079109
- Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge, UK: Cambridge University Press.
10.1111/j.2006.0906-7590.04272.x Google Scholar
- Rundell, R. J., & Price, T. D. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology & Evolution, 24(7), 394–399. https://doi.org/10.1016/j.tree.2009.02.007
- Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
- Scheffers, B. R., Shoo, L., Phillips, B., Macdonald, S. L., Anderson, A., VanDerWal, J., … Williams, S. E. (2017). Vertical (arboreality) and horizontal (dispersal) movement increase the resilience of vertebrates to climatic instability. Global Ecology and Biogeography, 26(7), 787–798. https://doi.org/10.1111/geb.12585
- Schluter, D. (2016). Speciation, ecological opportunity, and latitude. The American Naturalist, 187(1), 1–18. https://doi.org/10.1086/684193
- Schumm, S. A. (1991). To interpret the earth: Ten ways to be wrong. Cambridge, UK: Cambridge University Press.
- Šímová, I., & Storch, D. (2017). The enigma of terrestrial primary productivity: Measurements, models, scales and the diversity-productivity relationship. Ecography, 40(2), 239–252. https://doi.org/10.1111/ecog.02482
- Soberon, J., & Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106, 19644–19650. https://doi.org/10.1073/pnas.0901637106
- Stephens, P. R., & Wiens, J. J. (2003). Explaining species richness from continents to communities: The time-for-speciation effect in emydid turtles. The American Naturalist, 161(1), 112–128. https://doi.org/10.1086/345091
- Storch, D., Marquet, P., & Brown, J. (2007). Scaling biodiversity. Cambridge, UK: Cambridge University Press.
10.1017/CBO9780511814938 Google Scholar
- Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A., & Sandel, B. (2015). The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annual Review of Ecology, Evolution, and Systematics, 46(1), 551–572. https://doi.org/10.1146/annurev-ecolsys-112414-054314
- Swenson, N. G., & Weiser, M. D. (2014). On the packing and filling of functional space in eastern North American tree assemblages. Ecography, 2014(April), 1056–1062. https://doi.org/10.1111/ecog.00763
- VanDerWal, J., Shoo, L. P., & Williams, S. E. (2009). New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. Journal of Biogeography, 36(2), 291–301. https://doi.org/10.1111/j.1365-2699.2008.01993.x
- Villéger, S., Maire, E., & Leprieur, F. (2017). On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecology Letters, 20(4), 554–557. https://doi.org/10.1111/ele.12750
- Villéger, S., Mason, N. W. H., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290–2301. https://doi.org/10.1890/07-1206.1
- Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3(4), 385. https://doi.org/10.2307/2389612
- Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
- Williams, S. E., & Pearson, R. G. (1997). Historical rainforest contractions, localized extinctions and patterns of vertebrate endemism in the rainforests of Australia’s wet tropics. Proceedings of the Royal Society B: Biological Sciences, 264(1382), 709–716. https://doi.org/10.1098/rspb.1997.0101
- Williams, S. E., VanDerWal, J., Isaac, J., Shoo, L. P., Storlie, C., Fox, S., … Williams, Y. M. (2010). Distributions, life-history specialization, and phylogeny of the rain forest vertebrates in the Australian Wet Tropics. Ecology, 91(8), 2493–2493. https://doi.org/10.1890/09-1069.1
10.1890/09-1069.1 Google Scholar
- Wright, D. H. (1983). Species-energy theory: An extension of species–Area theory. Oikos, 41, 496–506. https://doi.org/10.2307/3544109
- Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x