Outstanding plant endemism levels strongly support the recognition of campo rupestre provinces in mountaintops of eastern South America
Corresponding Author
Matheus Colli-Silva
Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
Correspondence
Matheus Colli-Silva, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
Email: [email protected]
Search for more papers by this authorThais N. C. Vasconcelos
Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
Search for more papers by this authorJosé Rubens Pirani
Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Matheus Colli-Silva
Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
Correspondence
Matheus Colli-Silva, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
Email: [email protected]
Search for more papers by this authorThais N. C. Vasconcelos
Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
Search for more papers by this authorJosé Rubens Pirani
Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
Search for more papers by this authorAbstract
Aim
The Brazilian campo rupestre is a vegetation associated to ancient mountaintops in eastern South America, spread mainly over disjunct areas of the Espinhaço Range and the Chapada dos Veadeiros. These areas hold outstanding levels of plant diversity and endemism, but despite their uniqueness they have been neglected in recent bioregionalizations for the Neotropical region. Given their particular levels of species richness and endemism, we here test the recognition of these as distinct bioregions within the Chacoan dominion.
Location
Mountaintops of eastern South America.
Methods
We listed 1,748 angiosperm species endemic to the campo rupestre of the Espinhaço Range and Chapada dos Veadeiros regions, based on the data gathered from the Brazilian Flora 2020 Project. We extracted all occurrence information available from GBIF (the Global Biodiversity Information Facility) for such list and also for a polygon gathering all the study area, including information from adjacent vegetations. Data went through standard cleaning procedures and a network clustering analysis was performed to delimitate the boundaries of the new bioregions.
Results
Our data strongly support the recognition of two distinct bioregions along the Espinhaço Range, but none in the Chapada dos Veadeiros. Given their high levels of endemism and singularity within the Chacoan dominion, we formalize two provinces associated to campo rupestre in the Espinhaço Range, naming them as “Chapada Diamantina” and “Southern Espinhaço” provinces. Within the latter province, three districts are also recognized, based on this and previous studies: “Diamantina Plateau”, “Grão-Mogol” and “Iron Quadrangle” districts.
Main conclusions
The formalization of new and previously described bioregions highlights the campo rupestre as a vegetation harbouring outstanding levels of species richness and endemism in South America, contributing to a better understanding of biogeographical patterns in the Neotropics. Also, as we follow the International Code of Area Nomenclature as a device to standardize recognition of bioregions, this shall facilitate further biogeographical and conservation studies in these areas. Further assessments with new and revisited data are needed to enable minor scale bioregionalization within the Chacoan dominion.
Supporting Information
Filename | Description |
---|---|
jbi13585-sup-0001-SupInfo.rarapplication/x-rar-compressed, 31.5 MB | |
jbi13585-sup-0002-AppendixS1.xlsxapplication/xlsx, 55 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alves, R. J. V., Silva, N. G., Oliveira, J. A., & Medeiros, D. (2014). Circumscribing campos rupestres – egadiverse Brazilian rocky montane savannas. Brazilian Journal of Botany, 74, 355–362. https://doi.org/10.1590/1519-6984.23212
- Antonelli, A., Verola, C. F., Parisod, C., & Gustafsson, A. L. S. (2010). Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biological Journal of the Linnean Society, 100, 597–607. https://doi.org/10.1111/j.1095-8312.2010.01438.x
- Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modelling species’ geographic distributions. Ecological Informatics, 19, 10–15. https://doi.org/10.1016/j.ecoinf.2013.11.002
- BFG (The Brazil Flora Group) (2015). Growing knowledge: An overview of seed plant diversity in Brazil. Rodriguésia, 66, 1085–1113. https://doi.org/10.1590/2175-7860201566411
10.1590/2175-7860201566411 Google Scholar
- BFG (The Brazil Flora Group) (2018a). Brazilian Flora 2020 Project – Projeto Flora do Brasil 2020. Version 393.173. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Checklist dataset 10.15468/1mtkaw accessed via GBIF.org on 2018-11-06.
- BFG (The Brazil Flora Group) (2018b). Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation. Rodriguésia, 69, 1513–1527. https://doi.org/10.1590/2175-7860201869402
10.1590/2175-7860201869402 Google Scholar
- Bitencourt, C., & Rapini, A. (2013). Centers of Endemism in the Espinhaço Range: Identifying cradles and museums of Asclepiadoideae (Apocynaceae). Systematics and Biodiversity, 11, 525–536. https://doi.org/10.1080/14772000.2013.865681
- Cabrera, A. L., & Willink, A. (1973). Biogeografia de América Latina. Monografia, 13, Serie de Biologia (pp. 120). Washington, DC: OEA.
- Conceição, A. A., Rapini, A., Carmo, F. F., Brito, J. C., Silva, G. A., Neves, S. P. S., & Jacobi, C. M. (2016). Rupestrian grassland vegetation, diversity and origin. In G. W. Fernandes (Ed.), Ecology and conservation of mountaintop grasslands in Brazil (pp. 105–127). Switzerland: Springer International Publishing.
10.1007/978-3-319-29808-5_6 Google Scholar
- Droissart, V., Dauby, G., Hardy, O. J., Deblauwe, V., Harris, D. J., Janssens, S., … Couvreur, T. L. P. (2018). Beyond trees: Biogeographical regionalisation of tropical Africa. Journal of Biogeography, 45, 1153–1167. https://doi.org/10.1111/jbi.13190
- Ebach, M. C., González-orozco, C. E., Miller, J. T., & Murphy, D. J. (2015). A revised area taxonomy of phytogeographical regions within the Australian bioregionalisation Atlas. Phytotaxa, 208, 261–277. https://doi.org/10.11646/phytotaxa.208.4.2
- Ebach, M. C., Morrone, J. J., Parenti, L. R., & Viloria, L. (2008). International code of area nomenclature. Journal of Biogeography, 35, 1153–1157. https://doi.org/10.1111/j.1365-2699.2008.01920.x
- Echternacht, L., Trovó, M., Oliveira, C. T., & Pirani, J. R. (2011). Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora – Morphology, Distribution, Functional Ecology of Plants, 206, 782–791. https://doi.org/10.1016/j.flora.2011.04.003
- Edler, D., Guedes, T., Zizka, A., Rosvall, M., & Antonelli, A. (2016). Infomap bioregions: Interactive mapping of biogeographical regions from species distributions. Systematic Biology, 66, 197–204. https://doi.org/10.1093/sysbio/syw087
- Eiten, G. (1978). Delimitation of the cerrado concept. Vegetatio, 36, 169–178. https://doi.org/10.1007/BF02342599
- Giulietti, A. M., Pirani, J. R., & Harley, R. M. (1997). Espinhaço Range region. In S. D. Davis, V. H. Heywood, O. H. Macbryde, J. Villa-Lobos, & A. C. Hamilton (Eds.), Centers of plant diversity: A guide and strategy for their conservation, Vol. 3 (pp. 397–404). Cambridge, UK: IUCN Publication Unity.
- Gontijo, B. M. (2008). Uma geografia para a Cadeia do Espinhaço. Megadiversidade, 4, 7–14.
- Gustafsson, L., Felton, A., Felton, A. M., Brunet, J., Caruso, A., Hjältén, J., … Weslien, J. (2014). Natural versus national boundaries: The importance of considering biogeographical patterns in forest conservation policy. Conservation Letters, 8, 50–57. https://doi.org/10.1111/conl.12087
- Harley, R. M. (1988). Evolution and distribution of Eriope (Labiatae), and its relatives, in Brazil. In P. Vanzolini & W. R. Heyer (Eds.), Proceedings of a workshop on neotropical distribution patterns (pp. 71–120). Rio de Janeiro, Brazil: Academia Brasileira de Ciências.
- Hijmans, R. J., Philips, S., Leathwick, J., & Elith, J. (2017). Package ‘dismo’. R package version 1.1-4. Retrieved form http://cran.r-project.org/web/packages/dismo/index.html.
- Holt, B. G., Lessard, J.-P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., Dimitrov, D., … Rahbek, C. (2013). An update of Wallace’s zoogeographic regions of the world. Science, 339, 74–78. https://doi.org/10.1126/science.1228282
- Hopper, S. D., Silveira, F. A. O., & Fiedler, P. L. (2015). Biodiversity hotspots and Ocbil theory. Plant and Soil, 403, 167–216. https://doi.org/10.1007/s11104-015-2764-2
- Humboldt, A. (1806). Essai sur la geographie des plantes; accompagné d’um tableau physique des régions équinoxales, accompagné d’um tableau physique des regions équinoctiales. Paris: Schoel & Co.
- Jacobi, C. M., & Carmo, F. F. (Orgs.) (2012). Diversidade florística nas Cangas do Quadrilátero Ferrífero. Belo Horizonte: IDM.
- Jiménez-Rivillas, C., García, J. J., Quijano-Abril, M. A., Daza, J. M., & Morrone, J. J. (2018). A new biogeographical regionalisation of the Páramo biogeographic province. Australian Systematic Botany, 31, 296–310. https://doi.org/10.1071/SB18008
- Joly, A. B. (1970). Conheça a vegetação brasileira. São Paulo: EDUSP, Polígono.
- Keppel, G., Ottaviani, G., Harrison, S., Wardell-Johnson, G. W., Marcantonio, M., & Mucina, L. (2018). Towards an eco-evolutionary understanding of endemism hotspots and refugia. Annals of Botany, 20, 1723–8. https://doi.org/10.1093/aob/mcy173
- Kreft, H., & Jetz, W. (2010). A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 37, 2029–2053. https://doi.org/10.1111/j.1365-2699.2010.02375.x
- Lenza, E., Pinto, J. R. R., Pinto, A. S., Maracahipes, L., & Bruziguessi, E. P. (2011). Comparisons between a savanna on rocky soil tree-shrub community at Chapada dos Veadeiros, Goiás and cerrado sensu stricto areas of the Cerrado biome. Revista Brasileira de Botânica, 34, 247–259. https://doi.org/10.1590/S0100-84042011000300002
- Longhi-Wagner, H. M., Welker, C. A. D., & Waechter, J. L. (2012). Floristic affinities in montane grasslands in eastern Brazil. Systematics and Biodiversity, 10, 537–550. https://doi.org/10.1080/14772000.2012.753487
- Mackey, B. G., Berry, S. L., & Brown, T. (2008). Reconciling approaches to biogeographical regionalisation: A systematic and generic framework examined with a case study of the Australian continent. Journal of Biogeography, 35, 213–229. https://doi.org/10.1111/j.1365-2699.2007.01822.x
- Magalhães, G. M. (1966). Sobre os cerrados de Minas Gerais. Anais da Academia Brasileira de Ciências, 38, 59–70.
- Maldonado, C., Molina, C. I., Zizka, A., Persson, C., Taylor, C. M., Albán, J., … Antonelli, A. (2015). Estimating species diversity and distribution in the era of Big Data: To what extent can we trust public databases? Global Ecology and Biogeography, 24, 973–984. https://doi.org/10.1111/geb.12326
- Moro, M. F., Silva, I. A., Araújo, F. S., Lughadha, E., Meagher, T. R., & Martins, F. R. (2015). The role of edaphic environment and climate in structuring phylogenetic pattern in seasonally dry tropical plant communities. PLoS ONE, 10, e0119166. https://doi.org/10.1371/journal.pone.0119166
- Morrone, J. J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa, 3781, 1723–110. https://doi.org/10.11646/zootaxa.3782.1.1
- Morrone, J. J. (2015a). Biogeographical regionalisation of the world: A reappraisal. Australian Systematic Botany, 28, 81–90. https://doi.org/10.1071/SB14042
- Morrone, J. J. (2015b). Biogeographical regionalisation of the Andean region. Zootaxa, 3936, 207–236. https://doi.org/10.11646/zootaxa.3936.2.3
- Morrone, J. J. (2017). Neotropical biogeography: Regionalization and evolution. Boca Raton, FL: CRC Press.
10.1201/b21824 Google Scholar
- Morrone, J. J. (2018). The spectre of biogeographical regionalisation. Journal of Biogeography, 45, 1723–7. https://doi.org/10.1111/jbi.13135
- Mucina, L. (2018). Vegetation of Brazilian campos rupestres on siliceous substrates and their global analogues. Flora, 238, 11–23. https://doi.org/10.1016/j.flora.2017.06.007
- Müller, P. (1973). The dispersal centres of terrestrial vertebrates in the Neotropical realm: A study in the evolution of the Neotropical biota and its native landscapes (p. 244). The Hague, the Netherland: Junk.
- Neves, D. M., Dexter, K. G., Pennington, R. T., Bueno, M. L., Miranda, P. L. S., & Oliveira-Filho, A. T. (2018). Lack of floristic identity in campos rupestres – A hyperdiverse mosaic of rocky montane savannas in South America. Flora, 238, 24–31. https://doi.org/10.1016/j.flora.2017.03.011
- Nogueira, C., Ribeiro, S., Costa, G. C., & Colli, G. R. (2011). Vicariance and endemism in a Neotropical savanna hotspot: Distribution patterns of Cerrado squamate reptiles. Journal of Biogeography, 38, 1907–1922. https://doi.org/10.1111/j.1365-2699.2011.02538.x
- Noguera-Urbano, E. A. (2016). Areas of endemism: Travelling through space and the unexplored dimension. Systematics and Biodiversity, 14, 131–139. https://doi.org/10.1080/14772000.2015.1135196
- Pirani, J. R., Mello-Silva, R., & Giulietti, A. M. (2003). Flora de Grão-Mogol, Minas Gerais, Brasil. Boletim De Botânica da Universidade de São Paulo, 21, 1723–24. https://doi.org/10.11606/issn.2316-9052.v21i1p1-24
- Pirani, J. R., Sano, P. T., Mello-Silva, R., Menezes, N. L., Giulietti, A. M., Zappi, D. C., & Jono, V. Y. (Orgs.) (2015). Flora da Serra do Cipó, Minas Gerais. Retrieved form http://www.ib.usp.br/botanica/serradocipo/angiosperma/46-lista-angiosperma.html
- Pontara, V., Bueno, M. L., Rezende, V. L., Oliveira-Filho, A. T., Gastauer, M., & Meira-Neto, J. A. A. (2018). Evolutionary history of campos rupestres: An approach for conservation of woody plant communities. Biodiversity and Conservation, 27, 2877–2896. https://doi.org/10.1007/s10531-018-1574-2
- Prance, G. T. (1994). The use of phytogeographic data for conservation planning. In P. I. Forey, C. J. Humphries, & R. I. Vane-Wright (Eds.), Systematics and conservation evaluation. Systematics association special, Vol 50 (pp. 145–165). Oxford, UK: Clarendon Press.
- Proença, C. E. B., Soares-Silva, L. H., Rivera, V. L., Simon, M. F., Oliveira, R. C., Santos, I. A., … Carvalho, S. F. (2010). Regionalização, centros de endemismo e conservação com base em espécies de angiospermas indicadoras da biodiversidade do Cerrado brasileiro. In I. R. Diniz, J. M. Filho, R. B. Machado, & R. B. Cavalcanti (Eds.), Cerrado: Conhecimento científico quantitativo como subsídio para ações de conservação, Vol 1 (pp. 90–148). Brasília, DF: Thesaurus.
- R Development Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- Rando, J. G., Zuntini, A. R., Conceição, A. S., van den Berg, C., Pirani, J. R., & Queiroz, L. P. (2016). Phylogeny of Chamaecrista ser. Coriaceae (Leguminosae) unveils a lineage recently diversified in the Brazilian campos rupestres vegetation. International Journal of Plant Sciences, 177, 3–17. https://doi.org/10.1086/683846
- Ribeiro, P. L., Rapini, A., Damascena, L. S., & van den Berg, C. (2014). Plant diversification in the Espinhaço Range: Insights from the biogeography of Minaria (Apocynaceae). Taxon, 63(6), 1253–1264. https://doi.org/10.12705/636.16
- Rivas-Martínez, S., & Navarro, G. (1994). Mapa biogeográfico de Suramérica. Madrid: Published by the Authors.
- Silveira, F. A. O., Negreiros, D., Barbosa, N. P. U., Buisson, E., Carmo, F. F., Carstensen, D. W., … Lambers, H. (2016). Ecology and Evolution of plant diversity in the endangered campos rupestres: A neglected conservation priority. Plant and Soil, 403, 129–152. https://doi.org/10.1007/s11104-015-2637-8
- Simon, M. F., & Proença, C. (2000). Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: An indicator genus of high-altitude center of endemism? Biological Conservation, 96, 279–296. https://doi.org/10.1016/S0006-3207(00)00085-9
- Vasconcelos, M. F. (2011). O que são os campos rupestres e campos de altitude nos topos de montanha do leste do Brasil? Brazilian Journal of Botany, 34, 2011. https://doi.org/10.1590/S0100-84042011000200012
10.1590/S0100-84042011000200012 Google Scholar
- Vasconcelos, M. F., & D’Angelo-Neto, S. (2007). Padrões de distribuição e conservação da avifauna na região central da Cadeia do Espinhaço e áreas adjacentes, Minas Gerais, Brasil. Papéis Avulsos De Zoologia, 28, 27–44.
- Vasconcelos, M. F., Lopes, L. E., Machado, C. G., & Rodrigues, M. (2008). As aves dos campos rupestres da Cadeia do Espinhaço: Diversidade, endemismo e conservação. Megadiversidade, 4, 221–241.
- Vasconcelos, M. F., & Rodrigues, M. (2010). Patterns of geographic distribution and conservation of open-habitat avifauna of south-eastern Brazilian mountaintops (campos rupestres and campos de altitude). Papéis Avulsos De Zoologia, 50, 1723–29. https://doi.org/10.1590
- Vilhena, D. A., & Antonelli, A. (2015). A network approach for identifying and delimiting biogeographical regions. Nature Communications, 6, 6848. https://doi.org/10.1038/ncomms7848
- Wallace, A. R. (1876). The geographical distribution of animals. Vols I, II (576+650 pp.). New York, NY: Harper and Brothers.
- Yesson, C., Brewer, P. W., Sutton, T., Caithness, N., Pahwa, J. S., Burgess, M., … Culham, A. (2007). How global is the Global Biodiversity Information Facility? PLoS ONE, 2, e1124. https://doi.org/10.1371/journal.pone.0001124
- Zappi, D. C., Moro, M. F., Meagher, T. R., & Lughadha, E. N. (2017). Plant diversity drivers in Brazilian campos rupestres: Insights from phylogenetic structure. Frontiers in Plant Science, 8, 1723–15. https://doi.org/10.3389/fpls.2017.02141
- Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Ritter, C. D., Edler, D., … Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13152
- Zizka, A., Steege, H., Pessoa, M. C., & Antonelli, A. (2018). Finding needles in the haystack: Where to look for rare species in the American tropics. Ecography, 41, 321–330. https://doi.org/10.1111/ecog.02192