Genomic analysis of genotype–environment interaction in age at first calving of Murrah buffaloes
Jessica Cristina Gonçalves dos Santos
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Francisco Ribeiro de Araujo Neto
Instituto Federal de Ciência e Tecnologia Goiano – IFGoiano, Rio Verde, Goiás, Brazil
Correspondence
Francisco Ribeiro de Araujo Neto, Instituto Federal de Ciências e Tecnologia Goiano - IFGoiano, Rio Verde, Goiãs, Brazil.
Email: [email protected]
Search for more papers by this authorLeonardo de Oliveira Seno
Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
Search for more papers by this authorDaniel Jordan de Abreu Santos
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorKatryne Jordana de Oliveira
Instituto Federal de Ciência e Tecnologia Goiano – IFGoiano, Rio Verde, Goiás, Brazil
Search for more papers by this authorRusbel Raul Aspilcueta-Borquis
Universidade Tecnológica Federal Do Paraná – UFTPR, Dois Vizinhos, Paraná, Brazil
Search for more papers by this authorHenrique Nunes de Oliveira
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorHumberto Tonhati
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorJessica Cristina Gonçalves dos Santos
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Francisco Ribeiro de Araujo Neto
Instituto Federal de Ciência e Tecnologia Goiano – IFGoiano, Rio Verde, Goiás, Brazil
Correspondence
Francisco Ribeiro de Araujo Neto, Instituto Federal de Ciências e Tecnologia Goiano - IFGoiano, Rio Verde, Goiãs, Brazil.
Email: [email protected]
Search for more papers by this authorLeonardo de Oliveira Seno
Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
Search for more papers by this authorDaniel Jordan de Abreu Santos
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorKatryne Jordana de Oliveira
Instituto Federal de Ciência e Tecnologia Goiano – IFGoiano, Rio Verde, Goiás, Brazil
Search for more papers by this authorRusbel Raul Aspilcueta-Borquis
Universidade Tecnológica Federal Do Paraná – UFTPR, Dois Vizinhos, Paraná, Brazil
Search for more papers by this authorHenrique Nunes de Oliveira
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorHumberto Tonhati
Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal – UNESP, Jaboticabal, São Paulo, Brazil
Search for more papers by this authorAbstract
Age at first calving (AFC) is a measure of sexual maturity associated with the start of productive life of dairy animals. Additionally, a lower AFC reduces the generation interval and early culling of females. However, AFC has low heritability, making it a trait highly influenced by environmental factors. In this scenario, one way to improve the reproductive performance of buffalo cows is to select robust animals according to estimated breeding value (EBV) using models that include genotype–environment interaction (GEI) with the application of reaction norm models (RNMs). This can be achieved by understanding the genomic basis related to GEI of AFC. Thus, in this study, we aimed to predict EBV considering GEI via the RNM and identify candidate genes related to this component in dairy buffaloes through genome-wide association studies (GWAS). We used 1795 AFC records from three Murrah buffalo herds and formed environmental gradients (EGs) from contemporary group solutions obtained from genetic analysis of 270-day cumulative milk yield. Heritability estimates ranged from 0.15 to 0.39 along the EG. GWAS of the RNM slope parameter identified important genomic regions. The genomic window that explained the highest percentage of genetic variance of the slope (0.67%) was located on BBU1. After functional analysis, five candidate genes were detected, involved in two biological processes. The results suggested the existence of a GEI for AFC in Murrah buffaloes, with reclassification of animals when different environmental conditions were considered. The inclusion of genomic information increased the accuracy of breeding values for the intercept and slope of the reaction norm. GWAS analysis suggested that important genes associated with the AFC reaction norm slope were possibly also involved in biological processes related to lipid metabolism and immunity.
CONFLICT OF INTEREST STATEMENT
The authors declare no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Agudelo-Gómez, D. A., Savegnago, R. P., Buzanskas, M. E., Ferraudo, A. S., Munari, D. P., & Céron-Muñoz, M. (2015). Genetic principal components for reproductive and productive traits in dual-purpose buffaloes in Colombia. Journal of Animal Science, 93, 3801–3809. https://doi.org/10.2527/jas2015-8940
- Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93, 743–752. https://doi.org/10.3168/jds.2009-2730
- Ambrosini, D. P., Malhado, C. H. M., Filho, R. M., Cardoso, F. F., & Carneiro, P. L. S. (2016). Genotype × environment interactions in reproductive traits of Nellore cattle in northeastern Brazil. Tropical Animal Health and Production, 48, 1401–1407. https://doi.org/10.1007/s11250-016-1105-7
- Amin, A. M. S., Abo-Ismail, M. K., & Salem, M. M. I. (2021). Genetic parameters and genetic trends for reproductive traits in Egyptian buffalo. Animal Reproduction Science, 231, 106800. https://doi.org/10.1016/j.anireprosci.2021.106800
- Araujo Neto, F. R., Pegolo, N. T., Aspilcueta-Borquis, R. R., Pessoa, M. C., Bonifácio, A., Lobo, R. B., & Oliveira, H. N. (2018). Study of the effect of genotype–environment interaction on age at first calving and production traits in Nellore cattle using multi-trait reaction norms and Bayesian inference. Animal Science Journal, 89, 939–945. https://doi.org/10.1111/asj.12994
- Araujo Neto, F. R., Santos, J. C. G., Arce, C. D. S., Aspilcueta-Borquis, R. R., Santos, D. J. A., Guimarães, K. C., Nascimento, A. V., Oliveira, H. N., & Humberto, T. (2022). Genomic study of the resilience of buffalo cows to a negative energy balance. Journal of Applied Genetics, 63, 379–388. https://doi.org/10.1007/s13353-021-00680-x
- Araujo Neto, F. R., Takada, L., Santos, D. J. A., Aspilcueta-Borquis, R. R., Cardoso, D. F., Nascimento, A. V., Leão, K. M., Oliveira, H. N., & Tonhati, H. (2020). Identification of genomic regions related to age at first calving and first calving interval in water buffalo using single-step GBLUP. Reproduction in Domestic Animals, 55, 1565–1572. https://doi.org/10.1111/rda.13811
- Aspilcueta-Borquis, R. R., Seno, L. O., Araujo Neto, F. R., Santos, D. J. A., Hurtado-Lugo, N. A., & Tonhati, H. (2022). Lifetime productivity: Genetic study of longevity and its associations with economically important traits in dairy buffaloes. Livestock Science, 259, 104900. https://doi.org/10.1016/j.livsci.2022.104900
- Atashi, H., Asaadi, A., & Hostens, M. (2021). Association between age at first calving and lactation performance, lactation curve, calving interval, calf birth weight, and dystocia in Holstein dairy cows. PLoS One, 16, e0244825. https://doi.org/10.1371/journal.pone.0244825
- Bagath, M., Krishnan, G., Devaraj, C., Rashamol, V. P., Pragna, P., Lees, A. M., & Sejian, V. (2019). The impact of heat stress on the immune system in dairy cattle: A review. Research in Veterinary Science, 126, 94–102. https://doi.org/10.1016/j.rvsc.2019.08.011
- Bernabucci, U., Ronchi, B., Basiricò, L., Pirazzi, D., Rueca, F., Lacetera, N., & Nardone, A. (2004). Abundance of mRNA of apolipoprotein B100, apolipoprotein E, and microsomal triglyceride transfer protein in liver from periparturient dairy cows. Journal of Dairy Science, 87, 2881–2888. https://doi.org/10.3168/jds.S0022-0302(04)73418-9
- Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25, 1091–1093. https://doi.org/10.1093/bioinformatics/btp101
- Camargo, G. M. F., Aspilcueta-Borquis, R. R., Fortes, M. R. S., Porto-Neto, R., Cardoso, D. F., Santos, D. J. A., Lehnert, S. A., Reverter, A., Moore, S. S., & Tonhati, H. (2015). Prospecting major genes in dairy buffaloes. BMC Genomics, 16, 872. https://doi.org/10.1186/s12864-015-1986-2
- Carvalheiro, R., Costilla, R., Neves, H. H. R., Albuquerque, L. G., Moore, S., & Hayes, B. J. (2019). Unraveling genetic sensitivity of beef cattle to environmental variation under tropical conditions. Genetics, Selection, Evolution, 51, 29. https://doi.org/10.1186/s12711-019-0470-x
- Chen, S., Su, X., & Mo, Z. (2022). KCNN4 is a potential biomarker for predicting cancer prognosis and an essential molecule that remodels various components in the tumor microenvironment: A pan-cancer study. Frontiers in Molecular Biosciences, 3, 812815. https://doi.org/10.3389/fmolb.2022.812815
10.3389/fmolb.2022.812815 Google Scholar
- Chiaia, H. L. J., Lemos, M. V. A., Venturini, G. C., Aboujaoude, C., Berton, M. P., Feitosa, F. B., Carvalheiro, R., Albuquerque, L. G., Oliveira, H. N., & Baldi, F. (2015). Genotype x environment interaction for age at first calving, scrotal circumference, and yearling weight in Nellore cattle using reaction norms in multitrait random regression models. Journal of Animal Science, 93, 1503–1510. https://doi.org/10.2527/jas.2014-8217
- Freitas, G. R., Hurtado-Lugo, N. A., Santos, D. J. A., Aspilcueta-Borquis, R. R., Pegolo, N. T., Tonhati, H., & Araujo Neto, F. R. (2019). Genotype–environment interaction for age at first calving in buffaloes, using the reaction norm model. Reproduction in Domestic Animals, 54, 727–732. https://doi.org/10.1111/rda.13414
- Fu, Q., Huang, Y., Wang, Z., Chen, F., Huang, D., Lu, Y., Liang, X., & Zhang, M. (2016). Proteome profile and quantitative proteomic analysis of Buffalo (Bubalus bubalis) follicular fluid during follicle development. International Journal of Molecular Sciences, 17, 618. https://doi.org/10.3390/ijms17050618
- Iamartino, D., Nicolazzi, E. L., Van Tassell, C. P., Reecy, J. M., Fritz-Waters, E. R., Koltes, J. E., Biffani, S., Sonstegard, T. S., Schroeder, S. G., Ajmone-Marsan, P., Negrini, R., Pasquariello, R., Ramelli, P., Coletta, A., Garcia, J. F., Ali, A., Ramunno, L., Cosenza, G., Oliveira, D. A. A., … Williams, J. L. (2017). Design and validation of a 90K SNP genotyping assay for the water buffalo (Bubalus bubalis). PLoS One, 12, e0185220. https://doi.org/10.1371/journal.pone.0185220
- ICAR. (2017). Section 17: Guidelines for buffalo milk recording. https://www.icar.org/Guidelines/17-Buffalo-Milk-Recording.pdf
- Kumar, S., Balhara, A. K., Buragohain, L., Kumar, R., Sharma, R. K., Phulia, S. K., Mohanty, A. K., & Singh, I. (2021). Identification of novel proteomics markers involved in ovarian endocrinology of riverine buffalo (Bubalus bubalis). Biological Rhythm Research, 52, 1448–1460. https://doi.org/10.1080/09291016.2019.1658061
- Lacetera, N., Bernabucci, U., Scalia, D., Basiricò, L., Morera, P., & Nardone, A. (2006). Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. Journal of Dairy Science, 89, 4606–4612. https://doi.org/10.3168/jds.s0022-0302(06)72510-3
- Laseca, N., Demyda-Peyrás, S., Valera, M., Ramón, M., Escribano, B., Perdomo-González, D. I., & Molina, A. (2022). A genome-wide association study of mare fertility in the Pura Raza Español horse. Animal, 16, 100476. https://doi.org/10.1016/j.animal.2022.100476
- Legarra, A., & Reverter, A. (2018). Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genetics Selection Evolution, 50, 53. https://doi.org/10.1186/s12711-018-0426-6
- Lemos, M. V. A., Chiaia, H. L. J., Berton, M. P., Feitosa, F. L. B., Aboujaoude, C., Venturini, G. C., Oliveira, H. N., Albuquerque, L. G., & Baldi, F. (2015). Reaction norms for the study of genotype-environment interaction for growth and indicator traits of sexual precocity in Nellore cattle. Genetics and Molecular Research, 14, 7151–7162. https://doi.org/10.4238/2015.June.29.9
- Low, W. Y., Tearle, R., Bickhart, D. M., Rosen, B. D., Kingan, S. B., Swale, T., Thibaud-Nissen, F., Murphy, T. D., Young, R., Lefevre, L., Hume, D. A., Collins, A., Ajmone-Marsan, P., Smith, T. P. L., & Williams, J. L. (2019). Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nature Communications, 10, 260. https://doi.org/10.1038/s41467-018-08260-0
- Marques, N. F. S., Codognoto, V. M., Souza, F. F., Scott, C., Janini, L. C. Z., Brochine, S., Tironi, S. M. T., Camargo, L. S., Alvarez, M. V. N., & Oba, E. (2022). Proteomics of follicular fluid from buffaloes (Bubalus bubalis): Unraveling the secrets of follicular development. Livestock Science, 260, 104947. https://doi.org/10.1016/j.livsci.2022.104947
- Melo-Sterza, F. A., & Poehland, R. (2021). Lipid metabolism in bovine oocytes and early embryos under in vivo, in vitro, and stress conditions. International Journal of Molecular Sciences, 26, 3421. https://doi.org/10.3390/ijms22073421
10.3390/ijms22073421 Google Scholar
- Misztal, I., Tsuruta, S., Lourenço, D., Masuda, Y., Aguilar, I., Legarra, A., & Vitezica, Z. (2014). BLUPF90 family of programs. http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all8.pdf
- Mota, L. F. M., Fernandes, G. A., Jr., Herrera, A. C., Scalez, D. C. B., Espigolan, R., Magalhães, A. F. B., Carvalheiro, R., Baldi, F., & Albuquerque, L. G. (2020). Genomic reaction norm models exploiting genotype × environment interaction on sexual precocity indicator traits in Nellore cattle. Animal Genetics, 51, 210–223. https://doi.org/10.1111/age.12902
- Oliveira, D. P., Lourenco, D. A. L., Tsuruta, S., Misztal, I., Santos, D. J. A., Araújo Neto, F. R., Aspilcueta-Borquis, R. R., Baldi, F., Carvalheiro, R., Camargo, G. M. F., Albuquerque, L. G., & Tonhati, H. (2018). Reaction norm for yearling weight in beef cattle using single-step genomic evaluation. Journal of Animal Science, 96, 27–34. https://doi.org/10.1093/jas/skx006
- Pégolo, N. T., Oliveira, H. N., Albuquerque, L. G., Bezerra, L. A., & Lôbo, R. B. (2009). Genotype by environment interaction for 450-day weight of Nelore cattle analyzed by reaction norm models. Genetics and Molecular Biology, 32, 281–287. https://doi.org/10.1590/S1415-47572009005000027
- Ramadan, A. A., Selim, S. A., Hassan, H. H., & Wahba, M. A. (2001). Immune regulation of ovarian function in buffaloes (Bubalus bubalus). Theriogenology, 55, 661–669. https://doi.org/10.1016/S0093-691X(01)00434-4
- Santos, J. C., Malhado, C. H. M., Carneiro, P. L. S., Rezende, M. P. G., & Cobuci, J. A. (2020). Genotype-environment interaction for age at first calving in Holstein cows in Brazil. Veterinary and Animal Science, 9, 100098. https://doi.org/10.1016/j.vas.2020.100098
- Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. https://doi.org/10.1101/gr.1239303
- Shao, B., Sun, H., Ahmad, M. J., Ghanem, N., Abdel-Shafy, H., Du, C., Deng, T., Mansoor, S., Zhou, Y., Yang, Y., Zhang, S., Yang, L., & Hua, G. (2021). Genetic features of reproductive traits in bovine and Buffalo: Lessons from bovine to Buffalo. Frontiers in Genetics, 23, 617128. https://doi.org/10.3389/fgene.2021.617128
10.3389/fgene.2021.617128 Google Scholar
- Sherwin, V. E., Hudson, C. D., Henderson, A., & Green, M. J. (2016). The association between age at first calving and survival of first lactation heifers within dairy herds. Animal, 10, 1877–1882. https://doi.org/10.1017/S1751731116000689
- Shirasuna, K., Nitta, A., Sineenard, J., Shimizu, T., Bollwein, H., & Miyamoto, A. (2012). Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domestic Animal Endocrinology, 43, 198–211. https://doi.org/10.1016/j.domaniend.2012.03.007
- Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8, 383–395. https://doi.org/10.31887/DCNS.2006.8.4/ssmith
- Tamboli, P., Bharadwaj, A., Chaurasiya, A., Bangar, Y. C., & Jerome, A. (2022). Association between age at first calving, first lactation traits and lifetime productivity in Murrah buffaloes. Animal Bioscience, 35, 1151–1161. https://doi.org/10.5713/ab.21.0182
- VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414–4423. https://doi.org/10.3168/jds.2007-0980
- Veshkini, A., Hammon, H. M., Vogel, L., Viala, D., Delosière, M., Tröscher, A., Déjean, S., Ceciliani, F., Sauerwein, H., & Bonnet, M. (2022). Plasma proteomics reveals crosstalk between lipid metabolism and immunity in dairy cows receiving essential fatty acids and conjugated linoleic acid. Scientific Reports, 12, 5648. https://doi.org/10.1038/s41598-022-09437-w
- Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era—Concepts and misconceptions. Nature Reviews Genetics, 9, 255–266. https://doi.org/10.1038/nrg2322
- Zachut, M., Sood, P., Levin, Y., & Moallem, U. (2016). Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. Journal of Proteomics, 139, 122–129. https://doi.org/10.1016/j.jprot.2016.03.027