Wnt signaling: the good and the bad
Xi Chen
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
Search for more papers by this authorJun Yang
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
Search for more papers by this authorPaul M Evans
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
Search for more papers by this authorCorresponding Author
Chunming Liu
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
*Corresponding author: Tel, 409-747-1909; E-mail, [email protected]Search for more papers by this authorXi Chen
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
Search for more papers by this authorJun Yang
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
Search for more papers by this authorPaul M Evans
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
Search for more papers by this authorCorresponding Author
Chunming Liu
Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
*Corresponding author: Tel, 409-747-1909; E-mail, [email protected]Search for more papers by this authorThis work was supported by the grants from the Sealy Center for Cancer Cell Biology and the National Institutes of Health (T32CA117834)
Abstract
Since the first Wnt gene was identified in 1982, the functions and mechanisms of Wnt signaling have been extensively studied. Wnt signaling is conserved from invertebrates to vertebrates and regulates early embryonic development as well as the homeostasis of adult tissues. In addition, both embryonic stem cells and adult stem cells are regulated by Wnt signaling. Deregulation of Wnt signaling is associated with many human diseases, particularly cancers. In this review, we will discuss in detail the functions of many components involved in the Wnt signal transduction pathway. Then, we will explore what is known about the role of Wnt signaling in stem cells and cancers.
References
- 1 Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006, 127: 469–480.
- 2 Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20: 781–810.
- 3 Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31: 99–109.
- 4 Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287: 795–801.
- 5 McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 1989, 58: 1075–1084.
- 6 Seifert JR, Mlodzik M. Frizzled/PCP signaling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007, 8: 126–138.
- 7 Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 2003, 5: 367–377.
- 8 Wallingford JB, Fraser SE, Harland RM. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev Cell 2002, 2: 695–706.
- 9
Kohn AD,
Moon RT.
Wnt and calcium signaling: β-catenin-inde-pendent pathways.
Cell Calcium
2005, 38: 439–446.
10.1016/j.ceca.2005.06.022 Google Scholar
- 10 Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Hol-stein TW. The Wnt code: cnidarians signal the way. Oncogene 2006, 25: 7450–7460.
- 11 Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003, 423: 448–452.
- 12 Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 2006, 11: 791–801.
- 13 Ching W, Hang HC, Nusse R. Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem 2008, Apr 22. [Epub ahead of print].
- 14 Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 2006, 125: 509–522.
- 15 Bartscherer K, Pelte N, Ingelfinger D, Boutros M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 2006, 125: 523–533.
- 16 Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana EP et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 2006, 133: 4901–4911.
- 17 Coudreuse DY, Roel G, Betist MC, Destree O, Korswagen HC. Wnt 10 gradient formation requires retromer function in Wnt-producing cells. Science 2006, 312: 921–924.
- 18 Port F, Kuster M, Herr P, Furger E, Banziger C, Hausmann G, Basler K. Wingless secretion promotes and requires retromer-de-pendent cycling of Wntless. Nat Cell Biol 2008, 10: 178–185.
- 19 Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 2008, 14: 140–147.
- 20 Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D et al. A new member of the Frizzled family from Drosophila functions as a Wingless receptor. Nature 1996, 382: 225–230.
- 21 Yang-Snyder J, Miller JR, Brown JD, Lai CJ, Moon RT. A Frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 1996, 6: 1302–1306.
- 22 Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M et al. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 2005, 57: 279–288.
- 23 Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ. Insights into Wnt binding and signaling from the structures of two Frizzled cysteine-rich domains. Nature 2001, 412: 86–90.
- 24 Hsieh JC, Rattner A, Smallwood PM, Nathans J. Biochemical characterization of Wnt-Frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc Natl Acad Sci USA 1999, 96: 3546–3551.
- 25 Umbhauer M, Djiane A, Goisset C, Penzo-Mendez A, Riou JF, Boucaut JC, Shi DL. The C-terminal cytoplasmic Lys-Thr-X-X-X-Trp motif in Frizzled receptors mediates Wnt/β-catenin signaling. EMBO J 2000, 19: 4944–4954.
- 26 Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 2003, 12: 1251–1260.
- 27 Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 2007, 28: 518–525.
- 28 Katanaev VL, Ponzielli R, Semeriva M, Tomlinson A. Trimeric G protein-dependent Frizzled signaling in Drosophila. Cell 2005, 120: 111–122.
- 29 Liu X, Rubin JS, Kimmel AR. Rapid, Wnt-induced changes in GSK-3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr Biol 2005, 15: 1989–1997.
- 30 Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signaling in mice. Nature 2000, 407: 535–538.
- 31 Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000, 407: 530–535.
- 32 Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E et al. Arrow encodes an LDL-receptor-related protein essential for Wingless signaling. Nature 2000, 407: 527–530.
- 33 Kelly OG, Pinson KI, Skarnes WC. The Wnt co-receptors LRP5 and LRP6 are essential for gastrulation in mice. Development 2004, 131: 2803–2815.
- 34 Mao J, Wang J, Liu B, Pan W, Farr GHFlynn C, Yuan H et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 2001, 7: 801–809.
- 35 Culi J, Mann RS. Boca, an endoplasmic reticulum protein required for wingless signaling and trafficking of LDL receptor family members in Drosophila.Cell 2003, 112: 343–354.
- 36 Hsieh JC, Lee L, Zhang L, Wefer S, Brown K, DeRossi C, Wines ME et al. Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 2003, 112: 355–367.
- 37 Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 2004, 119: 97–108.
- 38 Yoshikawa S, McKinnon RD, Kokel M, Thomas JB. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 2003, 422: 583–588.
- 39 Hikasa H, Shibata M, Hiratani I, Taira M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development 2002, 129: 5227–5239.
- 40 Mikels AJ, Nusse R. Wnts as ligands: processing, secretion and reception. Oncogene 2006, 25: 7461–7468.
- 41 Schambony A, Wedlich D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 2007, 12: 779–792.
- 42 Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 2004, 116: 883–895.
- 43 Nam JS, Turcotte TJ, Smith PF, Choi S, Yoon JK. Mouse cristin/Rspondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate β-catenin-dependent gene expression. J Biol Chem 2006, 281: 13247–13257.
- 44 Kazanskaya O, Glinka A, Del Barco Barrantes I, Stannek P, Niehrs C, Wu W. R-Spondin2 is a secreted activator of Wnt/β-catenin signaling and is required for Xenopus myogenesis. Dev Cell 2004, 7: 525–534.
- 45 Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X. R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and β-catenin signaling. J Biol Chem 2007, 282: 15903–15911.
- 46 Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 2005, 309: 1256–1259.
- 47 Bell SM, Schreiner CM, Wert SE, Mucenski ML, Scott WJ, Whitsett JA. R-spondin 2 is required for normal laryngeal-tracheal, lung and limb morphogenesis. Development 2008, 135: 1049–1058.
- 48 Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, Maggiulli G, Grammatico B et al. Syndromic true hermaphroditism due to an R-spondinl (RSPO1) homozygous mutation. Hum Mutat 2008, 29: 220–226.
- 49 Blaydon DC, Ishii Y, O'Toole EA, Unsworth HC, Teh MT, Ruschendorf F, Sinclair C et al. The gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, is mutated in inherited anonychia. Nat Genet 2006, 38: 1245–1247.
- 50 Hoang B, Moos M Jr, Vukicevic S, Luyten FP. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila Frizzled, suggest a role in skeletal morphogenesis. J Biol Chem 1996, 271: 26131–26137.
- 51 Rattner A, Hsieh JC, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci USA 1997, 94: 2859–2863.
- 52 Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999, 398: 431–436.
- 53 Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, Krumlauf R. Wise, a context-dependent activator and inhibitor of Wnt signaling. Development 2003, 130: 4295–4305.
- 54 Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 2005, 280: 19883–19887.
- 55 Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005, 280: 26770–26775.
- 56 Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998, 391: 357–362.
- 57 Mao B, Niehrs C. Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 2003, 302: 179–183.
- 58 Rothbacher U, Laurent MN, Deardorff MA, Klein PS, Cho KW, Fraser SE. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J 2000, 19: 1010–1022.
- 59 Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 1998, 12: 2610–2622.
- 60 Sokol SY, Klingensmith J, Perrimon N, Itoh K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of Dishevelled. Development 1995, 121: 1637–1647.
- 61 Klingensmith J, Nusse R, Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the Wingless signal. Genes Dev 1994, 8: 118–130.
- 62 Sussman DJ, Klingensmith J, Salinas P, Adams PS, Nusse R, Perrimon N. Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene Dishevelled. Dev Biol 1994, 166: 73–86.
- 63 Noordermeer J, Klingensmith J, Perrimon N, Nusse R. Dishevelled and armadillo act in the wingless signaling pathway in Drosophila. Nature 1994, 367: 80–83.
- 64 Yanagawa S, Van Leeuwen F, Wodarz A, Klingensmith J, Nusse R. The Dishevelled protein is modified by Wingless signaling in Drosophila. Genes Dev 1995, 9: 1087–1097.
- 65 Peters JM, McKay RM, McKay JP, Graff JM. Casein kinase I transduces Wnt signals. Nature 1999, 401: 345–350.
- 66 Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 1997, 16: 3089–3096.
- 67 Sun TQ, Lu B, Feng JJ, Reinhard C, Jan YN, Fantl WJ, Williams LT. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signaling. Nat Cell Biol 2001, 3: 628–636.
- 68 Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X. A mechanism for Wnt coreceptor activation. Mol Cell 2004, 13: 149–156.
- 69 Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 2005, 438: 873–877.
- 70 Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 2005, 438: 867–872.
- 71 Baig-Lewis S, Peterson-Nedry W, Wehrli M. Wingless/Wnt signal transduction requires distinct initiation and amplification steps that both depend on Arrow/LRP. Dev Biol 2007, 306: 94–111.
- 72 Macdonald BT, Yokota C, Tamai K, Zeng X, He X. Wnt signal amplification: activity, cooperativity and regulation of multiple intracellular PPPSP motifs in the Wnt coreceptor LRP6. J Biol Chem 2008, 283: 16115–16123.
- 73 Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 2008, 135: 367–375.
- 74 Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007, 316: 1619–1622.
- 75 Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989, 8: 1711–1717.
- 76 McCrea PD, Turck CW, Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 1991, 254: 1359–1361.
- 77 Peifer M, Wieschaus E. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 1990, 63: 1167–1176.
- 78 Funayama N, Fagotto F, McCrea P, Gumbiner BM. Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J Cell Biol 1995, 128: 959–968.
- 79 Siegfried E, Wilder EL, Perrimon N. Components of Wingless signaling in Drosophila. Nature 1994, 367: 76–80.
- 80 Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL 3rd, Lee JJ et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997, 90: 181–192.
- 81 Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci 2007, 64: 1930–1944.
- 82 Siegfried E, Chou TB, Perrimon N. Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 1992, 71: 1167–1179.
- 83 He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid IB. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 1995, 374: 617–622.
- 84 Polakis P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta 1997, 1332: F127–F147.
- 85 Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996, 87: 159–170.
- 86 Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science 1993, 262: 1734–1737.
- 87 Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S et al. Association of the APC gene product with β-catenin. Science 1993, 262: 1731–1734.
- 88 Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA 1995, 92: 3046–3050.
- 89 Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science 1996, 272: 1023–1026.
- 90 Korinek V, Barker N, Morin PJ, Van Wichen D, De Weger R, Kinzler KW, Vogelstein B et al. Constitutive transcriptional activation by a β-catenin-TCF complex in APC-/- colon carcinoma. Science 1997, 275: 1784–1787.
- 91 Hart MJ, De Los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr Biol 1998, 8: 573–581.
- 92 Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-de-pendent phosphorylation of β-catenin. EMBO J 1998, 17: 1371–1384.
- 93 Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 1998, 280: 596–599.
- 94 Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J Biol Chem 1998, 273: 10823–10826.
- 95 Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z et al. Control of β-catenin phosphorylation/degradation by a dual-ki-nase mechanism. Cell 2002, 108: 837–847.
- 96 Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y et al. Axin-mediated CKI phosphorylation of β-catenin at Ser45: a molecular switch for the Wnt pathway. Genes Dev 2002, 16: 1066–1076.
- 97 Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996, 10: 1443–1454.
- 98 Hart M, Concordet JP, Lassot I, Albert I, Del Los Santos R, Durand H, Perret C et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr Biol 1999, 9: 207–210.
- 99 Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signaling pathways by the F-box/WD40-repeat protein Slimb. Nature 1998, 391: 493–496.
- 100 Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X. β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 1999, 96: 6273–6278.
- 101 Spencer E, Jiang J, Chen ZJ. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev 1999, 13: 284–294.
- 102 Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev 1999, 13: 270–283.
- 103 Eklof Spink K, Fridman SG, Weis WI. Molecular mechanisms of β-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC-β-catenin complex. EMBO J 2001, 20: 6203–6212.
- 104 Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC et al. Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J 2003, 22: 494–501.
- 105 Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis WI. Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol Cell 2004, 15: 511–521.
- 106 Spink KE, Polakis P, Weis WI. Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J 2000, 19: 2270–2279.
- 107 Xing Y, Clements WK, Kimelman D, Xu W. Crystal structure of a β-catenin/axin complex suggests a mechanism for the β-catenin destruction complex. Genes Dev 2003, 17: 2753–2764.
- 108 Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D, Xu W. Crystal structure of a β-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell 2004, 15: 523–533.
- 109 Xing Y, Takemaru K, Liu J, Berndt JD, Zheng JJ, Moon RT, Xu W. Crystal structure of a full-length β-catenin. Structure 2008, 16: 478–487.
- 110 Nakamura Y, Umehara T, Hamana H, Hayashizaki Y, Inoue M, Kigawa T, Shirouzu M et al. Crystal structure analysis of the PHD domain of the transcription co-activator Pygopus. J Mol Biol 2007, 370: 80–92.
- 111 Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W. Crystal structure of a β-catenin/BCL9/TCF4 complex. Mol Cell 2006, 24: 293–300.
- 112 Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCF (β-TrCP1) ubiquitin ligase. Mol Cell 2003, 11: 1445–1456.
- 113 Huber AH, Nelson WJ, Weis WI. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 1997, 90: 871–882.
- 114 Liu J, Xing Y, Hinds TR, Zheng J, Xu W. The third 20 amino acid repeat is the tightest binding site of APC for β-catenin. J Mol Biol 2006, 360: 133–144.
- 115 Yang J, Zhang W, Evans PM, Chen X, He X, Liu C. Adenomatous polyposis coli (APC) differentially regulates β-catenin phospho-rylation and ubiquitination in colon cancer cells. J Biol Chem 2006, 281: 17751–17757.
- 116 Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003, 1: e10.
- 117 Willert K, Shibamoto S, Nusse R. Wnt-induced dephosphorylation of axin releases β-catenin from the axin complex. Genes Dev 1999, 13: 1768–1773.
- 118 Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J Biol Chem 1999, 274: 10681–10684.
- 119 Hocevar BA, Mou F, Rennolds JL, Morris SM, Cooper JA, Howe PH. Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J 2003, 22: 3084–3094.
- 120 Hsu W, Zeng L, Costantini F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem 1999, 274: 3439–3445.
- 121 Yang J, Wu J, Tan C, Klein PS. PP2A:B56epsilon is required for Wnt/β-catenin signaling during embryonic development. Development 2003, 130: 5569–5578.
- 122 Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM. Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 1999, 283: 2089–2091.
- 123 Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM. Casein kinase I phosphorylates and destabilizes the β-catenin degradation complex. Proc Natl Acad Sci USA 2002, 99: 1182–1187.
- 124 Bos CL, Diks SH, Hardwick JC, Walburg KV, Peppelenbosch MP, Richel DJ. Protein phosphatase 2A is required for mesalazine-dependent inhibition of Wnt/β-catenin pathway activity. Carcinogenesis 2006, 27: 2371–2382.
- 125 Ratcliffe MJ, Itoh K, Sokol SY. A positive role for the PP2A catalytic subunit in Wnt signal transduction. J Biol Chem 2000, 275: 35680–35683.
- 126 Bos CL, Kodach LL, Van Den Brink GR, Diks SH, Van Santen MM, Richel DJ, Peppelenbosch MP et al. Effect of aspirin on the Wnt/β-catenin pathway is mediated via protein phosphatase 2A. Oncogene 2006, 25: 6447–6456.
- 127 Li X, Yost HJ, Virshup DM, Seeling JM. Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J 2001, 20: 4122–4131.
- 128 Bajpai R, Makhijani K, Rao PR, Shashidhara LS. Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal. Development 2004, 131: 1007–1016.
- 129 Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J et al. Protein phosphatase 1 regulates assembly and function of the β-catenin degradation complex. EMBO J 2007, 26: 1511–1521.
- 130 Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science 2007, 316: 1043–1046.
- 131 Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, Kim JC et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 2007, 315: 642–645.
- 132 Fagotto F, Gluck U, Gumbiner BM. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr Biol 1998, 8: 181–190.
- 133 Yokoya F, Imamoto N, Tachibana T, Yoneda Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 1999, 10: 1119–1131.
- 134 Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long X. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 2008, 133: 340–353.
- 135 Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin. Proc Natl Acad Sci USA 2004, 101: 2882–2887.
- 136 Rosin-Arbesfeld R, Townsley F, Bienz M. The APC tumor suppressor has a nuclear export function. Nature 2000, 406: 1009–1012.
- 137 Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nat Cell Biol 2000, 2: 653–660.
- 138 Neufeld KL, Zhang F, Cullen BR, White RL. APC-mediated downregulation of β-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 2000, 1: 519–523.
- 139 Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of β-catenin is regulated by retention. J Cell Sci 2006, 119: 1453–1463.
- 140 Townsley FM, Cliffe A, Bienz M. Pygopus and Legless target Ar-madillo/β-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol 2004, 6: 626–633.
- 141 Tolwinski NS, Wieschaus E. Armadillo nuclear import is regulated by cytoplasmic anchor Axin and nuclear anchor dTCF/Pan. Development 2001, 128: 2107–2117.
- 142 Van De Wetering M, Cavallo R, Dooijes D, Van Beest M, Van Es J, Loureiro J, Ypma A et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997, 88: 789–799.
- 143 Brunner E, Peter O, Schweizer L, Basler K. Pangolin encodes a LEF-1 homologue that acts downstream of Armadillo to transducer the Wingless signal in Drosophila. Nature 1997, 385: 829–833.
- 144 Brannon M, Brown JD, Bates R, Kimelman D, Moon RT. XCtBP is a XTCF-3 co-repressor with roles throughout Xenopus development. Development 1999, 126: 3159–3170.
- 145 Billin AN, Thirlwell H, Ayer DE. β-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol Cell Biol 2000, 20: 6882–6890.
- 146 Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA et al. Identification of a Wnt/Dvl/β→-catenin→Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 2002, 111: 673–685.
- 147 Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M et al. Drosophila TCF and Groucho interact to repress Wingless signaling activity. Nature 1998, 395: 604–608.
- 148 Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, Van De Wetering M et al. The Xenopus Wnt effector XTCF-3 interacts with Groucho-related transcriptional repressors. Nature 1998, 395: 608–612.
- 149 Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z et al. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 1998, 95: 11590–11595.
- 150 Palaparti A, Baratz A, Stifani S. The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J Biol Chem 1997, 272: 26604–26610.
- 151 Daniels DL, Weis WI. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 2005, 12: 364–371.
- 152 Hsu SC, Galceran J, Grosschedl R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol Cell Biol 1998, 18: 4807–4818.
- 153 Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X. Pygopus encodes a nuclear protein essential for Wingless/Wnt signaling. Development 2002, 129: 4089–4101.
- 154 Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M et al. Wnt/Wingless signaling requires BCL9/Legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex. Cell 2002, 109: 47–60.
- 155 Parker DS, Jemison J, Cadigan KM. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 2002, 129: 2565–2576.
- 156 Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M. A new nuclear component of the Wnt signaling pathway. Nat Cell Biol 2002, 4: 367–373.
- 157 Soliman MA, Riabowol K. After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 2007, 32: 509–519.
- 158 Hecht A, Vleminckx K, Stemmler MP, Van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J 2000, 19: 1839–1850.
- 159 Cox RT, Pai LM, Kirkpatrick C, Stein J, Peifer M. Roles of the C terminus of Armadillo in Wingless signaling in Drosophila. Genetics 1999, 153: 319–332.
- 160 Takemaru KI, Moon RT. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J Cell Biol 2000, 149: 249–254.
- 161 Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996, 87: 953–959.
- 162 Goldman PS, Tran VK, Goodman RH. The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog Horm Res 1997, 52: 103–119.
- 163 Mosimann C, Hausmann G, Basler K. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with β-catenin/Armadillo. Cell 2006, 125: 327–341.
- 164 Wei Y, Renard CA, Labalette C, Wu Y, Levy L, Neuveut C, Prieur X et al. Identification of the LIM protein FHL2 as a coactivator of β-catenin. J Biol Chem 2003, 278: 5188–5194.
- 165 Hecht A, Litterst CM, Huber O, Kemler R. Functional characterization of multiple transactivating elements in β-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 1999, 274: 18017–18025.
- 166 Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J 2001, 20: 4935–4943.
- 167 Bauer A, Huber O, Kemler R. Pontin52, an interaction partner of β-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci USA 1998, 95: 14787–14792.
- 168 Bauer A, Chauvet S, Huber O, Usseglio F, Rothbacher U, Aragnol D, Kemler R et al. Pontin52 and reptin52 function as antagonistic regulators of β-catenin signaling activity. EMBO J 2000, 19: 6121–6130.
- 169 Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 2006, 7: 349–359.
- 170 Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays 2002, 24: 91–98.
- 171 Korinek V, Barker N, Moerer P, Van Donselaar E, Huls G, Peters PJ, Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking TCF-4. Nat Genet 1998, 19: 379–383.
- 172 Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 2003, 17: 1709–1713.
- 173 Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J, Nusse R et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 2004, 101: 266–271.
- 174 Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, Batlle E et al. Loss of APC in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004, 18: 1385–1390.
- 175 Batlle E, Henderson JT, Beghtel H, Van Den Born MM, Sancho E, Huls G, Meeldijk J et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002, 111: 251–263.
- 176 Gregorieff A, Pinto D, Begthel H, Destree O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 2005, 129: 626–638.
- 177 He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, Morin PJ et al. Identification of c-Myc as a target of the APC pathway. Science 1998, 281: 1509–1512.
- 178 Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, Vass JK et al. Myc deletion rescues APC deficiency in the small intestine. Nature 2007, 446: 676–679.
- 179 Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat 1981, 160: 77–91.
- 180 Van De Wetering M, Sancho E, Verweij C, De Lau W, Oving I, Hurlstone A, Van Der Horn K et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002, 111: 241–250.
- 181 Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, Haegebarth A et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449: 1003–1007.
- 182 O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature 2007, 445: 106–110.
- 183 Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445: 111–115.
- 184 Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008, 132: 631–644.
- 185 Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003, 21: 759–806.
- 186 Van De Wetering M, Oosterwegel M, Dooijes D, Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 1991, 10: 123–132.
- 187 Travis A, Amsterdam A, Belanger C, Grosschedl R. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function. Genes Dev 1991, 5: 880–894.
- 188 Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998, 8: 11–20.
- 189 Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L et al. A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature 2003, 423: 409–414.
- 190 Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R, Radtke F. β-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 2004, 199: 221–229.
- 191 Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F. Simultaneous loss of β- and γ-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 2008, 111: 160–164.
- 192 Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, Kuttler F et al. Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin. Blood 2008, 111: 142–149.
- 193 Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 2006, 12: 89–98.
- 194 Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006, 7: 1048–1056.
- 195 Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG, Leutz A. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat Immunol 2006, 7: 1037–1047.
- 196 Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L, Moon RT et al. Wnt-5a augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 2003, 100: 3422–3427.
- 197 Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA 2007, 104: 15436–15441.
- 198 Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008, 2: 274–283.
- 199 Fuchs E. Scratching the surface of skin development. Nature 2007, 445: 834–842.
- 200 Van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994, 8: 2691–2703.
- 201 Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. β-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001, 105: 533–545.
- 202 Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002, 2: 643–653.
- 203 Gat U, DasGupta R, Degenstein L, Fuchs E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 1998, 95: 605–614.
- 204 Lo Celso C, Prowse DM, Watt FM. Transient activation of β-catenin signaling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumors. Development 2004, 131: 1787–1799.
- 205 Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of β-catenin/TCF transactivation on epithelial stem cells. Genes Dev 2005, 19: 1596–1611.
- 206 Van Mater D, Kolligs FT, Dlugosz AA, Fearon ER. Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev 2003, 17: 1219–1224.
- 207 Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, Millar SE. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 2001, 107: 69–82.
- 208 DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 1999, 126: 4557–4568.
- 209 Merrill BJ, Gat U, DasGupta R, Fuchs E. TCF3 and LEF1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 2001, 15: 1688–1705.
- 210 Nguyen H, Rendl M, Fuchs E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 2006, 127: 171–183.
- 211 Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007, 447: 316–320.
- 212 Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132: 645–660.
- 213 Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES et al. Wnt signaling regulates adult hippocampal neurogenesis. Nature 2005, 437: 1370–1375.
- 214 Niwa H. How is pluripotency determined and maintained? Development 2007, 134: 635–646.
- 215 Kielman MF, Rindapaa M, Gaspar C, Van Poppel N, Breukel C, Van Leeuwen S, Taketo MM et al. APC modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nat Genet 2002, 32: 594–605.
- 216 Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004, 10: 55–63.
- 217 Miyabayashi T, Teo JL, Yamamoto M, McMillan M, Nguyen C, Kahn M. Wnt/β-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci USA 2007, 104: 5668–5673.
- 218 Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 2008, 22: 746–755.
- 219 Polakis P. Wnt signaling and cancer. Genes Dev 2000, 14: 1837–1851.
- 220 Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991, 66: 589–600.
- 221 Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ et al. Identification of FAP locus genes from chromosome 5q21. Science 1991, 253: 661–665.
- 222 Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991, 253: 665–669.
- 223 Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992, 359: 235–237.
- 224 Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990, 247: 322–324.
- 225 Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992, 256: 668–670.
- 226 Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of β-catenin-TCF signaling in colon cancer by mutations in β-catenin or APC. Science 1997, 275: 1787–1790.
- 227 Andreu P, Colnot S, Godard C, Gad S, Chafey P, Niwa-Kawakita M, Laurent-Puig P et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following APC loss in the mouse intestine. Development 2005, 132: 1443–1451.
- 228 Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H et al. Rapid colorectal adenoma formation initiated by conditional targeting of the APC gene. Science 1997, 278: 120–123.
- 229 Munemitsu S, Albert I, Rubinfeld B, Polakis P. Deletion of an amino-terminal sequence β-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein. Mol Cell Biol 1996, 16: 4088–4094.
- 230 Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling KC et al. Mutations in Axin2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signaling. Nat Genet 2000, 26: 146–147.
- 231 Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J 1999, 18: 5931–5942.
- 232 Wang JG, Wang DF, Lv BJ, Si JM. A novel mouse model for colitis-associated colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sulfate sodium. World J Gastroenterol 2004, 10: 2958–2962.
- 233 Zhang W, Chen X, Kato Y, Evans PM, Yuan S, Yang J, Rychahou PG et al. Novel cross talk of Kruppel-like factor 4 and β-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol 2006, 26: 2055–2064.
- 234 Ghaleb AM, McConnell BB, Nandan MO, Katz JP, Kaestner KH, Yang VW. Haploinsufficiency of Kruppel-like factor 4 promotes adenomatous polyposis coli dependent intestinal tumorigenesis. Cancer Res 2007, 67: 7147–7154.
- 235 Isaacs W, De Marzo A, Nelson WG. Focus on prostate cancer. Cancer Cell 2002, 2: 113–116.
- 236 Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nature Rev 2001, 1: 34–45.
- 237 Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z. Linking β-catenin to androgen-signaling pathway. J Biol Chem 2002, 277: 11336–11344.
- 238
Mulholland DJ,
Cheng H,
Reid K,
Rennie PS,
Nelson CC.
The androgen receptor can promote β-catenin nuclear translocation independently of adenomatous polyposis coli.
J Biol Chem
2002, 277: 17933–17943.
10.1074/jbc.M200135200 Google Scholar
- 239 Chesire DR, Ewing CM, Gage WR, Isaacs WB. In vitro evidence for complex modes of nuclear β-catenin signaling during prostate growth and tumorigenesis. Oncogene 2002, 21: 2679–2694.
- 240 Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J Biol Chem 2002, 277: 30935–30941.
- 241 Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC. Functional localization and competition between the androgen receptor and T-cell factor for nuclear β-catenin: a mean for inhibition of the TCF signaling axis. Oncogene 2003, 22: 5602–5613.
- 242 Song LN, Herrell R, Byers S, Shah S, Wilson EM, Gelmann EP. β-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription. Mol Cell Biol 2003, 23: 1674–1687.
- 243 Masiello D, Chen SY, Xu Y, Verhoeven MC, Choi E, Hollenberg AN, Balk SP. Recruitment of β-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells. Mol Endocrinol 2004, 18: 2388–2401.
- 244 Verras M, Brown J, Li X, Nusse R, Sun Z. Wnt3a growth factor induces androgen receptor-mediated transcription and enhances cell growth in human prostate cancer cells. Cancer Res 2004, 64: 8860–8866.
- 245 Gerstein AV, Almeida TA, Zhao G, Chess E, Shih IeM, Buhler K, Pienta K et al. APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 2002, 34: 9–16.
- 246 Watanabe M, Kakiuchi H, Kato H, Shiraishi T, Yatani R, Sugimura T, Nagao M. APC gene mutations in human prostate cancer. J Clin Oncol 1996, 26: 77–81.
- 247 Voeller HJ, Truica CI, Gelmann EP. β-catenin mutations in human prostate cancer. Cancer Res 1998, 58: 2520–2523.
- 248 Gounari F, Signoretti S, Bronson R, Klein L, Sellers WR, Kum J, Siermann A et al. Stabilization of β-catenin induces lesions reminiscent of prostatic intraepithelial neoplasia, but terminal squa-mous transdifferentiation of other secretory epithelia. Oncogene 2002, 21: 4099–4107.
- 249 Bierie B, Nozawa M, Renou JP, Shillingford JM, Morgan F, Oka T, Taketo MM et al. Activation of β-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene 2003, 22: 3875–3887.
- 250 Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S. Tumor suppressor PTEN inhibits nuclear accumulation of β-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol 2001, 153: 1161–1174.
- 251 Verras M, Sun Z. β-catenin is involved in insulin-like growth factor 1-mediated transactivation of the androgen receptor. Mol Endocrinol 2005, 19: 391–398.
- 252 Suksaweang S, Lin CM, Jiang TX, Hughes MW, Widelitz RB, Chuong CM. Morphogenesis of chicken liver: identification of localized growth zones and the role of β-catenin/Wnt in size regulation. Dev Biol 2004, 266: 109–122.
- 253 Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK. β-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 2003, 124: 202–216.
- 254 Micsenyi A, Tan X, Sneddon T, Luo JH, Michalopoulos GK, Monga SP. β-catenin is temporally regulated during normal liver development. Gastroenterology 2004, 126: 1134–1146.
- 255 Cadoret A, Ovejero C, Terris B, Souil E, Levy L, Lamers WH, Kitajewski J et al. New targets of β-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 2002, 21: 8293–8301.
- 256 Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of β-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 2006, 43: 817–825.
- 257 Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, Vasseur-Cognet M et al. APC tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell 2006, 10: 759–770.
- 258 Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M et al. Liver-targeted disruption of APC in mice activates β-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 2004, 101: 17216–17221.
- 259 Buendia MA. Genetics of hepatocellular carcinoma. Semin Cancer Biol 2000, 10: 185–200.
- 260 Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002, 31: 339–346.
- 261 Zucman-Rossi J, Jeannot E, Nhieu JT, Scoazec JY, Guettier C, Rebouissou S, Bacq Y et al. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 2006, 43: 515–524.
- 262 Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with β-catenin and Ha-ras gene mutations. Cancer Res 2004, 64: 48–54.
- 263 Chan E, Gat U, McNiff JM, Fuchs E. A common human skin tumor is caused by activating mutations in β-catenin. Nature Genet 1999, 21: 410–413.
- 264 Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signaling. Nature 2008, 452: 650–653.