Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes
Xianping Chen
The Biomedical Engineering Centre, Guilin University of Electronic Technology, Guilin 541004, China
The Institute of Biochemistry, Dresden University of Technology, Dresden 01062, Germany
Search for more papers by this authorCorresponding Author
Karl-Heinz Van Pée
The Institute of Biochemistry, Dresden University of Technology, Dresden 01062, Germany
*Corresponding author: Tel, 49-351-46334494; Fax, 49-351-46335506; E-mail, [email protected]Search for more papers by this authorXianping Chen
The Biomedical Engineering Centre, Guilin University of Electronic Technology, Guilin 541004, China
The Institute of Biochemistry, Dresden University of Technology, Dresden 01062, Germany
Search for more papers by this authorCorresponding Author
Karl-Heinz Van Pée
The Institute of Biochemistry, Dresden University of Technology, Dresden 01062, Germany
*Corresponding author: Tel, 49-351-46334494; Fax, 49-351-46335506; E-mail, [email protected]Search for more papers by this authorAbstract
The understanding of enzymatic incorporation of halogen atoms into organic molecules has increased during the last few years. Two novel types of halogenating enzymes, flavindependent halogenases and α-ketoglutarate-dependent halogenases, are now known to play a significant role in enzyme-catalyzed halogenation. The recent advances on the halogenating enzymes RebH, SyrB2, and CytC3 have suggested some new mechanisms for enzymatic halogenations. This review concentrates on the occurrence, catalytic mechanisms, and biotechnological applications of the halogenating enzymes that are currently known.
References
- 1 Gribble GW. Natural organohalogens: a new frontier for medicinal agents? J Chem Educ 2004, 81: 1441–1449.
- 2 Van Pée KH. Biosynthesis of halogenated metabolites by bacteria. Annu Rev Microbiol 1996, 50: 375–399.
- 3 Marumo S, Hattori H, Abe H, Munakata K. Isolation of 4-chloroindolyl-3-acetic acid from immature seeds of Pisum sativum. Nature 1968, 219: 959–960.
- 4 Kanbe K, Naganawa H, Nakamura KT, Okami Y, Takeuchi T. Thienodolin, a new plant growth-regulating substance produced by a Streptomycete strain. II. Structure of thienodolin. Biosci Biotechnol Biochem 1993, 57: 636–637.
- 5 Xian-Ping C. Formation of novel tryptophan-derived compounds by combinatorial biosynthesis using regioselective tryptophan halogenases ( Master's thesis). Dresden : Dresden University of Technology 2006.
- 6 Gribble GW. The diversity of naturally occurring organobromine compounds. Chem Soc Rev 1999, 28: 335–346.
- 7 Itabashi T, Ogasawara N, Nozawa K, Kawai K. Isolation and structures of new azaphilone derivatives, falconensins E-G., from Emericella falconensis and absolute configurations of falconensins A-G. Chem Pharm Bull 1996, 44: 2213–2217.
- 8 Falch BS, König GM, Wright AD, Sticher O, Rüegger H, Bernardinelli G. Ambigol A and B: New biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischeralla ambigua. J Org Chem 1993, 58: 6570–6575.
- 9 Ballschmiter K. Pattern and sources of naturally produced organohalogens in the marine environment: Biogenic formation of organohalogens. Chemosphere 2003, 52: 313–324.
- 10 De Boer E, Van Kooyk Y, Tromp MGM, Plat H, Wever R. Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as a prosthetic group? Biochim BiophysActa 1986, 869: 48–53.
- 11 Dunford HB. Heme peroxidases. New York : John Wiley & Sons, 1999.
- 12 Sundaramoorthy M, Terner J, Poulos TL. Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem Biol 1998, 5: 461–473.
- 13 Van Pée KH, Unversucht S. Biological dehalogenation and haloge-nation reactions. Chemosphere 2003, 52: 299–312.
- 14 Hofrichter M, Ullrich R. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 2006, 71: 276–288.
- 15 Farhangrazi ZS, Sinclair R, Yamazaki I, Powers LS. Haloperoxidase activity of Phanerochaete chrysosporium lignin peroxidases H2 and H8. Biochemistry 1992, 31: 10763–10768.
- 16 Sheng D, Gold MH. Haloperoxidase activity of manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1997, 345: 126–134.
- 17 Munir IZ, Dordick JS. Soybean peroxidase as an effective bromina-tion catalyst. Enzyme Microb Technol 2000, 26: 337–341.
- 18 Adak S, Bandyopadhyay D, Bandyopadhyay U, Banerjee RK. An essential role of active site arginine residue in iodide binding and histidine residue in electron transfer for iodide oxidation by horseradish peroxidase. Mol Cell Biochem 2001, 218: 1–11.
- 19 Taurog A, Dorris ML. Peroxidase-catalyzed bromination of tyrosine, thyroglobulin, and bovine serum albumin: comparison of thyroid peroxidase and lactoperoxidase. Arch Biochem Biophys 1991, 287: 288–296.
- 20 Harrison JE, Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 1976, 251: 1371–1374.
- 21 Thomas EL, Bozeman PM, Jefferson MM, King CC. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. J Biol Chem 1995, 270: 2906–2913.
- 22 Thomas EL, Fishman M. Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem 1986, 261: 9694–9702.
- 23 Rawitch AB, Taurog A, Chernoff SB, Dorris ML. Hog thyroid peroxidase: physical, chemical, and catalytic properties of the highly purified enzyme. Arch Biochem Biophys 1979, 194: 244–257.
- 24 Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, Da Silva JA et al. Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry 2001, 57: 633–642.
- 25 Messerschmidt A, Prade L, Wever R. Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. Biol Chem 1997, 378: 309–315.
- 26 Raugei S, Carloni P. Structure and function of vanadium haloperoxidases. J Phys Chem B 2006, 110: 3747–3758.
- 27
Keller S,
Wage T,
Hohaus K,
Hölzer M,
Eichhorn E,
Van Pée KH.
Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens.
Angew Chem Int Ed Engl
2000, 39: 2300–2302.
10.1002/1521-3773(20000703)39:13<2300::AID-ANIE2300>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 28 Dong C, Flecks S, Unversucht S, Haupt C, Van Pée KH, Naismith JH. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 2005, 309: 2216–2219.
- 29 Yeh E, Garneau S, Walsh CT. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc Natl Acad Sci USA 2005, 102: 3960–3965.
- 30 Zehner S, Kotzsch A, Bister B, Süssmuth RD, Méndez C, Salas JA, Van Pée KH. A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem Biol 2005, 12: 445–452.
- 31 Seibold C, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C, Wage T, Ernyei AJ et al. A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis. Biocatal Biotransform 2006, 24: 401–408.
- 32 Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 1999, 181: 2166–2174.
- 33 Wynands I, Van Pée KH. A novel halogenase gene from the pentachloropseudilin producer Actinoplanes sp. ATCC 33002 and detection of in vitro halogenase activity. FEMS Microbiol Lett 2004, 237: 363–367.
- 34 Van Pée KH, Patallo EP. Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol 2006, 70: 631–641.
- 35 Yeh E, Cole LJ, Barr EW, Bollinger JM, Ballou DP, Walsh CT. Flavin redox chemistry precedes substrate chlorination in the reaction of the flavin-dependent halogenase RebH. Biochemistry 2006, 45: 7904–7912.
- 36 Unversucht S, Hollmann F, Schmid A, Van Pée KH. FADH2-dependence of tryptophan 7-halogenase. Advanced Synthesis Catalysis 2005, 347: 1163–1167.
- 37 Yeh E, Blasiak LC, Koglin A, Drennan CL, Walsh CT. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 2007, 46: 1284–1292.
- 38 Nightingale ZD, Lancha AH, Handelman SK, Dolnikowski GG, Busse SC, Dratz EA, Blumberg JB et al. Relative reactivity of lysine and other peptide-bound amino acids to oxidation by hypochlorite. Free Radical Biol Med 2000, 29: 425–433.
- 39 Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radical Biol Med 2001, 30: 572–579.
- 40 Pattison, DI, Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 2001, 14: 1453–1464.
- 41 Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 2003, 25: 259–274.
- 42 Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT. Nature's inventory of halogenation catalysts: oxidative strategies predominate. Chem Rev 2006, 106: 3364–3378.
- 43 Naismith JH. Inferring the chemical mechanism from structures of enzymes. Chem Soc Rev 2006, 35: 763–770.
- 44 Dorrestein PC, Yeh E, Garneau-Tsodikova S, Kelleher NL, Walsh CT. Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc Natl Acad Sci USA 2005, 102: 13843–13848.
- 45 Bossemeyer D. The glycine-rich sequence of protein kinases: A multifunctional element. Trends Biochem Sci 1994, 19: 201–205.
- 46 Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, De Boy RT et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 2005, 23: 873–878.
- 47 Galoni DP, Vaillancourt FH, Walsh CT. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J Am Chem Soc 2006, 128: 3900–3901.
- 48 Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 2006, 440: 368–371.
- 49 Vaillancourt FH, Yin J, Walsh CT. SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. Proc Natl Acad Sci USA 2005, 102: 10111–10116.
- 50 Galonic DP, Barr EW, Walsh CT, Bollinger Jr JM, Krebs C. Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nat Chem Biol 2007, 3: 113–116.
- 51 Vaillancourt FH, Yeh E, Vosburg DA, O'Connor SE, Walsh CT. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 2005, 436: 1191–1194.
- 52 Parry RJ, Lin MT, Walker AE, Mhaskar S. The biosynthesis of coronatine: investigations of the biosynthesis of coronamic acid. J Am Chem Soc 1991, 113: 1849–1850.
- 53 Bender C, Palmer D, Penaloza-Vazquez A, Rangasswamy V, Ullrich M. Biosynthesis of coronatine, a thermoregulated phytotoxin produced by the phytopathogen Pseudomonas syringae. Arch Microbiol 1996, 166: 71–75.
- 54 Krebs C, Galonic Fujimori D, Walsh CT, Bollinger JM Jr. Nonheme Fe(IV)-oxo intermediates. Acc Chem Res 2007, 40: 484–492.
- 55 Schaffrath C, Deng H, O'Hagan D. Isolation and characterisation of 5′-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya. FEBS Lett 2003, 547: 111–114.
- 56 Huang FL, Haydock SF, Spiteller D, Mironenko T, Li T, Leadlay PF, O'Hagan D et al. Characterisation of a locus involved in fluorometabolite biosynthesis in Streptomyces cattleya. Chem Biol 2006, 13: 475–484.
- 57 Cobb SL, Deng H, Hamilton JT, McGlinchey RP, O'Hagan D. Identification of 5-fluoro-5-deoxy-D-ribose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya. Chem Commun 2004, 592–593.
- 58 O'Hagan D. Recent developments on the fluorinase from Streptomyces cattleya. J Fluorine Chem 2006, 127: 1479–1483.
- 59 Deng H, Cobb SL, McEwan A, McGlinchey RP, Naismith JH, O'Hagan D, Robinson DA et al. The fluorinase from Streptomyces cattleya is also a chlorinase. Angew Chem Int Ed Engl 2006, 45: 759–762.
- 60 Cadicamo CD, Courtieu J, Deng H, Meddour A, O'Hagan D. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism. Chembiochem 2004, 5: 685–690.
- 61 Ulber R, Protsch C, Solle D, Hitzmann B, Wilke B, Faurie R, Scheper T. Use of bioanalytical systems for the improvement of industrial tryptophan production. Chem Ing Technol 2001, 24: 15–17.
- 62 Muffler K, Retzlaff M, Van Pée KH, Ulber R. Optimisation of halogenase enzyme activity application of a genetic algorithm. J Biotechnol 2007, 127: 425–433.
- 63 Vankeerberghen P, Smeyers-Verbeke R, Leardi R, Karr CL, Massart DL. Robust regression and outlier detection for non-linear models using genetic algorithms. Chemometr Intell Lab 1995, 28: 73–87.
- 64 Sanchez C, Zhu L, Brana AF, Salas AP, Rohr J, Mendez C, Salas JA. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci USA 2005, 102: 461–466.
- 65 Hasegawa M, Yamada K, Nagahama Y, Somei M. The chemistry of indoles. Part 94. A novel methodology for preparing 5-chloro- and 5-bromotryptamines and tryptophans, and its application to the synthesis of (+/−)-bromochelonin B. Heterocycles 1999, 51: 2815–2821.
- 66 Müller D, Schlömann M, Reineke W. Maleylacetate reductases in chloroaromatic-degrading bacteria using the modified ortho pathway: comparison of catalytic properties. J Bacteriol 1996, 178: 298–300.