Computational Identification of Novel Family Members of MicroRNA Genes in Arabidopsis thaliana and Oryza sativa
Yang LI
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Search for more papers by this authorWei LI
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Search for more papers by this authorCorresponding Author
You-Xin JIN
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
*Corresponding author: Tel, 86-21-54921222; Fax, 86-21-54921011; E-mail, [email protected]Search for more papers by this authorYang LI
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Search for more papers by this authorWei LI
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Search for more papers by this authorCorresponding Author
You-Xin JIN
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
*Corresponding author: Tel, 86-21-54921222; Fax, 86-21-54921011; E-mail, [email protected]Search for more papers by this authorThis work was supported by the grants from the National Natural Science Foundation of China (No. 30430210) and the Chinese Academy of Sciences (No. KSCX-2-2-04)
Abstract
Abstract MicroRNAs (miRNAs) are a class of endogenous small RNAs that play important regulatory roles in both animals and plants. miRNA genes have been intensively studied in animals, but not in plants. In this study, we adopted a homology search approach to identify homologs of previously validated plant miRNAs in Arabidopsis thaliana and Oryza sativa. We identified 20 potential miRNA genes in Arabidopsis and 40 in O. sativa, providing a relatively complete enumeration of family members for these miRNAs in plants. In addition, a greater number of Arabidopsis miRNAs (MIR168, MIR159 and MIR172) were found to be conserved in rice. With the novel homologs, most of the miRNAs have closely related fellow miRNAs and the number of paralogs varies in the different miRNA families. Moreover, a probable functional segment highly conserved on the elongated stem of pre-miRNA fold-backs of MIR319 and MIR159 family was identified. These results support a model of variegated miRNA regulation in plants, in which miRNAs with different functional elements on their pre-miRNA fold-backs can differ in their function or regulation, and closely related miRNAs can be diverse in their specificity or competence to downregulate target genes. It appears that the sophisticated regulation of miRNAs can achieve complex biological effects through qualitative and quantitative modulation of gene expression profiles in plants.
Edited by Liang-Hu QU
References
- 1 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543): 853–858.DOI: 10.1126/science.1064921
- 2 Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543): 858–862.DOI: 10.1126/science.1065062
- 3 Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294(5543): 862–864.DOI: 10.1126/science.1065329
- 4 Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev, 2002, 16(13): 1616–1626.DOI: 10.1101/gad.1004402
- 5 Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell, 2002 14(7): 1605–1619.DOI: 10.1105/tpc.003210
- 6 Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002, 12(17): 1484–1495.DOI: 10.1016/S0960-9822(02)01017-5
- 7 Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J, 2002, 21(17): 4663–4670.DOI: 10.1093/emboj/cdf476
- 8 Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956): 415–419.DOI: 10.1038/nature01957
- 9 Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363–366.
- 10 Hutvagner G, Mclachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293(5531): 834–838.DOI: 10.1126/science.1062961
- 11 Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 2001, 106(1): 23–34.
- 12 Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 2001 15(20): 2654–2659.DOI: 10.1101/gad.927801
- 13 Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J et al. miRNPs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 2002, 16(6): 720–728.DOI: 10.1101/gad.974702
- 14 Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA, 2003, 9(2): 180–186.DOI: 10.1261/rna.2141503
- 15 Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 1999, 216(2): 671–680.DOI: 10.1006/dbio.1999.9523
- 16 Seggerson K, Tang L, Moss EG. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol, 2002, 243(2): 215–225.DOI: 10.1006/dbio.2001.0563
- 17 Llave C, Xie ZX, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002, 297(5589): 2053–2056.DOI: 10.1126/science.1076311
- 18 Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell, 2003, 4(2): 205–217.DOI: 10.1016/S1534-5807(03)00025-X
- 19 Tang GL, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes Dev, 2003, 17(1): 49–63.DOI: 10.1101/gad.1048103
- 20 Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science, 2003, 301(5631): 336–338.
- 21 Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z. The microRNA world: small is mighty. Trends Biochem Sci, 2003, 28: 534–540.DOI: 10.1016/j.tibs.2003.08.005
- 22 Banerjee D, Slack F. Control of developmental timing by small temporal RNAs: A paradigm for RNA-mediated regulation of gene expression. Bioessays, 2002, 24(2): 119–129.
- 23 Pasquinelli AE, Ruvkun G. Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol, 2002, 18: 495–513.DOI: 10.1146/annurev.cellbio.18.012502.105832
- 24 Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25–36.
- 25 Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 2003, 13(9): 790–795.DOI: 10.1016/S0960-9822(03)00250-1
- 26 Johnston, RJ Jr, Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 2003, 426(6968): 845–849.DOI: 10.1038/nature02255
- 27 Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425(6955): 257–263.DOI: 10.1038/nature01958
- 28 Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022–2025.
- 29 Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003, 15(11): 2730–2741.DOI: 10.1105/tpc.016238
- 30 Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99(24): 15524–15529.
- 31 Michael MZ, O'Connor SM, van Holst Pellekaan, NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 2003, 1(12): 882–891.
- 32 Caudy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev, 2002, 16(19): 2491–2496.
- 33 Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513–520.
- 34 Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol, 2003 5(1): R1.DOI: 10.1186/gb-2003-5-1-r1
- 35 Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell, 2003, 115(7): 787–798.
- 36 Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila microRNA targets. PloS Biol, 2003, 1(3): E60.
- 37 Mette, MF, van der Winden, J, Matzke M, Matzke AJM. Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol, 2002, 130(1): 6–9.DOI: 10.1104/pp.007047
- 38 Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002, 12(9): 735–739.DOI: 10.1016/S0960-9822(02)00809-6
- 39 Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA, 2003, 9(2): 175–179.DOI: 10.1261/rna.2146903
- 40 Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science, 2003, 299(5612): 1540.DOI: 10.1126/science.1080372
- 41 Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB et al. The microRNAs of Caenorhabditis elegans. Genes Dev, 2003, 17(8): 991–1008.DOI: 10.1101/gad.1074403
- 42 Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J. Computational and experimental identification of C. elegans microRNAs. Mol Cell, 2003, 11(5): 1253–1263.DOI: 10.1016/S1097-2765(03)00153-9
- 43 Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol, 2003, 13(10): 807–818.DOI: 10.1016/S0960-9822(03)00287-2
- 44 Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell, 2003, 5(2): 351–358.DOI: 10.1016/S1534-5807(03)00227-2
- 45 Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biol, 2003, 4(7): R42.DOI: 10.1186/gb-2003-4-7-r42
- 46 Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B et al. The small RNA profile during Drosophila melanogaster development. Dev Cell, 2003, 5(2): 337–350.DOI: 10.1016/S1534-5807(03)00228-4
- 47 Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev, 2001, 15(2): 188–200.DOI: 10.1101/gad.862301
- 48 Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res, 2004 32: D109–D111.DOI: 10.1093/nar/gkh023
- 49 Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31(13): 3406–3415.DOI: 10.1093/nar/gkg595
- 50 Sakata K, Nagamura Y, Numa H, Antonio BA, Nagasaki H, Idonuma A, Watanabe W et al. RiceGAAS: An automated annotation system and database for rice genome sequence. Nucleic Acids Res, 2002, 30(1): 98–102.DOI: 10.1093/nar/30.1.98
- 51 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22(22): 4673–4680.
- 52 Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G et al. A uniform system for microRNA annotation. RNA, 2003, 9(3): 277–279.DOI: 10.1261/rna.2183803
- 53 Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589): 2056–2060.DOI: 10.1126/science.1073827
- 54 Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 2001, 20(23): 6877–6888.DOI: 10.1093/emboj/20.23.6877
- 55 Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297.
- 56 Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115(2): 199–208.
- 57 Johnson SM, Lin SY, Slack FJ. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol, 2003, 259(2): 364–379.DOI: 10.1016/S0012-1606(03)00202-1
- 58 Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicerlike1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 2003, 13(9): 784–789.DOI: 10.1016/S0960-9822(03)00281-1
- 59 Hake S. MicroRNAs: A role in plant development. Curr Biol, 2003, 13 (21): R851–R852.DOI: 10.1016/j.cub.2003.10.021
- 60 Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, 426(6963): 147–153.DOI: 10.1038/nature02085
- 61 Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14(6): 787–799.DOI: 10.1016/j.molcel.2004.05.027
- 62 Wang XJ, Reyes JL, Chua NH, Gaasterland T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 2004, 5(9): R65.DOI: 10.1186/gb-2004-5-9-r65
- 63 Bonnet E, Wuyts J, Rouze, P, van de Peer, Y. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 2004, 101(31): 11511–11516.
- 64 Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001–2019.DOI: 10.1105/tpc.104.022830