DeoT, a DeoR-type transcriptional regulator of multiple target genes
Maya Elgrably-Weiss
* These authors contributed equally to this work.
Search for more papers by this authorEliana Schlosser-Silverman
* These authors contributed equally to this work.
Search for more papers by this authorIlan Rosenshine
Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
Search for more papers by this authorShoshy Altuvia
Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
Search for more papers by this authorMaya Elgrably-Weiss
* These authors contributed equally to this work.
Search for more papers by this authorEliana Schlosser-Silverman
* These authors contributed equally to this work.
Search for more papers by this authorIlan Rosenshine
Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
Search for more papers by this authorShoshy Altuvia
Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
Search for more papers by this authorEditor: Marco Soria
Abstract
In this study, we investigated the genetic organization and function of Escherichia coli yciT, a gene predicted by computational methods to belong to the DeoR-type family of transcriptional regulators. We show that transcription of yciT (here denoted deoT for deoR-Type) initiates from a promoter located upstream of a putative open reading frame (denoted deoL for deoT Leader). We also show that DeoT acts as a global regulator, repressing the expression of a number of genes involved in a variety of metabolic pathways including transport of maltose, fatty acid β-oxidation and peptide degradation.
References
- Altuvia S, Weinstein-Fischer D, Zhang A, Postow L & Storz G (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90: 43 – 53.
- Amouyal M, Mortensen L, Buc H & Hammer K (1989) Single and double loop formation when deoR repressor binds to its natural operator sites. Cell 58: 545 – 551.
- Bally M, Foglino M, Bruschi M, Murgier M & Lazdunski A (1986) Nucleotide sequence of the promoter and amino-terminal encoding region of the Escherichia colipepN gene. Eur J Biochem 155: 565 – 569.
- Barriere C, Veiga-da-Cunha M, Pons N, Guedon E, Van Hijum SA, Kok J, Kuipers OP, Ehrlich DS & Renault P (2005) Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. J Bacteriol 187: 3752 – 3761.
- Beck von Bodman S, Hayman GT & Farrand SK (1992) Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc Natl Acad Sci USA 89: 643 – 647.
- Boos W & Bohm A (2000) Learning new tricks from an old dog: MalT of the Escherichia coli maltose system is part of a complex regulatory network. Trends Genet 16: 404 – 409.
- Boos W & Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62: 204 – 229.
- Bremer E, Silhavy TJ & Weinstock GM (1985) Transposable lambda placMu bacteriophages for creating lacZ operon fusions and kanamycin resistance insertions in Escherichia coli. J Bacteriol 162: 1092 – 1099.
- Brosius J & Holy A (1984) Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci USA 81: 6929 – 6933.
- Campos E, Baldoma L, Aguilar J & Badia J (2004) Regulation of expression of the divergent ulaG and ulaABCDEF operons involved in LaAscorbate dissimilation in Escherichia coli. J Bacteriol 186: 1720 – 1728.
- Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640 – 6645.
- Farewell A, Diez AA, DiRusso CC & Nystrom T (1996) Role of the Escherichia coli FadR regulator in stasis survival and growth phase-dependent expression of the uspA, fad, and fab genes. J Bacteriol 178: 6443 – 6450.
- Haine V, Sinon A, Van Steen F, Rousseau S, Dozot M, Lestrate P, Lambert C, Letesson JJ & De Bolle X (2005) Systematic targeted mutagenesis of Brucella melitensis -16 M reveals a major role for GntR regulators in the control of virulence. Infect Immun 73: 5578 – 5586.
- Hooper LV, Xu J, Falk PG, Midtvedt T & Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96: 9833 – 9838.
- Karlinsey JE, Pease AJ, Winkler ME, Bailey JL & Hughes KT (1997) The flk gene of Salmonella typhimurium couples flagellar P- and L-ring assembly to flagellar morphogenesis. J Bacteriol 179: 2389 – 2400.
- Larson TJ, Cantwell JS & Van Loo-Bhattacharya AT (1992) Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12. J Biol Chem 267: 6114 – 6121.
- Lu Z & Lin EC (1989) The nucleotide sequence of Escherichia coli genes for l-fucose dissimilation. Nucleic Acids Res 17: 4883 – 4884.
- Maloy RS, Stewart VJ & Taylor RK (1996) Genetic Analysis of Pathogenic Bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Maurer LM, Yohannes E, Bondurant SS, Radmacher M & Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187: 304 – 319.
- Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Mortensen L, Dandanell G & Hammer K (1989) Purification and characterization of the deoR repressor of Escherichia coli. EMBO J 8: 325 – 331.
- Perez-Rueda E & Collado-Vides J (2000) The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 28: 1838 – 1847.
- Pomposiello PJ, Bennik MH & Demple B (2001) Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183: 3890 – 3902.
- Ramos-Aires J, Plesiat P, Kocjancic-Curty L & Kohler T (2004) Selection of an antibiotic-hypersusceptible mutant of Pseudomonas aeruginosa: identification of the GlmR transcriptional regulator. Antimicrob Agents Chemother 48: 843 – 851.
- Reizer J, Ramseier TM, Reizer A, Charbit A & Saier MH Jr (1996) Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142: (Part 2): 231 – 250.
- Van Rooijen RJ & De Vos WM (1990) Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J Biol Chem 265: 18499 – 18503.
- Roth WG, Leckie MP & Dietzler DN (1985) Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. Biochem Biophys Res Commun 126: 434 – 441.
- Roy RN, Mukhopadhyay S, Wei LI & Schellhorn HE (1995) Isolation and sequencing of gene fusions carried by lambda placMu specialized transducing phage. Nucleic Acids Res 23: 3076 – 3078.
- Schlegel A, Bohm A, Lee SJ, Peist R, Decker K & Boos W (2002) Network regulation of the Escherichia coli maltose system. J Mol Microbiol Biotechnol 4: 301 – 307.
- Schlosser-Silverman E, Elgrably-Weiss M, Rosenshine I, Kohen R & Altuvia S (2000) Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J Bacteriol 182: 5225 – 5230.
- Silhavy TJ, Berman ML & Enquist LW (1984) Experiments with Gene Fusions. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Valentin-Hansen P, Hojrup P & Short S (1985) The primary structure of the DeoR repressor from Escherichia coli K-12. Nucleic Acids Res 13: 5927 – 5936.
- Weber A & Jung K (2002) Profiling early osmostress-dependent gene expression in Escherichia coli using DNA macroarrays. J Bacteriol 184: 5502 – 5507.
- Yamada M & Saier MH Jr (1988) Positive and negative regulators for glucitol (gut) operon expression in Escherichia coli. J Mol Biol 203: 569 – 583.
- Yang B & Larson TJ (1996) Action at a distance for negative control of transcription of the glpD gene encoding sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 178: 7090 – 7098.
- Yoshida K, Seki S, Fujimura M, Miwa Y & Fujita Y (1995) Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons. DNA Res 2: 61 – 69.
- Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG & Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978 – 5983.
- Zeng G, Ye S & Larson TJ (1996) Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. J Bacteriol 178: 7080 – 7089.