Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data
Corresponding Author
Ying Yuan
Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, U.S.A.
email: [email protected]Search for more papers by this authorGuosheng Yin
Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, U.S.A.
Search for more papers by this authorCorresponding Author
Ying Yuan
Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, U.S.A.
email: [email protected]Search for more papers by this authorGuosheng Yin
Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, U.S.A.
Search for more papers by this authorAbstract
Summary We study quantile regression (QR) for longitudinal measurements with nonignorable intermittent missing data and dropout. Compared to conventional mean regression, quantile regression can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We account for the within-subject correlation by introducing a ℓ2 penalty in the usual QR check function to shrink the subject-specific intercepts and slopes toward the common population values. The informative missing data are assumed to be related to the longitudinal outcome process through the shared latent random effects. We assess the performance of the proposed method using simulation studies, and illustrate it with data from a pediatric AIDS clinical trial.
References
- Brady, M. T., McGrath, N., Brouwers, P., Gelber, R., Fowler, M. G., Yogev, R., Hutton, N., Bryson, Y. J., Mitchell, C. D., Fikrig, S., Borkowsky, W., Jimenez, E., McSherry, G., Rubenstein, A., Wilfert, C. M., McIntosh, K., Elkins, M. M., Weintrub, P. S., and the Pediatric AIDS Clinical Trials Group. (1996). Randomized study of the tolerance and efficacy of high- versus low-dose zidovudine in human immunodeficiency virus-infected children with mild to moderate symptoms (ACTG 128). Journal of Infectious Disease 173, 1097–1106.
- Cole, T. J. and Green, P. J. (1992). Smoothing reference centile curves: The LMS method and penalized likelihood. Statistics in Medicine 11, 1305–1319.
- De Gruttola, V. and Tu, X. M. (1994). Modelling progression of CD4- lymphocyte count and its relationship to survival time. Biometrics 50, 1003–1014.
- Diggle, P. and Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics 43, 49–73.
- Follman, D. and Wu, M. C. (1995). An approximate generalized linear model with random effects for informative missing data. Biometrics 51, 151–168.
- Geraci, M. and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154.
-
Gelman, A. and
Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.
Statistical Science
7, 457–472.
10.1214/ss/1177011136 Google Scholar
- Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). Adaptive rejection metropolis sampling. Applied Statistics 44, 455–472.
- Heagerty, P. J. and Pepe, M. S. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Journal of the Royal Statistical Society, Series C 48, 533–551.
-
Hogan, J. W. and
Laird, N. M. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data.
Statistics in Medicine
16, 259–272.
10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- Hogan, J. W., Roy J., and Korkontzelou C. (2004). Biostatistics tutorial: Handling drop-out in longitudinal studies. Statistics in Medicine 23, 1455–1497.
- Jung, S. (1996). Quasi-likelihood for median regression models. Journal of the American Statistical Association 91, 251–257.
- Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis 91, 74–89.
- Koenker, R. (2005). Quantile Regression. New York : Cambridge University Press.
- Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46, 33–50.
- Koenker, R. and Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association 94, 1296–1310.
- Lipsitz, S. R., Fitzmaurice, G. M., Molenberghs, G., and Zhao, L. P. (1997). Quantile regression methods for longitudinal data with drop-outs: Application to CD4 cell counts of patients infected with the human immunodeficiency virus. Journal of the Royal Statistical Society, Series C 46, 463–476.
- Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125–134.
- Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112–1121.
-
Little, R. J. A. (2008). Selection and pattern-mixture models. In
Advances in Longitudinal Data Analysis, G. Fitzmaurice,
M. Davidian,
G. Verbeke, and
G. Molenberghs (eds).
London
: CRC Press.
10.1201/9781420011579.ch18 Google Scholar
-
Molenberghs, G. and
Kenward, M. G. (2007). Missing Data in Clinical Studies.
New York
: Wiley.
10.1002/9780470510445 Google Scholar
- Molenberghs, G., Beunckens, C., Sotto C., and Kenward M. G. (2008). Every missingness not at random model has a missingness at random counterpart with equal fit. Journal of the Royal Statistical Society, Series B 70, 371–388.
- Pulkstenis, E., Ten Have, T. R., and Landis, J. R. (1998). Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication. Journal of the American Statistical Association 93, 438–450.
- Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika 95, 63–74.
-
Ruppert, D.,
Wand, M. P., and
Carroll, R. J. (2003). Semiparametric Regression.
New York
: Cambridge University Press.
10.1017/CBO9780511755453 Google Scholar
- Ten Have, T. R., Kunselman, A., Pulkstenis, E., and Landis, J. R. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative dropout. Biometrics 54, 367–383.
- Verbeke G. and Molenberghs G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag.
- Welham S. J. (2008). Smoothing spline models for longitudinal data. In Longitudinal Data Analysis, G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs (eds). London : CRC Press.
- Wu, M. C. and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model. Biometrics 45, 939–955.
- Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175–188.
- Yu, K. and Moyeed, R. A. (2001). Bayesian quantile regression. Statistics and Probability Letters 54, 437–447.
- Yu, K. and Stander, J. (2007). Bayesian analysis of a Tobit quantile regression model. Journal of Econometrics 137, 260–276.