Inhibition of Persistent Sodium Current Fraction and Voltage-gated L-type Calcium Current by Propofol in Cortical Neurons: Implications for Its Antiepileptic Activity
Giuseppina Martella
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Search for more papers by this authorSilvia Natoli
Istituto di Anestesia e Rianimazione, Università di Roma “Tor Vergata,” Rome, Italy
Search for more papers by this authorDario Cuomo
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Search for more papers by this authorGiorgio Bernardi
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Fondazione Santa Lucia, I.R.C.C.S.
Search for more papers by this authorPaolo Calabresi
Fondazione Santa Lucia, I.R.C.C.S.
Clinica Neurologica, Università di Perugia, Perugia, Italy
Search for more papers by this authorAntonio Pisani
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Fondazione Santa Lucia, I.R.C.C.S.
Search for more papers by this authorGiuseppina Martella
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Search for more papers by this authorSilvia Natoli
Istituto di Anestesia e Rianimazione, Università di Roma “Tor Vergata,” Rome, Italy
Search for more papers by this authorDario Cuomo
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Search for more papers by this authorGiorgio Bernardi
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Fondazione Santa Lucia, I.R.C.C.S.
Search for more papers by this authorPaolo Calabresi
Fondazione Santa Lucia, I.R.C.C.S.
Clinica Neurologica, Università di Perugia, Perugia, Italy
Search for more papers by this authorAntonio Pisani
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”
Fondazione Santa Lucia, I.R.C.C.S.
Search for more papers by this authorAbstract
Summary: Purpose: Although it is widely used in clinical practice, the mechanisms of action of 2,6-di-isopropylphenol (propofol) are not completely understood. We examined the electrophysiologic effects of propofol on an in vitro model of epileptic activity obtained from a slice preparation.
Methods: The effects of propofol were tested both on membrane properties and on epileptiform events consisting of long-lasting, paroxysmal depolarization shifts (PDSs) induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine.These results were integrated with a patch-clamp analysis of Na+ and high-voltage activated (HVA) calcium (Ca2+) currents from isolated cortical neurons.
Results: In bicuculline, to avoid any interference by γ-aminobutyric acid (GABA)-A receptors, propofol (3–100 μM) did not cause significant changes in the current-evoked, sodium (Na+)-dependent action-potential discharge. However, propofol reduced both the duration and the number of spikes of PDSs recorded from cortical neurons. Interestingly, relatively low concentrations of propofol [half-maximal inhibitory concentration (IC50), 3.9 μM) consistently inhibited the “persistent” fraction of Na+ currents, whereas even high doses (≤300 μM) had negligible effects on the “fast” component of Na+ currents. HVA Ca2+ currents were significantly reduced by propofol, and the pharmacologic analysis of this effect showed that propofol selectively reduced L-type HVA Ca2+ currents, without affecting N or P/Q-type channels.
Conclusions: These results suggest that propofol modulates neuronal excitability by selectively suppressing persistent Na+ currents and L-type HVA Ca2+ conductances in cortical neurons. These effects might cooperate with the opening of GABA-A–gated chloride channels, to achieve depression of cortical activity during both anesthesia and status epilepticus.
REFERENCES
- 1 MacIver MB. General anesthetic action on transmission at glutamate and GABA synapses. In: JF Biebuyck, CIII Lynch, M Maze, eds. Anesthesia: biological foundations. New York : Lippincott-Raven, 1997: 277–86.
- 2 Todorovic SM, Perez-Reyes E, Lingle CJ. Anticonvulsants but not general anesthetics have differential blocking effects on different T-type current variants. Mol Pharmacol 2000; 58: 98–108.
- 3 Ragsdale DS, Avoli M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res Brain Res Rev 1998; 26: 16–28.DOI: 10.1016/S0165-0173(97)00054-4
- 4 Calabresi P, Centonze D, Marfia GA, et al. An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons. Br J Pharmacol 1999; 126: 689–96.
- 5 Calabresi P, Cupini LM, Centonze D, et al. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann Neurol 2003; 53: 693–702.
- 6 Yamakura T, Bertaccini E, Trudell JR, et al. Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol 2001; 41: 23–51.DOI: 10.1146/annurev.pharmtox.41.1.23
- 7 Lingamaneni R, Hemmings HCJr. Differential interaction of anaesthetics and antiepileptic drugs with neuronal Na+ channels, Ca2+ channels, and GABA(A) receptors. Br J Anaesth 2003; 90: 199–211.DOI: 10.1093/bja/aeg040
- 8 Segal MM, Douglas AF. Late sodium channel openings underlying epileptiform activity are preferentially diminished by the anticonvulsant phenytoin. J Neurophysiol 1997; 77: 3021–34.
- 9 Taverna S, Mantegazza M, Franceschetti S, et al. Violate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 1998; 32: 304–8.DOI: 10.1016/S0920-1211(98)00060-6
- 10 Taverna S, Sancini G, Mantegazza M, et al. Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J Pharmacol Exp Ther 1999; 288: 960–8.
- 11 Spadoni F, Hainsworth AH, Mercuri NB, et al. Lamotrigine derivatives and riluzole inhibit INa,P in cortical neurons. Neuroreport 2002; 13: 1167–70.DOI: 10.1097/00001756-200207020-00019
- 12 Badea T, Goldberg J, Mao B, Yuste R. Calcium imaging of epileptiform events with single-cell resolution. J Neurobiol 2001; 48: 215–27.
- 13 Avanzini G, Franceschetti S. Cellular biology of epileptogenesis. Lancet Neurol 2003; 2: 33–42.DOI: 10.1016/S1474-4422(03)00265-5
- 14 Pisani A, Bonsi P, Martella G, et al. Intracellular calcium rise in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 2004; 45: 1–10.
- 15 Modica PA, Tempelhoff R, White PF. Pro- and anticonvulsant effects of anesthetics (Part I). Anesth Analg 1990; 70: 303–15.
- 16 Fulton B, Sorkin EM. Propofol: an overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs 1995; 50: 636–57.
- 17 Brown LA, Levin GM. Role of propofol in refractory status epilepticus. Ann Pharmacother 1998; 32: 1053–9.
- 18 Hirsch NP, Smith M. Review of the evidence for the use of propofol in the management of status epilepticus. J Neurol 2003; 250: 1241.DOI: 10.1007/s00415-003-0181-6
- 19 Hara M, Kai Y, Ikemoto Y. Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurons of the rat. Anesthesiology 1993; 79: 781–8.
- 20 Orser BA, Wang LY, Pennefather PS, et al. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci 1994; 14: 7747–60.
- 21 Bieda MC, MacIver MB. A major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability. J Neurophysiol 2004; 92: 1658–67.
- 22 Rehberg B, Duch DS. Suppression of central nervous system sodium channels by propofol. Anesthesiology 1999; 91: 512–20.DOI: 10.1097/00000542-199908000-00026
- 23 Connors B. Initiation of synchronized neuronal bursting in neocortex. Nature 1984; 310: 685–7.
- 24 Matsumoto H, Marsan CA. Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neurol 1964; 25: 305–26.DOI: 10.1016/0014-4886(64)90026-3
- 25 Prince DA. Physiological mechanisms of focal epileptogenesis. Epilepsia 1985; 26(suppl 1): S3–14.
- 26 Siniscalchi A, Calabresi P, Mercuri NB, et al. Epileptiform discharge induced by 4-aminopyridine in magnesium-free medium in neocortical neurons: physiological and pharmacological characterization. Neuroscience 1997; 81: 189–97.DOI: 10.1016/S0306-4522(97)00178-4
- 27 Pisani A, Calabresi P, Tozzi A, et al. Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons. Eur J Neurosci 1998; 10: 3572–4.DOI: 10.1046/j.1460-9568.1998.00398.x
- 28 Connors BW. Initiation of synchronized neuronal bursting in neocortex. Nature 1984; 310: 685–7.
- 29 Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurol Sci 1990; 13: 99–104.
- 30 Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996; 58: 299–327.DOI: 10.1146/annurev.ph.58.030196.001503
- 31 Schwindt P, O'Brien JA, Crill W. Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat sensorimotor cortex. J Neurophysiol 1997; 77: 2484–98.
- 32 Berger T, Larkum ME, Lüscher H-R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol 2001; 85: 855–68.
- 33 Avanzini G, Franceschetti S. Cellular biology of epileptogenesis. Lancet Neurol 2003; 2: 33–42.DOI: 10.1016/S1474-4422(03)00265-5
- 34 Zhang ZW. Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. J Neurophysiol 2004; 91: 1171–82.DOI: 10.1152/jn.00855.2003
- 35 Ulrich D. Differential arithmetic of shunting inhibition for voltage and spike rate in neocortical pyramidal cells. Eur J Neurosci 2003; 18: 2159–65.DOI: 10.1046/j.1460-9568.2003.02942.x
- 36 Franceschetti S, Guatteo E, Panzica F, et al. Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex. Brain Res 1995; 696: 127–39.DOI: 10.1016/0006-8993(95)00807-3
- 37 Crill WE. Persistent sodium current in mammalian central neurons. Annu Rev Physiol 1996; 58: 349–62.
- 38 Segal MM. Endogenous bursts underlie seizure-like activity in solitary excitatory hippocampal neurons in microcultures. J Neurophysiol 1994; 72: 1874–84.
- 39 Matsuki N, Quandt FN, Tan Eick RE, et al. Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Ther 1984; 228: 523–30.
- 40 Willow M, Gonoi T, Catterall WA. Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 1985; 27: 549–58.
- 41 Niespodziany I, Klitgaard H, Margineanu DG. Is the persistent sodium current a specific target of anti-absence drugs? Neuroreport 2004; 15: 1049–52.DOI: 10.1097/00001756-200404290-00023
- 42 Frenkel C, Urban BW. Human brain sodium channels as one of the molecular target sites for the new intravenous anaesthetic propofol (2,6-diisopropylphenol). Eur J Pharmacol 1991; 208: 75–9.DOI: 10.1016/0922-4106(91)90054-L
- 43 McEnery MW, Vance CL, Begg CM, et al. Differential expression and association of calcium channel subunits in development and disease. J Bioenerg Biomembr 1998; 30: 409–18.DOI: 10.1023/A:1021997924473
- 44 Stefani A, Spadoni F, Siniscalchi A, et al. Lamotrigine inhibits Ca2+ currents in cortical neurons: functional implications. Eur J Pharmacol 1996; 307: 113–6.DOI: 10.1016/0014-2999(96)00265-8
- 45 Stefani A, Spadoni F, Giacomini P, et al. The effects of gabapentin on different ligand- and voltage-gated currents in isolated cortical neurons. Epilepsy Res 2001; 43: 239–48.DOI: 10.1016/S0920-1211(00)00201-1
- 46 Guertin PA, Hounsgaard J. Non-volatile general anaesthetics reduce spinal activity by suppressing plateau potentials. Neuroscience 1999; 88: 353–8.DOI: 10.1016/S0306-4522(98)00371-6
- 47 Inoue Y, Shibuya I, Kabashima N, et al. The mechanism of inhibitory actions of propofol on rat supraoptic neurons. Anesthesiology 1999; 91: 167–78.DOI: 10.1097/00000542-199907000-00025
- 48 Schwindt PC, Spain WJ, Crill WE. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J Neurophysiol 1992; 67: 216–26.
- 49 Villalobos C, Shakkottai VG, Chandy KG, et al. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J Neurosci 2004; 24: 3537–42.DOI: 10.1523/JNEUROSCI.0380-04.2004
- 50 Franceschetti S, Lavazza T, Curia G, et al. Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons. J Neurophysiol 2003; 89: 2101–11.
- 51 Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367: 607–14.DOI: 10.1038/367607a0
- 52 Servin F, Desmonts JM, Haberer JP, et al. Pharmacodynamics and protein binding of propofol in patients with cirrhosis. Anesthesiology 1988; 69: 887–91.
- 53 Shyr MH, Tsai TH, Tan PP, et al. Concentration and regional distribution of propofol in brain and spinal cord during propofol anesthesia in the rat. Neurosci Lett 1995; 184: 212–5.DOI: 10.1016/0304-3940(94)11209-2