Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies
Chun-Hong Zhu
Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
Search for more papers by this authorVincent Mouly
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorRacquel N. Cooper
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorKamel Mamchaoui
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorAnne Bigot
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorJerry W. Shay
Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
Search for more papers by this authorJames P. Di Santo
Unite des Cytokines et Développement Lymphoide, INSERM Unite 668, Institut Pasteur, 25 Rue du Docteur Roux, Cedex 15 Paris, France
Search for more papers by this authorGillian S. Butler-Browne
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorWoodring E. Wright
Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
Search for more papers by this authorChun-Hong Zhu
Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
Search for more papers by this authorVincent Mouly
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorRacquel N. Cooper
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorKamel Mamchaoui
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorAnne Bigot
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorJerry W. Shay
Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
Search for more papers by this authorJames P. Di Santo
Unite des Cytokines et Développement Lymphoide, INSERM Unite 668, Institut Pasteur, 25 Rue du Docteur Roux, Cedex 15 Paris, France
Search for more papers by this authorGillian S. Butler-Browne
UMR S 787 (INSERM & UPMC), Institut de Myologie, Faculté de Médecine Pierre et Marie Curie, 105 bd de l’Hôpital, 75634 Paris Cedex 13, France
Search for more papers by this authorWoodring E. Wright
Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
Search for more papers by this authorChun-Hong Zhu and Vincent Mouly contributed equally to this paper.
Summary
Cultured human myoblasts fail to immortalize following the introduction of telomerase. The availability of an immortalization protocol for normal human myoblasts would allow one to isolate cellular models from various neuromuscular diseases, thus opening the possibility to develop and test novel therapeutic strategies. The parameters limiting the efficacy of myoblast transfer therapy (MTT) could be assessed in such models. Finally, the presence of an unlimited number of cell divisions, and thus the ability to clone cells after experimental manipulations, reduces the risks of insertional mutagenesis by many orders of magnitude. This opportunity for genetic modification provides an approach for creating a universal donor that has been altered to be more therapeutically useful than its normal counterpart. It can be engineered to function under conditions of chronic damage (which are very different than the massive regeneration conditions that recapitulate normal development), and to overcome the biological problems such as cell death and failure to proliferate and migrate that limit current MTT strategies. We describe here the production and characterization of a human myogenic cell line, LHCN-M2, that has overcome replicative aging due to the expression of telomerase and cyclin-dependent kinase 4. We demonstrate that it functions as well as young myoblasts in xenotransplant experiments in immunocompromized mice under conditions of regeneration following muscle damage.
References
- Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio P, Amati P (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J. Cell Biol. 137, 1057–1068.
- Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc. Natl Acad. Sci. USA 95, 15603–15607.
- Beauchamp J, Morgan J, Pagel C, Partridge T (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol. 144, 1113–1122.
- Blackburn EH (1990) Telomeres and their synthesis. Science 249, 489–490.
- Blau HM, Webster C, Chiu CP, Guttman S, Chandler F (1983) Differentiation properties of pure populations of human dystrophic muscle cells. Exp. Cell Res. 144, 495–503.
- Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of lifespan in normal human cells by telomerase. Science 279, 349–352.
- Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N (2001) HLA-G: a shield against inflammatory aggression. Trends Immunol. 22, 553–555.
- Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301.
- Cooper RN, Irintchev A, Di Santo JP, Zweyer M, Morgan JE, Partridge TA, Butler-Browne GS, Mouly V, Wernig A (2001) A new immunodeficient mouse model for human myoblast transplantation. Hum. Gene Ther. 12, 823–831.
- Cooper RN, Thiesson D, Furling D, Di Santo JP, Butler-Browne GS, Mouly V (2003) Extended amplification in vitro and replicative senescence: key factors implicated in the success of human myoblast transplantation. Hum. Gene Ther. 14, 1169–1179.
- Cudré-Mauroux C, Occhiodoro T, König S, Salmon P, Bernheim L, Trono D (2003) Lentivector-mediated transfer of Bmi-1 and telomerase in muscle satellite cells yields a Duchenne myoblast cell line with long-term genotypic and phenotypic stability. Hum. Gene Ther. 14, 1525–1533.
- Decary S, Ben Hamida C, Mouly V, Barbet JP, Hentati F, Butler-Browne GS (2000) Shorter telomeres in dystrophic musle consistent with excessive regeneration in young children. Neurom. Dis. 10, 113–120.
- Decary S, Mouly V, Ben Hamida C, Sautet A, Barbet JP, Butler-Browne GS (1997) Replicative potential and telomere length in human skeletal muscle: implicatons for satellite cell-mediated gene therapy. Hum. Gene Ther. 8, 1429–1438.
- Di Donna S, Mamchaoui K, Cooper RN, Seigneurin-Venin S, Tremblay J, Butler-Browne GS, Mouly V (2003) Telomerase can extend the proliferative capacity of human myoblasts, but does not lead to their immortalization. Mol Cancer Res. 1, 643–653.
- Finley JC, Reid BJ, Odze RD, Sanchez CA, Galipeau P, Li X, Self SG, Gollahon KA, Blount PL, Rabinovitch PS (2006) Chromosomal instability in Barrett's esophagus is related to telomere shortening. Cancer Epidemiol. Biomarkers Prev. 15, 1451–1457.
- Forsyth NR, Evans AP, Shay JW, Wright WE (2003) Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2, 235–243.
- Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim. Biophys. Acta 1402, 39–51.
- Giorgino F, Smith RJ (1995) Dexamethasone enhances insulin-like growth factor-I effects on skeletal muscle cell proliferation. Role of specific intracellular signaling pathways. J. Clin. Invest. 96, 1473–1483.
- Hashimoto N, Kiyono T, Wada MR, Shimizu S, Yasumoto S, Inagawa M (2006) Immortalization of human myogenic progenitor cell clone retaining multipotentiality. Biochem. Biophys. Res. Commun. 348, 1383–1388.
- Heslop L, Morgan JE, Partridge TA (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J. Cell Sci. 113, 2299–2306.
- Jacquemin V, Furling D, Bigot A, Butler-Browne GS, Mouly V (2004) IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Exp. Cell Res. 299, 148–158.
- Karpati G, Ajdukovic D, Arnold D, Gledhill RB, Guttmann R, Holland P, Koch PA, Shoubridge E, Spence D, Vanasse M, Watters GV, Abrahamowicz M, Duff C, Worton RG (1993) Myoblast transfer in Duchenne muscular dystrophy. Ann. Neurol. 34, 8–17.
- Kurek J, Bower J, Romanella M, Austin L (1996) Leukaemia inhibitory factor treatment stimulates muscle regeneration in the mdx mouse. Neurosci. Lett. 212, 167–170.
- Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ, De Marzo AM (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62, 6405–6409.
- Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R, Nagaraja H, Stephens R, Lantry L, Morris GE, Burghes AHM (1995) Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N. Engl. J. Med. 333, 832–838.
- Mezzogiorno A, Coletta M, Zani BM, Cossu G, Molinaro M (1993) Paracrine stimulation of senescent satellite cell proliferation by factors released by muscle or myotubes from young mice. Mech. Ageing Dev. 70, 35–44.
- Morgenstern JP, Land H (1990) A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res. 18, 1068.
- Mouly V, Edom F, Decary S, Vicart P, Barbet JP, Butler-Browne GS (1996) SV40 large T antigen interferes with adult myosin heavy chain expression, but not with differentiation of human satellite cells. Exp. Cell Res. 225, 268–276.
- Mouly V, Aamiri A, Bigot A, Cooper RN, Di Donna S, Furling D, Gidaro T, Jacquemin V, Mamchaoui K, Negroni E, Perie S, Renault V, Silva-Barbosa SD, Butler-Browne GS (2005a) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol. Scand. 184, 3–15.
- Mouly V, Aamiri A, Perie S, Mamchaoui K, Barani A, Bigot A, Bouazza B, Francois V, Furling D, Jacquemin V, Negroni E, Riederer I, Vignaud A, St Guily JL, Butler-Browne GS (2005b) Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 24, 128–133.
- O'Sullivan JN, Bronner MP, Brentnall TA, Finley JC, Shen WT, Emerson S, Emond MJ, Gollahon KA, Moskovitz AH, Crispin DA, Potter JD, Rabinovitch PS (2002) Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat. Genet. 32, 280–284.
- Ogilvie M, Yu X, Nicolas-Metral V, Pulido SM, Liu C, Ruegg UT, Noguchi CT (2000) Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J. Biol. Chem. 275, 39754–39761.
- Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to positive by injection of normal myoblasts. Nature 337, 176–179.
- Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763.
- Quenneville SP, Tremblay JP (2006) Ex vivo modification of cells to induce a muscle-based expression. Curr. Gene Ther. 6, 625–632.
-
Quinn LS,
Haugk KL (1996) Overexpression of the type-1 insulin-like growth factor receptor increases ligand-dependent proliferation and differentiation in bovine skeletal myogenic cultures.
J. Cell Physiol. 168, 34–41.
10.1002/(SICI)1097-4652(199607)168:1<34::AID-JCP5>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Ramirez RD, Herbert BS, Vaughan MB, Zou Y, Gandia K, Morales CP, Wright WE, Shay JW (2003) Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 22, 433–444.
- Ramirez RD, Morales CP, Herbert B-S, Passons C, Shay JW, Wright WE (2001) Putative telomere-independant mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403.
- Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J, Peyton M, You Y, Kurie JM, DiMaio JM, Milchgrub S, Smith AL, Souza RF, Gilbey L, Zhang X, Gandia K, Vaughan MB, Wright WE, Gazdar AF, Shay JW, Minna JD (2004) Immortalization of human brochial epithelial cells in the absence of viral oncoproteins. Cancer Res. 64, 9027–9034.
- Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell 1, 132–139.
- Rouger K, Brault M, Daval N, Leroux I, Guigand L, Lesoeur J, Fernandez B, Cherel Y (2004) Muscle satellite cell heterogeneity: in vitro and in vivo evidences for populations that fuse differently. Cell Tissue Res. 317, 319–326.
- Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579.
- Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301, 487–492.
- Schoser BG, Storjohann S, Kunze K (1998) Immunolocalization of leukemia inhibitory factor in normal and denervated human muscle. Neuroreport 9, 2843–2846.
-
Seidl K,
Erck C,
Buchberger A (1998) Evidence for the participation of nerve growth factor and its low-affinity receptor (p75NTR) in the regulation of the myogenic program.
J. Cell Physiol. 176, 10–21.
10.1002/(SICI)1097-4652(199807)176:1<10::AID-JCP2>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- Seigneurin-Venin S, Bernard V, Tremblay JP (2000) Telomerase allows the immortalization of T antigen-positive DMD myoblasts: a new source of cells for gene transfer application. Gene Ther. 7, 619–623.
- Shavlakadze T, Grounds M (2006) of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Bioessays 28, 994–1009.
- Shay JW, Wright WE (2004) Telomeres are double-strand DNA breaks hidden from DNA damage responses. Mol. Cell. 14, 420–421.
- Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410.
- Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, Dugre FJ, Sylvain M, Lachance JG, Deschenes L, Senay H, Tremblay JP (2006) Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J. Neuropathol. Exp. Neurol. 65, 371–386.
- Skuk D, Goulet M, Roy B, Piette V, Cote CH, Chapdelaine P, Hogrel JY, Paradis M, Bouchard JP, Sylvain M, Lachance JG, Tremblay JP (2007) First test of a ‘high-density injection’ protocol for myogenic cell transplantation throughout large Volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul. Disord. 17, 38–46.
- Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R, Dugre FJ, Lachance JG, Deschenes L, Helene S, Sylvain M, Tremblay JP (2004) Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol. Ther. 9, 475–482.
- Skuk D, Tremblay JP (2003) Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. J. Muscle Res. Cell. Motil. 24, 285–300.
- Steinert S, Shay JW, Wright WE (2000) Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem. Biophys. Res. Commun. 273, 1095–1098.
- Thornell LE, Lindstrom M, Renault V, Mouly V, Butler-Browne GS (2003) Satellite cells and training in the elderly. Scand. J. Med. Sci. Sports 12, 48–55.
- Tremblay JP, Malouin F, Roy R, Huard J, Bouchard JP, Satoh A, Richards CL (1993) Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 2, 99–112.
- Vaziri H, Benchinol S (1998) Reconstitution of telomerase ativity in normal human cells leads to elongation of telomeres and extended replicative lifespan. Curr. Biol. 8, 289–282.
- Wiendl H, Mitsdoerffer M, Hofmeister V, Wischhusen J, Weiss EH, Dichgans J, Lochmuller H, Hohlfeld R, Melms A, Weller M (2003) The non-classical MHC molecule HLA-G protects human muscle cells from immune-mediated lysis: implications for myoblast transplantation and gene therapy. Brain 126, 176–185.
- Wright WE, Shay JW (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat. Med. 6, 849–851.
- Wright WE, Shay JW (2002) Historical claims and current interpretations of replicative aging. Nat. Biotechnol. 20, 682–688.