Na+/K+-ATPase inhibition upregulates NMDA-evoked currents in rat hippocampal CA1 pyramidal neurons
Linan Zhang
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Pharmacy Department, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei 050018, China
Search for more papers by this authorFang Guo
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorSuwen Su
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorHuicai Guo
Department of Toxicology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorChen Xiong
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorJian Yin
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorWenya Li
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorCorresponding Author
Yongli Wang
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Correspondence and reprints: [email protected]; [email protected]Search for more papers by this authorLinan Zhang
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Pharmacy Department, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei 050018, China
Search for more papers by this authorFang Guo
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorSuwen Su
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorHuicai Guo
Department of Toxicology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorChen Xiong
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorJian Yin
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorWenya Li
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Search for more papers by this authorCorresponding Author
Yongli Wang
Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China
Correspondence and reprints: [email protected]; [email protected]Search for more papers by this authorAbstract
Na+/K+-ATPase and N-methyl-d-aspartate (NMDA) receptor in hippocampus play very important roles in the regulation of learning and memory. Here, we showed that dihydroouabain (DHO, 10−5–10−3 m), a Na+/K+-ATPase inhibitor, significantly potentiated NMDA current in rat hippocampal CA1 pyramidal neurons, which was blocked by PP2 (the selective Src tyrosine kinase inhibitor) and PD-98059 [the selective inhibitor of the mitogen-activated protein kinases (MAPK) cascade]. These findings reported here uncover that Src mediates the cross-talk between Na+/K+-ATPase and NMDA receptor to transduce the signals from Na+/K+-ATPase to the MAPK cascade and provide new insights into therapeutic target for deeper understanding of the nature of cognitive disorder.
References
- 1 Collingridge G.L., Kehl S.J., McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (1983) 334 33–46.
- 2 D’Souza S.W., McConnell S.E., Slater P., Barson A.J. Glycine site of the excitatory amino acid N-methyl-d-aspartate receptor in neonatal and adult brain. Arch. Dis. Child. (1993) 69 212–215.
- 3 Nacher J., McEwen B.S. The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus (2006) 16 267–270.
- 4 Tsai S.J. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia. Med. Sci. Monit. (2005) 11 HY39–HY45.
- 5 Lindsley C.W., Shipe W.D., Wolkenberg S.E. et al. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr. Top. Med. Chem. (2006) 6 771–785.
- 6 Winblad B., Gauthier S., Astrom D., Stender K. Memantine benefits functional abilities in moderate to severe Alzheimer’s disease. J. Nutr. Health Aging (2010) 14 770–774.
- 7 Cotman C.W., Geddes J.W., Bridges R.J., Monaghan D.T. N-methyl-d-aspartate receptors and Alzheimer’s disease. Neurobiol. Aging (1989) 10 603–605; discussion 18–20.
- 8 Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. (1990) 11 379–387.
- 9 Greenamyre J.T. Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson’s disease. J. Neural Transm. Gen. Sect. (1993) 91 255–269.
- 10 Beal M.F. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. (1992) 6 3338–3344.
- 11 Nakamichi N., Oikawa H., Kambe Y., Yoneda Y. Relevant modulation by ferrous ions of N-methyl-d-aspartate receptors in ischemic brain injuries. Curr. Neurovasc. Res. (2004) 1 429–440.
- 12 Collingridge G.L., Bliss T.V. Memories of NMDA receptors and LTP. Trends Neurosci. (1995) 18 54–56.
- 13 Morris R.G., Anderson E., Lynch G.S., Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature (1986) 319 774–776.
- 14 Sakimura K., Kutsuwada T., Ito I. et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature (1995) 373 151–155.
- 15 Tsien J.Z., Huerta P.T., Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell (1996) 87 1327–1338.
- 16 Zhang X.L., Sullivan J.A., Moskal J.R., Stanton P.K. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology (2008) 55 1238–1250.
- 17 Kurup P., Zhang Y., Xu J. et al. Abeta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J. Neurosci. (2010) 30 5948–5957.
- 18 Mobasheri A., Avila J., Cozar-Castellano I. et al. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci. Rep. (2000) 20 51–91.
- 19 Scuri R., Lombardo P., Cataldo E., Ristori C., Brunelli M. Inhibition of Na+/K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech. Eur. J. Neurosci. (2007) 25 159–167.
- 20 Glushchenko T.S., Izvarina N.L. Na+,K(+)-ATPase activity in neurons and glial cells of the olfactory cortex of the rat brain during the development of long-term potentiation. Neurosci. Behav. Physiol. (1997) 27 49–52.
- 21 Brunelli M., Garcia-Gil M., Mozzachiodi R., Scuri R., Zaccardi M.L. Neurobiological principles of learning and memory. Arch. Ital. Biol. (1997) 135 15–36.
- 22 Wyse A.T., Bavaresco C.S., Reis E.A. et al. Training in inhibitory avoidance causes a reduction of Na+,K+-ATPase activity in rat hippocampus. Physiol. Behav. (2004) 80 475–479.
- 23 Reich C.G., Mason S.E., Alger B.E. Novel form of LTD induced by transient, partial inhibition of the Na,K-pump in rat hippocampal CA1 cells. J. Neurophysiol. (2004) 91 239–247.
- 24 Moseley A.E., Williams M.T., Schaefer T.L. et al. Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J. Neurosci. (2007) 27 616–626.
- 25 Sato T., Tanaka K., Ohnishi Y., Teramoto T., Irifune M., Nishikawa T. Effects of steroid hormones on (Na+, K+)-ATPase activity inhibition-induced amnesia on the step-through passive avoidance task in gonadectomized mice. Pharmacol. Res. (2004) 49 151–159.
- 26 Zhan H., Tada T., Nakazato F., Tanaka Y., Hongo K. Spatial learning transiently disturbed by intraventricular administration of ouabain. Neurol. Res. (2004) 26 35–40.
- 27 Rogers L.J., Oettinger R., Szer J., Mark R.F. Separate chemical inhibitors of long-term and short-term memory: contrasting effects of cycloheximide, ouabain and ethacrynic acid on various learning tasks in chickens. Proc. R. Soc. Lond. B Biol. Sci. (1977) 196 171–195.
- 28 Bell G.A., Gibbs M.E. Unilateral storage of monocular engram in day-old chick. Brain Res. (1977) 124 263–270.
- 29 Hattori N., Kitagawa K., Higashida T. et al. CI-ATPase and Na+/K(+)-ATPase activities in Alzheimer’s disease brains. Neurosci. Lett. (1998) 254 141–144.
- 30 Tsai S.J., Lin C.Y., Mong M.C., Ho M.W., Yin M.C. s-Ethyl cysteine and s-propyl cysteine alleviate beta-amyloid induced cytotoxicity in nerve growth factor differentiated PC12 cells. J. Agric. Food. Chem. (2010) 58 7104–7108.
- 31 Jovicic M.E., Popovic M., Nesic K.J., Popovic N., Pavlovic S.J., Rakic L. Aging, aluminium and basal forebrain lesions modify substrate kinetics of erythrocyte membrane Na,K-ATPase in the rat. J. Alzheimers Dis. (2008) 14 85–93.
- 32 Cousin M.A., Nicholls D.G., Pocock J.M. Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J. Neurochem. (1995) 64 2097–2104.
- 33 Stelmashook E.V., Weih M., Zorov D., Victorov I., Dirnagl U., Isaev N. Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells. FEBS Lett. (1999) 456 41–44.
- 34 Volterra A., Trotti D., Tromba C., Floridi S., Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. (1994) 14 2924–2932.
- 35 Bersier M.G., Miksztowicz V., Pena C., Rodriguez de Lores Arnaiz G. Modulation of aspartate release by ascorbic acid and endobain E, an endogenous Na+, K+ -ATPase inhibitor. Neurochem. Res. (2005) 30 479–486.
- 36 Bersier M.G., Pena C., Rodriguez de Lores Arnaiz G. The expression of NMDA receptor subunits in cerebral cortex and hippocampus is differentially increased by administration of endobain E, a Na+, K+-ATPase inhibitor. Neurochem. Res. (2008) 33 66–72.
- 37 Li H.F., Mochly-Rosen D., Kendig J.J. Protein kinase Cgamma mediates ethanol withdrawal hyper-responsiveness of NMDA receptor currents in spinal cord motor neurons. Br. J. Pharmacol. (2005) 144 301–307.
- 38 Wang X.Q., Yu S.P. Novel regulation of Na, K-ATPase by Src tyrosine kinases in cortical neurons. J. Neurochem. (2005) 93 1515–1523.
- 39 Wirkner K., Gunther A., Weber M. et al. Modulation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex by P2Y receptor activation. Cereb. Cortex (2007) 17 621–631.
- 40 Frazier C.J., Buhler A.V., Weiner J.L., Dunwiddie T.V. Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J. Neurosci. (1998) 18 8228–8235.
- 41 Frazier C.J., Rollins Y.D., Breese C.R., Leonard S., Freedman R., Dunwiddie T.V. Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J. Neurosci. (1998) 18 1187–1195.
- 42 Wirkner K., Koles L., Thummler S. et al. Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology (2002) 42 476–488.
- 43 Lindemeyer K., Leemhuis J., Loffler S., Grass N., Norenberg W., Meyer D.K. Metabotropic glutamate receptors modulate the NMDA- and AMPA-induced gene expression in neocortical interneurons. Cereb. Cortex (2006) 16 1662–1677.
- 44 Park L., Gallo E.F., Anrather J. et al. Key role of tissue plasminogen activator in neurovascular coupling. Proc. Natl. Acad. Sci. USA (2008) 105 1073–1078.
- 45 Boldyrev A., Bulygina E., Gerassimova O., Lyapina L., Schoner W. Functional relationship between Na/K-ATPase and NMDA-receptors in rat cerebellum granule cells. Biochemistry (Mosc) (2004) 69 429–434.
- 46 Nichols J.R., Maldonado H.S. Comparison of the inhibitory effect of ouabain and dihydroouabain on the Na(+)-K+ ATPase from frog skin. Gen. Pharmacol. (1993) 24 349–352.
- 47 Tian J., Gong X., Xie Z. Signal-transducing function of Na+-K+-ATPase is essential for ouabain’s effect on [Ca2+]i in rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. (2001) 281 H1899–H1907.
- 48 Haas M., Askari A., Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. (2000) 275 27832–27837.
- 49 Liu J., Tian J., Haas M., Shapiro J.I., Askari A., Xie Z. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J. Biol. Chem. (2000) 275 27838–27844.
- 50 Aydemir-Koksoy A., Abramowitz J., Allen J.C. Ouabain-induced signaling and vascular smooth muscle cell proliferation. J. Biol. Chem. (2001) 276 46605–46611.
- 51 Haas M., Wang H., Tian J., Xie Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. (2002) 277 18694–18702.
- 52 Liu L., Mohammadi K., Aynafshar B. et al. Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am. J. Physiol. Cell Physiol. (2003) 284 C1550–C1560.
- 53 Yuan Z., Cai T., Tian J., Ivanov A.V., Giovannucci D.R., Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell (2005) 16 4034–4045.
- 54 Kajimura S., Seale A.P., Hirano T., Cooke I.M., Grau E.G. Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. Gen. Comp. Endocrinol. (2005) 143 240–250.
- 55 Greenamyre J.T., Penney J.B., D’Amato C.J., Young A.B. Dementia of the Alzheimer’s type: changes in hippocampal L-[3H]glutamate binding. J. Neurochem. (1987) 48 543–551.
- 56 Menegoz M., Lau L.F., Herve D., Huganir R.L., Girault J.A. Tyrosine phosphorylation of NMDA receptor in rat striatum: effects of 6-OH-dopamine lesions. Neuroreport (1995) 7 125–128.
- 57 Oh J.D., Russell D.S., Vaughan C.L., Chase T.N. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res. (1998) 813 150–159.
- 58 Blank T., Nijholt I., Teichert U. et al. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-d-aspartate responses. Proc. Natl. Acad. Sci. USA (1997) 94 14859–14864.
- 59 Lu W.Y., Xiong Z.G., Lei S. et al. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci. (1999) 2 331–338.
- 60 Xiong Z.G., Pelkey K.A., Lu W.Y. et al. Src potentiation of NMDA receptors in hippocampal and spinal neurons is not mediated by reducing zinc inhibition. J. Neurosci. (1999) 19 RC37.
- 61 Lei G., Xue S., Chery N. et al. Gain control of N-methyl-d-aspartate receptor activity by receptor-like protein tyrosine phosphatase alpha. EMBO J. (2002) 21 2977–2989.
- 62 Kim H.W., Roh D.H., Yoon S.Y. et al. Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br. J. Pharmacol. (2008) 154 1125–1134.
- 63 Lieberman D.N., Mody I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature (1994) 369 235–239.
- 64 Rycroft B.K., Gibb A.J. Inhibitory interactions of calcineurin (phosphatase 2B) and calmodulin on rat hippocampal NMDA receptors. Neuropharmacology (2004) 47 505–514.
- 65 Fong D.K., Rao A., Crump F.T., Craig A.M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J. Neurosci. (2002) 22 2153–2164.
- 66 Frey U., Huang Y.Y., Kandel E.R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science (1993) 260 1661–1664.
- 67 Lu Y.M., Roder J.C., Davidow J., Salter M.W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science (1998) 279 1363–1367.
- 68 Cerne R., Rusin K.I., Randic M. Enhancement of the N-methyl-d-aspartate response in spinal dorsal horn neurons by cAMP-dependent protein kinase. Neurosci. Lett. (1993) 161 124–128.
- 69 Raman I.M., Tong G., Jahr C.E. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron (1996) 16 415–421.
- 70 Skeberdis V.A., Chevaleyre V., Lau C.G. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. (2006) 9 501–510.
- 71 Tang B., Ji Y., Traub R.J. Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain (2008) 137 540–549.
- 72 Szabo S.T., Machado-Vieira R., Yuan P. et al. Glutamate receptors as targets of protein kinase C in the pathophysiology and treatment of animal models of mania. Neuropharmacology (2009) 56 47–55.
- 73 Tyszkiewicz J.P., Gu Z., Wang X., Cai X., Yan Z. Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. J. Physiol. (2004) 554 765–777.
- 74 Ali D.W., Salter M.W. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr. Opin. Neurobiol. (2001) 11 336–342.
- 75 Kim T.Y., Hwang J.J., Yun S.H., Jung M.W., Koh J.Y. Augmentation by zinc of NMDA receptor-mediated synaptic responses in CA1 of rat hippocampal slices: mediation by Src family tyrosine kinases. Synapse (2002) 46 49–56.
- 76 Kohr G., Seeburg P.H. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J. Physiol. (1996) 492 445–452.
- 77 Rostas J.A., Brent V.A., Voss K., Errington M.L., Bliss T.V., Gurd J.W. Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-d-aspartate receptor in long-term potentiation. Proc. Natl. Acad. Sci. U S A (1996) 93 10452–10456.
- 78 Coogan A.N., O’Leary D.M., O’Connor J.J. P42/44 MAP kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J. Neurophysiol. (1999) 81 103–110.
- 79 English J.D., Sweatt J.D. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. (1996) 271 24329–24332.
- 80 Morozov A., Muzzio I.A., Bourtchouladze R. et al. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron (2003) 39 309–325.
- 81 Eckel-Mahan K.L., Phan T., Han S. et al. Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat. Neurosci. (2008) 11 1074–1082.
- 82 Bi R., Broutman G., Foy M.R., Thompson R.F., Baudry M. The tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple effects of estrogen in hippocampus. Proc. Natl. Acad. Sci. USA (2000) 97 3602–3607.