Matching and settlement patterns: The case of Norway
Mikko Moilanen
Northern Research Institute, PO Box 6434 Tromsø Science Park, N-9294 Tromsø, Norway; Department of Economics and Management, University of Tromsø, N-9037 Tromsø, Norway (e-mail: [email protected] )
The author would like to thank Sanna-Mari Hynninen and three anonymous referees for valuable comments. The paper is financed by grant 168539 from the Norwegian Research Council. The financial support is gratefully acknowledged.
Search for more papers by this authorMikko Moilanen
Northern Research Institute, PO Box 6434 Tromsø Science Park, N-9294 Tromsø, Norway; Department of Economics and Management, University of Tromsø, N-9037 Tromsø, Norway (e-mail: [email protected] )
The author would like to thank Sanna-Mari Hynninen and three anonymous referees for valuable comments. The paper is financed by grant 168539 from the Norwegian Research Council. The financial support is gratefully acknowledged.
Search for more papers by this authorAbstract
This paper estimates the matching of job seekers and vacant jobs in Norwegian regional labour markets. The main goal of the study is to analyse whether differing settlement patterns across regions can explain the ability of regional labour markets to form new matches. The basic matching function is extended to account for spatial spillovers between regions. The paper finds that matching efficiency in regions with low average population density, but with few dense, urban settlements, is as high as in urbanized high-density areas. It is therefore important to take into account both population density and dispersion of population within a region when analysing matching in regional labour markets.
Resumen
Este artículo estima el emparejamiento de personas en busca de empleo con empleos vacantes en mercados laborales regionales noruegos. El objetivo principal del estudio es analizar si los diferentes patrones de asentamiento entre regiones pueden explicar la capacidad de los mercados laborales regionales para crear nuevos emparejamientos. Se amplia la función de emparejamiento básica para que tenga en cuenta spillovers espaciales entre regiones. El artículo encuentra que la eficiencia en el emparejamiento en regiones con una densidad de población promedio baja, pero con unos pocos asentamientos urbanos densos, es tan alta como en áreas urbanas de alta densidad. Por tanto es importante tener en cuenta tanto la densidad como la dispersión de población dentro de una región al analizar el emparejamiento en mercados laborales regionales.
References
- Anderson PM, Burgess SM (2000) Empirical matching functions: Estimation and interpretation using disaggregate data. Review of Economics and Statistics 82: 93–102
- Andersson F, Burgess S, Lane JI (2007) Cities, matching and the productivity gains of agglomeration. Journal of Urban Economics 61: 112–128
- Andrews MJ, Bradley S, Upward R (2001) Estimating the probability of a match using microeconomic data for the youth labour market. Labour Economics 8: 335–357
-
Anselin L (1988) Spatial econometrics: Methods and models. Kluwer, Amsterdam
10.1007/978-94-015-7799-1 Google Scholar
- Anselin L (2003) Spatial externalities, spatial multipliers, and spatial econometrics. International Regional Science Review 26: 153–166
- Barron JM, Gilley O (1981) Job search and vacancy contacts: Note. American Economic Review 71: 747–752
-
Burda MC,
Profit S (1996) Matching across space: Evidence on mobility in the Czech Republic.
Labour Economics
3: 255–278
10.1016/S0927-5371(96)00013-9 Google Scholar
- Burdett K, Coles MG, Van Ours JC (1994) Temporal aggregation bias in stock-flow models. CEPR Discussion Paper 967.
- Burgess S (1993) A model of competition between unemployed and employed job-searchers: An application to the unemployment outflow rate in Britain. The Economic Journal 103: 1190–1204
- Burgess S, Profit S (2001) Externalities in the matching of workers and firms in Britain. Labour Economics 8: 313–333
-
Cameron AC,
Trivedi PK (2005) Microeconometrics: Methods and applications. Cambridge University Press, New York
10.1017/CBO9780511811241 Google Scholar
- Chirinko R (1982) An empirical investigation of the returns to search. American Economic Review 72: 498–501
-
Church R,
ReVelle C (1974) The maximal covering location problem.
Papers of the Regional Science Association
32: 101–118
10.1111/j.1435-5597.1974.tb00902.x Google Scholar
- Coles MG (2008) Optimal unemployment policy in a matching equilibrium. Labour Economics 15: 537–559
- Coles MG, Smith E (1996) Cross-section estimation of the matching function: Evidence from England and Wales. Economica 63: 589–598
- Delacroix A (2003) Heterogeneous matching with transferable utility: Two labor market applications. International Economic Review 44: 313–342
- Duranton G, Puga D (2004) Micro-foundations of urban agglomeration economies. In: JV Henderson, J-F Thisse (eds) Handbook of regional and urban economics. Elsevier, Amsterdam
- Fahr R, Sunde U (2006) Regional dependencies in job creation: An efficiency analysis for Western Germany. Applied Economics 38: 1193–1206
- Farrell MJ (1957) The measurement of productive efficiency. Journal of the Royal Statistical Society Series A 120: 253–290
- Florax R, Folmer H (1992) Specification and estimation of spatial linear regression models: Monte Carlo evaluation of pre-test estimators. Regional Science and Urban Economics 22: 405–432
- Gallego J (2006) Mapping urban/rural areas from population density grids. European Commission's Institute for Environment and Sustainability, Ispra, Italy
- Gallego J, Peedell S (2001) Using CORINE land cover to map population density. Towards agri-environmental indicators. European Environment Agency, Copenhagen
- Glaeser EL (1999) Learning in cities. Journal of Urban Economics 46: 254–277
- Gløersen E, Dubois A (2005) Sparsely populated areas: Just another name for Nordic rural regions? Journal of Nordregio 5: 13–18
- Hagtvet H (2005) Undersøkelse om rekruttering av arbeidskraft [Survey of labor recruitment. Nav rapportserie. Norwegian directorate of labour and Welfare, Oslo
- Haining R (2004) Spatial data analysis. Theory and practice. Cambridge University Press, Cambridge
- Hox JJ (2002) Multilevel analysis; Techniques and applications. Lawrence Erlbaum Associates, Mahwah, NJ
-
Hynninen S-M (2005) Matching across space: Evidence from Finland.
Labour
19: 749–765
10.1111/j.1467-9914.2005.00320.x Google Scholar
-
Hynninen S-M,
Lahtonen J (2007) Does population density matter in the process of matching heterogeneous job seekers and vacancies?
Empirica
34: 397–410
10.1007/s10663-007-9037-0 Google Scholar
-
Ibourk A,
Maillard B,
Perelman S,
Sneessens HR (2004) Aggregate Matching Efficiency: A Stochastic Production Frontier, France 1990–1994.
Empirica
31: 1–25
10.1023/B:EMPI.0000024046.48027.bc Google Scholar
- Kain JF (1968) Housing segregation, Negro employment and metropolitan decentralization. Quarterly Journal of Economics 82: 175–197
- Kano S, Ohta M (2005) Estimating a matching function and regional matching efficiencies: Japanese panel data for 1973–1999. Japan and the World Economy 17: 25–41
- Kim Y, Schmidt P (2000) A review and empirical comparison of Bayesian and classical approaches to inference on efficiency levels in stochastic frontier models with panel data. Journal of Productivity Analysis 14: 91–118
- Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38: 963–974
- Marshall A (1890) Principles of Economics. Macmillan, London
- Molho I (1995) Migrant inertia, accessibility and local unemployment. Economica 62: 123–132
-
OECD (2008) OECD factbook 2008: Economic, environmental and social statistics. OECD, Paris
10.1787/factbook-2008-en Google Scholar
- Parent O, LeSage JP (2008) Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers. Journal of Applied Econometrics 23: 235–256
- Petrongolo P (2001) Reemployment probabilities and returns to matching. Journal of Labor Economics 19: 716–741
- Petrongolo B, Pissarides CA (2001) Looking into the black box: A survey of the matching function. Journal of Economic Literature 39: 390–431
- Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York
- Raudenbush SW, Bryk AS (2002) Hierarchical linear models: Applications and data analysis methods. Sage, Thousand Oaks CA
- Rogers CL (1997) Job search and unemployment duration: Implications for the spatial mismatch hypothesis. Journal of Urban Economics 42: 109–132
- Seater J (1979) Job search and vacancy contacts. American Economic Review 69: 411–419
- Statacorp (2007) Longitudinal/panel-data reference manual. Release 10. Stata Press, College Station, TX
- Tasci HM (2008) Search and determinants of job search intensity in Turkey. METU Studies in Development 35: 399–425
- Turner S (1997) Barriers to a better break: Employer discrimination and spatial mismatch in metropolitan Detroit. Journal of Urban Affairs 19: 123–141
- Van Ommeren J, Rietveld P (2008) Compensation for commuting in imperfect urban markets. Papers in Regional Science 87: 155–171
- Van Ommeren J, Rietveld P, Nijkamp P (1997) Commuting: In search of jobs and residences. Journal of Urban Economics 42: 402–421
- Vangeneugden T, Laenen A, Geys H, Renard D, Molenberghs G (2004) Applying linear mixed models to estimate reliability in clinical trial data with repeated measurements. Controlled Clinical Trials 25: 13–30
- Verbeke G, Molenberghs G (2001) Linear mixed models for longitudinal data Springer Series in Statistics. Springer, Heidelberg
- Wahba J, Zenou Y (2005) Density, social networks and job search methods: Theory and application to Egypt. Journal of Development Economics 78: 443–473
- Warren RS (1996) Returns to scale in matching model of the labor market. Economic Letters 50: 135–142
- Wasmer E, Zenou Y (2002) Does city structure affect job search and welfare? Journal of Urban Economics 51: 515–541
- Yashiv E (2000) The determinants of equilibrium unemployment. The American Economic Review 90: 1297–1322